Uneingeschränkter Zugang

Through the Thicket: A Study of Number-Oriented LLMS Derived from Random Forest Models

, , ,  und   
18. März 2025

Zitieren
COVER HERUNTERLADEN

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, I. Polosukhin, Attention is all you need, Advances in neural information processing systems 30 (2017). Search in Google Scholar

Y. H. Yeo, J. S. Samaan, W. H. Ng, P.-S. Ting, H. Trivedi, A. Vipani, W. Ayoub, J. D. Yang, O. Liran, B. Spiegel, et al., Assessing the performance of chatgpt in answering questions regarding cirrhosis and hepatocellular carcinoma, Clinical and molecular hepatology 29 (3) (2023) 721. Search in Google Scholar

Y. Ge, W. Hua, K. Mei, J. Tan, S. Xu, Z. Li, Y. Zhang, et al., Openagi: When llm meets domain experts, Advances in Neural Information Processing Systems 36 (2024). Search in Google Scholar

M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. d. O. Pinto, J. Kaplan, H. Edwards, Y. Burda, N. Joseph, G. Brockman, et al., Evaluating large language models trained on code, arXiv preprint arXiv:2107.03374 (2021). Search in Google Scholar

X. Wu, H. Zhao, Y. Zhu, Y. Shi, F. Yang, T. Liu, X. Zhai, W. Yao, J. Li, M. Du, et al., Usable xai: 10 strategies towards exploiting explainability in the llm era, arXiv preprint arXiv:2403.08946 (2024). Search in Google Scholar

X. Fang, W. Xu, F. A. Tan, J. Zhang, Z. Hu, Y. Qi, S. Nickleach, D. Socolinsky, S. Sengamedu, C. Faloutsos, Large language models on tabular data–a survey, arXiv preprint arXiv:2402.17944 (2024). Search in Google Scholar

T. Dinh, Y. Zeng, R. Zhang, Z. Lin, M. Gira, S. Rajput, J.-y. Sohn, D. Papailiopoulos, K. Lee, Lift: Language-interfaced fine-tuning for non-language machine learning tasks, Advances in Neural Information Processing Systems 35 (2022) 11763–11784. Search in Google Scholar

Y. Hou, J. Zhang, Z. Lin, H. Lu, R. Xie, J. McAuley, W. X. Zhao, Large language models are zero-shot rankers for recommender systems, in: European Conference on Information Retrieval, Springer, 2024, pp. 364–381. Search in Google Scholar

B. Zhao, C. Ji, Y. Zhang, W. He, Y. Wang, Q. Wang, R. Feng, X. Zhang, Large language models are complex table parsers, arXiv preprint arXiv:2312.11521 (2023). Search in Google Scholar

J. Wei, X. Wang, D. Schuurmans, M. Bosma, F. Xia, E. Chi, Q. V. Le, D. Zhou, et al., Chain-of-thought prompting elicits reasoning in large language models, Advances in neural information processing systems 35 (2022) 24824–24837. Search in Google Scholar

C. Yuan, Q. Xie, J. Huang, S. Ananiadou, Back to the future: Towards explainable temporal reasoning with large language models, arXiv preprint arXiv:2310.01074 (2023). Search in Google Scholar

Y. Sui, M. Zhou, M. Zhou, S. Han, D. Zhang, Table meets llm: Can large language models understand structured table data? a benchmark and empirical study, in: Proceedings of the 17th ACM International Conference on Web Search and Data Mining, 2024, pp. 645–654. Search in Google Scholar

H. Xue, F. D. Salim, Promptcast: A new prompt-based learning paradigm for time series forecasting, IEEE Transactions on Knowledge and Data Engineering (2023). Search in Google Scholar

S. Pan, L. Luo, Y. Wang, C. Chen, J. Wang, X. Wu, Unifying large language models and knowledge graphs: A roadmap, IEEE Transactions on Knowledge and Data Engineering (2024). Search in Google Scholar

Q. Li, Y. Liang, Y. Diao, C. Xie, B. Li, B. He, D. Song, https://openreview.net/forum?id=SJTSvRtGsN, Tree-as-a-prompt: Boosting black-box large language models on few-shot classification of tabular data (2024). https://openreview.net/forum?id=SJTSvRtGsN Search in Google Scholar

N. Ziems, G. Liu, J. Flanagan, M. Jiang, Explaining tree model decisions in natural language for network intrusion detection, arXiv preprint arXiv:2310.19658 (2023). Search in Google Scholar

Y. Zhuang, L. Liu, C. Singh, J. Shang, J. Gao, Learning a decision tree algorithm with transformers, arXiv preprint arXiv:2402.03774 (2024). Search in Google Scholar

L. Breiman, Random forests, Machine learning 45 (2001) 5–32. Search in Google Scholar

S. M. Lundberg, S.-I. Lee, A unified approach to interpreting model predictions, Advances in neural information processing systems 30 (2017). Search in Google Scholar

