Zitieren

Aljadi, A.M., & Yusoff, K. M. (2003). Isolation and identification of phenolic acids in Malaysian honey with antibacterial properties. Turkish Journal of Medicine, 33, 229-236.Search in Google Scholar

Al-Waili, N. S., Salom, K., Butler, G., & Al Ghamdi, A. A. (2011). Honey and microbial infections: A review supporting the use of honey for microbial control. Journal of Medicinal Food, 14, 1079-1096. DOI:10.1089/jmf.2010.016110.1089/jmf.2010.0161Open DOISearch in Google Scholar

Barker, S. A., Forster, A. B., Lamb, D. C., & Hodgson, N. (1959). Identification of 10-hydroxy-Δ2-dece-noic acid in royal jelly. Nature, 183, 996-997. DOI: 10.1038/18399a010.1038/183996a0Search in Google Scholar

Blum, M. S., Novak, A. F., & Taber, S. (1959). 10-Hydroxy-Δ2-decenoic acid, an antibiotic found in royal jelly. Science, 130, 452-453.10.1126/science.130.3373.452Search in Google Scholar

Bogdanov, S. (1997). Nature and origin of the antibacterial substances in honey. Lebensmittel-Wissenschaft und Technologie, 30, 748-753. DOI: 10.1006/fstl.1997.025910.1006/fstl.1997.0259Open DOISearch in Google Scholar

Brudzinski, K. (2006). Effect of hydrogen peroxide on antibacterial activity of Canadian honeys. Canadian Journal of Microbiology, 52, 1228-1237.10.1139/w06-086Search in Google Scholar

Brudzinski, K., Abubaker, K., St-Martin, L., & Castle., A. (2011). Re-examining the role of hydrogen peroxide in bacteriostatic and bactericidal activities of honey. Frontiers in Microbiology, 2, 213-218. DOI: 10.3389/fmicb.2011.0021310.3389/fmicb.2011.00213Open DOISearch in Google Scholar

Brudzinski, K., & Sjaarda, C. (2015). Honey glycoproteins containing antimicrobial peptides, Jelleins of the major royal jelly protein 1, are responsible for the cell wall lytic and bactericidal activities of honey. Plos One 10(4):e0120238. DOI: 10.1371/journal.pone.012023810.1371/journal.pone.0120238Search in Google Scholar

Brudzynski, K., Miotto, D., Kim, L., Sjaarda, C., Maldonado-Alvarez, L., Fukś, H. (2017). Active macromolecules of honey form colloidal particles essential for honey antibacterial activity and hydrogen peroxide production. Scientific Reports, 7, 7637. DOI:10.1038/s41598-017-08072-010.1038/s41598-017-08072-0Open DOISearch in Google Scholar

Bučeková, M., & Majtán, J. (2016). The MRJP1 honey glycoprotein does not contribute to the overall antibacterial activity of natural honey. European Food Research & Technology, 242, 625-629. DOI: 10.1007/s00217-016-02665-510.1007/s00217-016-02665-5Open DOISearch in Google Scholar

Butenant, A., & Rembold, H. (1957). Über den Weiselzellenfuttersaft der Honig Biene. Zeitschrift für Physikalische Chemie, 308, 285-299.10.1515/bchm2.1957.308.1.284Search in Google Scholar

Core, E. J., & Schmidt, G. (1979). Useful procedures for the oxidation of alcohols involving pyridinium dichromate in aprotic media. Tetrahedron Letters, 20, 399-402. DOI: 10.1016/S0040-4049(01)93515-410.1016/S0040-4049(01)93515-4Open DOISearch in Google Scholar

Fidaleo, M., Zuorro, A., & Lavecchia, R. (2010). Honey: a natural antimicrobial agent against foodborne pathogens? Journal of Biotechnology, 150S, S298. DOI: 10.1016/j.jbiotec.2010.09.25310.1016/j.jbiotec.2010.09.253Open DOISearch in Google Scholar

Fyfe, L., Okoro, P., Paterson, U., Coyle, Sh., McDougall, G. J. (2017). Compositional analysis of Scottish honeys with antibacterial activity against antibiotic-resistant bacteria reveals novel antimicrobial components. LWT – Food Science & Technology, 79, 52-59. doi.org/10.1016/j.lwt.2017.01.02310.1016/j.lwt.2017.01.023Open DOISearch in Google Scholar

