Uneingeschränkter Zugang

A New Approach to Detecting and Preventing Populations Stagnation Through Dynamic Changes in Multi-Population-Based Algorithms


Zitieren

Abed-alguni, B. H. (2019). Island-based cuckoo search with highly disruptive polynomial mutation. International Journal of Artificial Intelligence, 17(1), 57-82.Search in Google Scholar

Adam, S. P., Alexandropoulos, S. A. N., Pardalos, P. M., & Vrahatis, M. N. (2019). No free lunch theorem: A review. Approximation and optimization: Algorithms, complexity and applications, 57-82.Search in Google Scholar

Al-Andoli, M. N., Tan, S. C., & Cheah, W. P. (2022). Distributed parallel deep learning with a hybrid backpropagation-particle swarm optimization for community detection in large complex networks. Information Sciences, 600, 94-117.Search in Google Scholar

Atashpaz-Gargari, E., & Lucas, C. (2007, September). Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition. In 2007 IEEE congress on evolutionary computation (pp. 4661-4667). Ieee.Search in Google Scholar

Brindha, S. (2021). A robust and adaptive fuzzy logic based differential evolution algorithm using population diversity tuning for multi-objective optimization. Engineering Applications of Artificial Intelligence, 102, 104240.Search in Google Scholar

Boiani, M., Parpinelli, R. S., & Dorn, M. (2022, November). A Multi-population Schema Designed for Biased Random-Key Genetic Algorithms on Continuous Optimisation Problems. In Brazilian Conference on Intelligent Systems (pp. 444-457). Cham: Springer International Publishing.Search in Google Scholar

Campelo, F., & Aranha, C. (2021, November). Sharks, zombies and volleyball: Lessons from the evolutionary computation bestiary. In LIFELIKE Computing Systems Workshop 2021. CEUR-WS. org.Search in Google Scholar

Chen, H., Heidari, A. A., Chen, H., Wang, M., Pan, Z., & Gandomi, A. H. (2020). Multi-population differential evolution-assisted Harris hawks optimization: Framework and case studies. Future Generation Computer Systems, 111, 175-198.Search in Google Scholar

Chen, P., Zhou, S., Zhang, Q., & Kasabov, N. (2022). A meta-inspired termite queen algorithm for global optimization and engineering design problems. Engineering Applications of Artificial Intelligence, 111, 104805.Search in Google Scholar

Cpalka, K., Łapa, K., & Przybył, A. (2018). Genetic programming algorithm for designing of control systems. Information Technology and Control, 47(4), 668-683.Search in Google Scholar

Cpałka, K., Słowik, A., & Łapa, K. (2022). A population-based algorithm with the selection of evaluation precision and size of the population. Applied Soft Computing, 115, 108154.Search in Google Scholar

Cpałka, K., Łapa, K., & Rutkowski, L. (2022, June). A multi-population-based algorithm with different ways of subpopulations cooperation. In International Conference on Artificial Intelligence and Soft Computing (pp. 205-218). Cham: Springer International Publishing.Search in Google Scholar

Das, S. R., Mishra, D., & Rout, M. (2019). A hybridized ELM using self-adaptive multi-population-based Jaya algorithm for currency exchange prediction: an empirical assessment. Neural Computing and Applications, 31(11), 7071-7094.Search in Google Scholar

Dziwiński, P., Przybył, A., Trippner, P., Paszkowski, J., & Hayashi, Y. (2021). hardware implementation of a Takagi-Sugeno neuro-fuzzy system optimized by a population algorithm. Journal of Artificial Intelligence and Soft Computing Research, 11(3), 243-266.Search in Google Scholar

Ezugwu, A. E., Shukla, A. K., Nath, R., Akinyelu, A. A., Agushaka, J. O., Chiroma, H., & Muhuri, P. K. (2021). Metaheuristics: a comprehensive overview and classification along with bibliometric analysis. Artificial Intelligence Review, 54, 4237-4316.Search in Google Scholar

Huang, C., Li, Y., & Yao, X. (2019). A survey of automatic parameter tuning methods for meta-heuristics. IEEE transactions on evolutionary computation, 24(2), 201-216.Search in Google Scholar