J. Zhou, T. Lu, S. Mishra, S. Brahma, S. Basu, Y. Luan, D. Zhou, L. Hou, Instruction-following evaluation for large language models, arXiv preprint arXiv:2311.07911 (2023). Search in Google Scholar

M. Romaszewski, P. Sekuła, Poster: Explainable classification of multimodal time series using llms, in: Polish Conference of Artificial Intelligence (PP-RAI’2024), Warsaw, Poland, 2024. Search in Google Scholar

T. Wei, J. Luan, W. Liu, S. Dong, B. Wang, Cmath: can your language model pass chinese elementary school math test?, arXiv preprint arXiv:2306.16636 (2023). Search in Google Scholar

J. Ahn, R. Verma, R. Lou, D. Liu, R. Zhang, W. Yin, Large language models for mathematical reasoning: Progresses and challenges, arXiv preprint arXiv:2402.00157 (2024). Search in Google Scholar

S. Imani, L. Du, H. Shrivastava, Mathprompter: Mathematical reasoning using large language models, arXiv preprint arXiv:2303.05398 (2023). Search in Google Scholar

R. Yamauchi, S. Sonoda, A. Sannai, W. Kumagai, Lpml: llm-prompting markup language for mathematical reasoning, arXiv preprint arXiv:2309.13078 (2023). Search in Google Scholar

X. Wang, J. Wei, D. Schuurmans, Q. Le, E. Chi, S. Narang, A. Chowdhery, D. Zhou, Self-consistency improves chain of thought reasoning in language models, arXiv preprint arXiv:2203.11171 (2022). Search in Google Scholar

L. Yu, W. Jiang, H. Shi, J. Yu, Z. Liu, Y. Zhang, J. T. Kwok, Z. Li, A. Weller, W. Liu, Meta-math: Bootstrap your own mathematical questions for large language models, arXiv preprint arXiv:2309.12284 (2023). Search in Google Scholar

L. C. Magister, J. Mallinson, J. Adamek, E. Malmi, A. Severyn, Teaching small language models to reason, arXiv preprint arXiv:2212.08410 (2022). Search in Google Scholar

A. K. Singh, D. Strouse, Tokenization counts: the impact of tokenization on arithmetic in frontier llms, arXiv preprint arXiv:2402.14903 (2024). Search in Google Scholar

M. Muffo, A. Cocco, E. Bertino, Evaluating transformer language models on arithmetic operations using number decomposition, arXiv preprint arXiv:2304.10977 (2023). Search in Google Scholar

T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell, et al., Language models are few-shot learners, Advances in neural information processing systems 33 (2020) 1877–1901. Search in Google Scholar

T. Kojima, S. S. Gu, M. Reid, Y. Matsuo, Y. Iwasawa, Large language models are zero-shot reasoners, Advances in neural information processing systems 35 (2022) 22199–22213. Search in Google Scholar

Z. Yu, L. He, Z. Wu, X. Dai, J. Chen, Towards better chain-of-thought prompting strategies: A survey, arXiv preprint arXiv:2310.04959 (2023). Search in Google Scholar

X. Cheng, J. Li, W. X. Zhao, J.-R. Wen, Chainlm: Empowering large language models with improved chain-of-thought prompting, arXiv preprint arXiv:2403.14312 (2024). Search in Google Scholar

Y. Shen, K. Song, X. Tan, D. Li, W. Lu, Y. Zhuang, HuggingGPT: Solving AI tasks with ChatGPT and its friends in Hugging Face, in: A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, S. Levine (Eds.), Advances in Neural Information Processing Systems, Vol. 36, Curran Associates, Inc., 2023, pp. 38154–38180. Search in Google Scholar

Y. Fu, H. Peng, A. Sabharwal, P. Clark, T. Khot, Complexity-based prompting for multi-step reasoning, in: The Eleventh International Conference on Learning Representations, 2022. Search in Google Scholar

X. Liu, T. Pang, C. Fan, Federated prompting and chain-of-thought reasoning for improving llms answering, in: International Conference on Knowledge Science, Engineering and Management, Springer, 2023, pp. 3–11. Search in Google Scholar

R. R. Hoffman, S. T. Mueller, G. Klein, J. Litman, Metrics for explainable ai: Challenges and prospects, arXiv preprint arXiv:1812.04608 (2018). Search in Google Scholar

R. Dwivedi, D. Dave, H. Naik, S. Singhal, R. Omer, P. Patel, B. Qian, Z. Wen, T. Shah, G. Morgan, et al., Explainable ai (xai): Core ideas, techniques, and solutions, ACM Computing Surveys 55 (9) (2023) 1–33. Search in Google Scholar

S. Gawde, S. Patil, S. Kumar, P. Kamat, K. Kotecha, S. Alfarhood, Explainable predictive maintenance of rotating machines using lime, shap, pdp, ice, IEEE Access 12 (2024) 29345–29361. Search in Google Scholar