Giles, S. L., & Laheij, R. J. F. (2017). Successful treatment of persistent Clostridium difficile infection with Manuka honey. International Journal of Antimicrobial Agents, 49, 522-523. doi.org/10.1016/j.ijantimicag.2017.02.00510.1016/j.ijantimicag.2017.02.00528257905Open DOISearch in Google Scholar

Grecka, K., Kuś, P. M., Worobo, R. W., & Szweda, P. (2018). Study of the anti-staphylococcal potential of honeys produced in Northern Poland. Molecules, 23, 260. DOI:10.3390/molecules2302026010.3390/23020260Open DOISearch in Google Scholar

Isidorov, V.A. (2015). Identification of Biologically and Environmentally Significant Organic Compounds. Mass Spectra and Retention Indices Library of Trimethylsilyl Derivatives. PWN, Warszawa. 429 pp.Search in Google Scholar

Isidorov, V. A., Czyżewska, U., Isidorova, A. G., & Bakier, S. (2009). Gas chromatographic and mass spectrometric characterization of the organic acids extracted from some preparations containing lyophilized royal jelly. Journal of Chromatography B, 877, 3776-3780. DOI: 10.1016/j.jchromb.2009.09.01610.1016/j.jchromb.2009.09.01619767252Open DOISearch in Google Scholar

Isidorov, V. A., Czyżewska, U., Jankowska, E., & Bakier, S. (2011). Determination of royal jelly acids in honey. Food Chemistry, 124, 387-391. DOI: 10.1016/j.food-chem.2010.06.04410.1016/j.food-chem.2010.06.044Open DOISearch in Google Scholar

Isidorov, V. A., Bakier, S., & Grzech, J. (2012). Gas chromatographic-mass spectrometric investigation of volatile and extractable compounds of crude royal jelly. Journal of Chromatography B, 885-886, 109-116. DOI: 10.1016/j.jchromb.2011.12.02510.1016/j.jchromb.2011.12.02522245368Open DOISearch in Google Scholar

Isidorov, V. A., Bagan, R., Bakier, S., & Swiecicka, I. (2015). Chemical composition and antimicrobial activity of Polish herbhoneys. Food Chemistry, 171, 84-88. DOI: 10.1016/j.foodchem.2014.08.11210.1016/j.foodchem.2014.08.11225308646Open DOISearch in Google Scholar

Kwakman, P. H. S., te Velde, A. A., de Boer, L., Vanden-brouke-Grauls, Ch. M. J. E., Zaat, S. A. J. (2010a). Two major medical honeys have different mechanisms of bactericidal activity. PLoS One, 6, e 17709. DOI: 10.1371/journal.pone.001770910.1371/journal.pone.0017709304887621394213Open DOISearch in Google Scholar

Kwakman, P. H. S., te Velde, A. A., de Boer, L., Speeijer, D., Vandenbrouke-Grauls, Ch. M. J. E., Zaat, S. A. J. (2010b). How honey kills bacteria. The FASEB Journal, 24, 2567-2582, DOI: 10.1096/fj.09-15078910.1096/fj.09-15078920228250Open DOISearch in Google Scholar

Lee, S. K., & Lee, H. (2016). Antibacterial activity of solvent fractions and bacterial isolated of Korean domestic honey from different floral sources. Food Science and Biotechnology, 25, 1507-1512. DOI:10.1007/s10068-016-0234-010.1007/s10068-016-0234-0604926330263438Open DOISearch in Google Scholar

Mavric, E., Wittmann, S., Barth, G., & Henle, T. (2008). Identification and quantification of methylglyoxal as the dominant antibacterial constituent of Manuka (Leptospermium scoparium) honeys from New Zealand. Molecular Nutrition & Food Research, 52, 483-489. DOI: 10.1002/mnfr.20070028210.1002/mnfr.200700282Open DOISearch in Google Scholar

McCleskey, C. S., & Melampy, R. M. (1938). Bactericidal activity of “Royal Jelly” of honey bees. Journal of Microbiology, 38, 324.Search in Google Scholar

Melliou, E., & Chinou, I. (2005). Chemistry and bioactivity of royal jelly from Greece. Agricultural and Food Chemistry, 53, 8987-8992. DOI: 10.1021/jf051550p10.1021/jf051550pOpen DOISearch in Google Scholar

Mizrahi, H., & Lensky, Y. (Eds.). (1996). Bee products: Properties, applications and apitherapy. NY: Plenum Press.10.1007/978-1-4757-9371-0Search in Google Scholar