Ishibuchi, H., Mihara, S., & Nojima, Y. (2012). Parallel distributed hybrid fuzzy GBML models with rule set migration and training data rotation. IEEE Transactions on fuzzy systems, 21(2), 355-368.Search in Google Scholar

Jia, F., Luo, S., Yin, G., & Ye, Y. (2023). A novel variant of the salp swarm algorithm for engineering optimization. Journal of Artificial Intelligence and Soft Computing Research, 13.Search in Google Scholar

Karaboga, D., & Aslan, S. (2015, November). A new emigrant creation strategy for parallel artificial bee colony algorithm. In 2015 9th International Conference on Electrical and Electronics Engineering (ELECO) (pp. 689-694). IEEE.Search in Google Scholar

Kassaymeh, S., Al-Laham, M., Al-Betar, M. A., Alweshah, M., Abdullah, S., & Makhadmeh, S. N. (2022). Backpropagation Neural Network optimization and software defect estimation modelling using a hybrid Salp Swarm optimizer-based Simulated Annealing Algorithm. Knowledge-Based Systems, 244, 108511.Search in Google Scholar

Kazikova, A., Pluhacek, M., Senkerik, R., & Viktorin, A. (2019). Proposal of a new swarm optimization method inspired in bison behavior. In Recent Advances in Soft Computing: Proceedings of 23rd International Conference on Soft Computing (MENDEL 2017) Held in Brno, Czech Republic, June 20-22, 2017 (pp. 146-156). Springer International Publishing.Search in Google Scholar

Li, S., Gu, Q., Gong, W., & Ning, B. (2020). An enhanced adaptive differential evolution algorithm for parameter extraction of photovoltaic models. Energy Conversion and Management, 205, 112443.Search in Google Scholar

Liu, Q., Li, X., Liu, H., & Guo, Z. (2020). Multi-objective metaheuristics for discrete optimization problems: A review of the state-of-the-art. Applied Soft Computing, 93, 106382.Search in Google Scholar

Long, W., Cai, S., Jiao, J., Xu, M., & Wu, T. (2020). A new hybrid algorithm based on grey wolf optimizer and cuckoo search for parameter extraction of solar photovoltaic models. Energy Conversion and Management, 203, 112243.Search in Google Scholar

Łapa, K., & Cpałka, K. (2017). Flexible fuzzy PID controller (FFPIDC) and a nature-inspired method for its construction. IEEE Transactions on Industrial Informatics, 14(3), 1078-1088.Search in Google Scholar

Łapa, K. (2019). Meta-optimization of multi-objective population-based algorithms using multi-objective performance metrics. Information Sciences, 489, 193-204.Search in Google Scholar

Łapa, K., Cpałka, K., & Słowik, A. (2021, June). Population Management Approaches in the OPn Algorithm. In International Conference on Artificial Intelligence and Soft Computing (pp. 402-414). Cham: Springer International Publishing.Search in Google Scholar

Łapa, K., Cpałka, K., Kisiel-Dorohinicki, M., Paszkowski, J., D˛ebski, M., & Le, V. H. (2022). Multi-population-based algorithm with an exchange of training plans based on population evaluation. Journal of Artificial Intelligence and Soft Computing Research, 12(4), 239-253.Search in Google Scholar

Łapa, K. 2023, June. Multi-population-based Algorithms with Different Migration Topologies and Their Improvement by Population Reinitialization. In International Conference on Artificial Intelligence and Soft Computing, 399-414Search in Google Scholar

Mansour, I. B., Basseur, M., & Saubion, F. (2018). A multi-population algorithm for multi-objective knapsack problem. Applied Soft Computing, 70, 814-825.Search in Google Scholar

Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey wolf optimizer. Advances in engineering software, 69, 46-61.Search in Google Scholar

Misaghi, M., & Yaghoobi, M. (2019). Improved invasive weed optimization algorithm (IWO) based on chaos theory for optimal design of PID controller. Journal of Computational Design and Engineering, 6(3), 284-295.Search in Google Scholar

Niu, B., & Li, L. (2008). A novel PSO-DE-based hybrid algorithm for global optimization. In Advanced Intelligent Computing Theories and Applications. With Aspects of Artificial Intelligence: 4th International Conference on Intelligent Computing, ICIC 2008 Shanghai, China, September 15-18, 2008 Proceedings 4 (pp. 156-163). Springer Berlin Heidelberg.Search in Google Scholar