B. H. Van der Velden, H. J. Kuijf, K. G. Gilhuijs, M. A. Viergever, Explainable artificial intelligence (xai) in deep learning-based medical image analysis, Medical Image Analysis 79 (2022) 102470. Search in Google Scholar

G. Srivastava, R. H. Jhaveri, S. Bhattacharya, S. Pandya, P. K. R. Maddikunta, G. Yenduri, J. G. Hall, M. Alazab, T. R. Gadekallu, et al., Xai for cybersecurity: state of the art, challenges, open issues and future directions, arXiv preprint arXiv:2206.03585 (2022). Search in Google Scholar

E. Cambria, L. Malandri, F. Mercorio, M. Mezzanzanica, N. Nobani, A survey on xai and natural language explanations, Information Processing & Management 60 (1) (2023) 103111. Search in Google Scholar

H. Luo, L. Specia, From understanding to utilization: A survey on explainability for large language models, arXiv preprint arXiv:2401.12874 (2024). Search in Google Scholar

J. Yu, A. I. Cristea, A. Harit, Z. Sun, O. T. Aduragba, L. Shi, N. Al Moubayed, Interaction: A generative xai framework for natural language inference explanations, in: 2022 International Joint Conference on Neural Networks (IJCNN), IEEE, 2022, pp. 1–8. Search in Google Scholar

V. B. Nguyen, J. Schlötterer, C. Seifert, From black boxes to conversations: Incorporating xai in a conversational agent, in: World Conference on Explainable Artificial Intelligence, Springer, 2023, pp. 71–96. Search in Google Scholar

J. W. Tukey, et al., Exploratory data analysis, Vol. 2, Springer, 1977. Search in Google Scholar

N. Dave, D. Kifer, C. L. Giles, A. Mali, Investigating symbolic capabilities of large language models, arXiv preprint arXiv:2405.13209 (2024). Search in Google Scholar

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, E. Duchesnay, Scikit-learn: Machine learning in Python, Journal of Machine Learning Research 12 (2011) 2825–2830. Search in Google Scholar

C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li, P. J. Liu, Exploring the limits of transfer learning with a unified text-to-text transformer, Journal of machine learning research 21 (140) (2020) 1–67. Search in Google Scholar

S. Longpre, L. Hou, T. Vu, A. Webson, H. W. Chung, Y. Tay, D. Zhou, Q. V. Le, B. Zoph, J. Wei, et al., The flan collection: Designing data and methods for effective instruction tuning, in: International Conference on Machine Learning, PMLR, 2023, pp. 22631–22648. Search in Google Scholar

S. Zhang, L. Dong, X. Li, S. Zhang, X. Sun, S. Wang, J. Li, R. Hu, T. Zhang, F. Wu, et al., Instruction tuning for large language models: A survey, arXiv preprint arXiv:2308.10792 (2023). Search in Google Scholar

N. Muennighoff, T. Wang, L. Sutawika, A. Roberts, S. Biderman, T. L. Scao, M. S. Bari, S. Shen, Z.-X. Yong, H. Schoelkopf, et al., Crosslingual generalization through multitask finetuning, arXiv preprint arXiv:2211.01786 (2022). Search in Google Scholar

Y. Wang, S. Mishra, P. Alipoormolabashi, Y. Kordi, A. Mirzaei, A. Arunkumar, A. Ashok, A. S. Dhanasekaran, A. Naik, D. Stap, et al., Super-naturalinstructions: Generalization via declarative instructions on 1600+ nlp tasks, arXiv preprint arXiv:2204.07705 (2022). Search in Google Scholar

E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, W. Chen, Lora: Low-rank adaptation of large language models, arXiv preprint arXiv:2106.09685 (2021). Search in Google Scholar

T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi, P. Cistac, T. Rault, R. Louf, M. Funtowicz, et al., Transformers: State-of-theart natural language processing, in: Proceedings of the 2020 conference on empirical methods in natural language processing: system demonstrations, 2020, pp. 38–45. Search in Google Scholar

K. H. Brodersen, C. S. Ong, K. E. Stephan, J. M. Buhmann, The balanced accuracy and its posterior distribution, in: 2010 20th international conference on pattern recognition, IEEE, 2010, pp. 3121–3124. Search in Google Scholar

P. Głomb, M. Cholewa, W. Koral, A. Madej, M. Romaszewski, Detection of emergent leaks using machine learning approaches, Water Supply 23 (6) (2023) 2370–2386. Search in Google Scholar

L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. Wainwright, P. Mishkin, C. Zhang, S. Agarwal, K. Slama, A. Ray, et al., Training language models to follow instructions with human feedback, Advances in neural information processing systems 35 (2022) 27730–27744. Search in Google Scholar

Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Informatik, Künstliche Intelligenz, Datanbanken und Data Mining