Moore, O. A., Smith, L. A., Campbell, F., Seers, K., Mc-Quay, H. J., Moore, R. A. (2001). Systematic review of the use of honey as a wound dressing. BMC Complementary & Alternative Medicine, 1, 2-7. http://www.biomedcentral.com/1472-6882/1/210.1186/1472-6882-1-2Search in Google Scholar

Russell, K. M., Molan, P. C., Wilkins, A. L., & Holand, P. T. (1988). Identification of some antibacterial constituents of New Zealand Manuka honey. Journal of Agricultural & Food Chemistry, 38, 10-13. DOI: 10.1021/jf00091a00210.1021/jf00091a002Open DOISearch in Google Scholar

Skubida, M., Pohorecka, K., Bober, A., & Zdańska, D. (2014). Five-year investigation of Paenibacillus larvae expansion in Polish apiaries: Analyses of results. In: Mat. 51th Sci. Beekeep. Conf., Szczyrk, pp. 55-56.Search in Google Scholar

Sultanbawa, Y., Cozzolino, D., Fuller, S., Cusack, A., Currie, M., Smyth, H. (2015). Infrared spectroscopy as a rapid tool to detect methylglyoxal and antibacterial activity in Australian honeys. Food Chemistry, 172, 207-212. DOI: 10.1016/j.foodchem.2014.09.06710.1016/j.foodchem.2014.09.067Open DOISearch in Google Scholar

Tan, S.-T., Holland, P. T., Wilkins, A. L., & Molan, P. C. (1988). Extractivities from New Zealand honeys. White clover, manuka and kanuka unifloral honeys. Journal of Agricultural & Food Chemistry, 36, 453-460. DOI: 10.1021/jf00081a01210.1021/jf00081a012Open DOISearch in Google Scholar

Taormina, P. J., Niemira, B. A., & Beuchat, L. R. (2001). Inhibitory activity of honey against foodborne pathogens as influenced by the presence of hydrogen peroxide and level of antioxidant power. International Journal of Food Microbiology, 69, 217-225.10.1016/S0168-1605(01)00505-0Search in Google Scholar

Valachová, I., Bučeková, M., & Majtán, J. (2016). Quantification of bee-derived peptide Defensin-1 in honey by competitive enzyme-linked immunosorbent assay, a new approach in honey quality control. Czech Journal of Food Sciences, 34, 233-243. DOI: 10.17221/422/2015-cjfs10.17221/422/2015-CJFSSearch in Google Scholar

Weston, R. J., Brocklebank, L. K., & Lu, Y. R. (2000). Identification and quantitative levels of antibacterial components of some New Zealand honeys. Food Chemistry, 70, 427-435. DOI: 10.1016/S0308-8146(00)00127-810.1016/S0308-8146(00)00127-8Open DOISearch in Google Scholar

Isidorov, V. A., Brzozowska, M., Czyżewska, U., & Glinka, Ł. (2009). Gas chromatographic investigation of phenylpropenoid glycerides from aspen (Populus tremula L.) buds. Journal of Chromatography A, 1198–1199: 196–201. DOI: 10.1016/j.chroma.2008.05.03810.1016/j.chroma.2008.05.03818533164Open DOISearch in Google Scholar

Isidorov, V., Szczepaniak, L., & Bakier, S. (2014a). Rapid GC/MS determination of botanical precursors of Eurasian propolis. Food Chemistry, 142, 101–110. DOI: 10.1016/j.foodchem.2013.07.03210.1016/j.foodchem.2013.07.03224001818Open DOISearch in Google Scholar

Isidorov, V., Szczepaniak, L., Wróblewska, A., Pirożnikow, E., Vetchinnikova, L. (2014b). Gas chromatographic-mass spectrometric examination of chemical composition of two Eurasian birch (Betula L.) bud exudates and its taxonomical implication. Biochemical Systematics and Ecology, 52, 41–48. DOI: 10.1016/j.bse.2013.12.00810.1016/j.bse.2013.12.008Open DOISearch in Google Scholar

Isidorov, V.A. (2015). Identification of Biologically and Environmentally Significant Organic Compounds. Mass Spectra and Retention Indices of Trimethylsilyl Derivatives. PWN, Warsaw, 430 pp.Search in Google Scholar

NIST Chemistry WebBook (2013). National Institute of Standards and Technology, Gaithersburg, MD 20899. http://webbook.nist.gov.chemistry.Search in Google Scholar

eISSN:
2299-4831
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
2 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Biologie, Zoologie, andere