Osaba, E., Del Ser, J., Cotta, C., & Moscato, P. (2022). Memetic computing: Accelerating optimization heuristics with problem-dependent local search methods. Swarm and Evolutionary Computation, 70, 101047.Search in Google Scholar

Saha, A. K. (2022). Multi-population-based adaptive sine cosine algorithm with modified mutualism strategy for global optimization. Knowledge-Based Systems, 251, 109326.Search in Google Scholar

Sayoti, F., & Essaid Riffi, M. (2016). Golden ball algorithm for solving flow shop scheduling problem.Search in Google Scholar

Sedighizadeh, D., Masehian, E., Sedighizadeh, M., & Akbaripour, H. (2021). GEPSO: A new generalized particle swarm optimization algorithm. Mathematics and Computers in Simulation, 179, 194-212.Search in Google Scholar

Stegherr, H., Heider, M., & Hähner, J. (2022). Classifying Metaheuristics: Towards a unified multi-level classification system. Natural Computing, 21(2), 155-171.Search in Google Scholar

Suganthan, P. N., Hansen, N., Liang, J. J., Deb, K., Chen, Y. P., Auger, A., & Tiwari, S. (2005). Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization. KanGAL report, 2005005(2005), 2005.Search in Google Scholar

Słowik, A., Cpałka, K., & Łapa, K. (2019). Multipopulation nature-inspired algorithm (MNIA) for the designing of interpretable fuzzy systems. IEEE Transactions on Fuzzy Systems, 28(6), 1125-1139.Search in Google Scholar

Talpur, N., Abdulkadir, S. J., Alhussian, H., Hasan, M. H., Aziz, N., & Bamhdi, A. (2023). Deep Neuro-Fuzzy System application trends, challenges, and future perspectives: A systematic survey. Artificial intelligence review, 56(2), 865-913.Search in Google Scholar

Tanabe, R., & Fukunaga, A. (2013, June). Evaluating the performance of SHADE on CEC 2013 benchmark problems. In 2013 IEEE Congress on evolutionary computation (pp. 1952-1959). IEEE.Search in Google Scholar

Tzanetos, A., & Dounias, G. (2021). Nature inspired optimization algorithms or simply variations of metaheuristics?. Artificial Intelligence Review, 54, 1841-1862.Search in Google Scholar

Voglis, C., Parsopoulos, K. E., Papageorgiou, D. G., Lagaris, I. E., & Vrahatis, M. N. (2012). MEMPSODE: A global optimization software based on hybridization of population-based algorithms and local searches. Computer Physics Communications, 183(5), 1139-1154.Search in Google Scholar

Wu, G., Mallipeddi, R., & Suganthan, P. N. (2019). Ensemble strategies for population-based optimization algorithms–A survey. Swarm and evolutionary computation, 44, 695-711.Search in Google Scholar

Xu, B., Tao, L., Chen, X., & Cheng, W. (2019). Adaptive differential evolution with multi-population-based mutation operators for constrained optimization. Soft Computing, 23, 3423-3447.Search in Google Scholar

Zalasiński, M., Cpałka, K., & Łapa, K. (2020, July). An interpretable fuzzy system in the on-line signature scalable verification. In 2020 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE) (pp. 1-9). IEEE.Search in Google Scholar

Zalasiński, M., Laskowski, Ł., Niksa-Rynkiewicz, T., Cpałka, K., Byrski, A., Przybyszewski, K., ... & Dong, S. (2022). Evolutionary algorithm for selecting dynamic signatures partitioning approach. Journal of Artificial Intelligence and Soft Computing Research, 12(4).Search in Google Scholar

Zhao, X., Fang, Y., Ma, S., & Liu, Z. (2022). Multi-swarm improved moth–flame optimization algorithm with chaotic grouping and Gaussian mutation for solving engineering optimization problems. Expert Systems with Applications, 204, 117562.Search in Google Scholar

eISSN:
2449-6499
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Informatik, Datanbanken und Data Mining, Künstliche Intelligenz