Uneingeschränkter Zugang

Bibliometric Analysis of Thermal Comfort and Environmental Quality: A Framework for Sustainable Construction

, , ,  und   
10. Dez. 2024

Zitieren
COVER HERUNTERLADEN

Alkhazaleh, R., Mykoniatis, K. and Alahmer, A., 2022. The Success of Technology Transfer in the Industry 4.0 Era: A Systematic Literature Review. Journal of Open Innovation: Technology, Market, and Complexity, 8(4), p.202. Search in Google Scholar

Anon. 2022. VOSviewer version 1.6.18. Leiden, Netherlands. [online] Available at: <https://www.vosviewer.com/> [Accessed 18 December 2022]. Search in Google Scholar

Anon. 2024. ANSI/ASHRAE Standard 55-2004. Thermal Environmental Conditions for Human Occupancy. [online] Available at: <https://www.ashrae.org/filelibrary/technicalresources/standardsandguidelines/standardsaddenda/55_2017_d_20200731.pdf> [Accessed 1 June 2024]. Search in Google Scholar

Arballo, B., Kuchen, E., Alamino Naranjo, Y. and Alonso Frank, A., 2016. EVALUACIÓN DE MODELOS DE CONFORT TÉRMICO PARA INTERIORES. In: VIII CRETA - Congreso Regional de Tecnología de la Arquitectura. pp.1–10. Search in Google Scholar

Boyd, G., Dutrow, E. and Tunnessen, W., 2008. The evolution of the ENERGY STAR® energy performance indicator for benchmarking industrial plant manufacturing energy use. Journal of Cleaner Production, 16(6), pp.709–715. Search in Google Scholar

Bungau, C.C., Bendea, C., Bungau, T., Radu, A.-F., Prada, M.F., Hanga-Farcas, I.F. and Vesa, C.M., 2024. The Relationship between the Parameters That Characterize a Built Living Space and the Health Status of Its Inhabitants. Sustainability, 16(5), p.1771. Search in Google Scholar

Bungau, C.C., Hanga Prada, F.I., Bungau, T., Bungau, C., Bendea, G. and Prada, M.F., 2023. Web of Science Scientometrics on the Energy Efficiency of Buildings to Support Sustainable Construction Policies. Sustainability, 15(11), p.8772. Search in Google Scholar

Chen, S., Zhang, G., Xia, X., Chen, Y., Setunge, S. and Shi, L., 2021. The impacts of occupant behavior on building energy consumption: A review. Sustainable Energy Technologies and Assessments, 45, p.101212. Search in Google Scholar

Cholewa, T., Balaras, C., Kurnitski, J., Mazzarella, L., Siuta-Olcha, A., Dascalaki, E., Kosonen, R., Lungu, C., Todorovic, M., Nastase, I., Jolas, C. and Çakan, M., 2022. Energy Efficient Renovation of Existing Buildings for HVAC professionals- REHVA European Guidebook no.32. Search in Google Scholar

Corsi, A., Pagani, R.N., Kovaleski, J.L. and Luiz da Silva, V., 2020. Technology transfer for sustainable development: Social impacts depicted and some other answers to a few questions. Journal of Cleaner Production, 245, p.118522. Search in Google Scholar

Craiut, L., Bungau, C., Bungau, T., Grava, C., Otrisal, P. and Radu, A.F., 2022. Technology Transfer, Sustainability, and Development, Worldwide and in Romania. Sustainability, 14(23), p.15728. Search in Google Scholar

d’Ambrosio Alfano, F.R., Olesen, B.W., Palella, B.I. and Riccio, G., 2014. Thermal comfort: Design and assessment for energy saving. Energy and Buildings, 81, pp.326–336. Search in Google Scholar

Djongyang, N., Tchinda, R. and Njomo, D., 2010. Thermal comfort: A review paper. Renewable and Sustainable Energy Reviews, 14(9), pp.2626–2640. Search in Google Scholar

Enescu, D., 2017. A review of thermal comfort models and indicators for indoor environments. Renewable and Sustainable Energy Reviews, 79, pp.1353–1379. Search in Google Scholar

Fanger, P.O., 1967. Calculation of Thermal Comfort, Introduction of a Basic Comfort Equation. Ashrae Transactions, 73(2), pp.1–20. Search in Google Scholar

Gani, A.Z., Zamberi, M.M. and Teni, M.H.M., 2018. A review of ergonomics towards productivity. International Journal of Supply Chain Management, 7, pp.306–311. Search in Google Scholar

González-Torres, M., Pérez-Lombard, L., Coronel, J.F., Maestre, I.R. and Yan, D., 2022. A review on buildings energy information: Trends, end-uses, fuels and drivers. Energy Reports, 8, pp.626–637. Search in Google Scholar

Grassi, B., Piana, E.A., Lezzi, A.M. and Pilotelli, M., 2022. A Review of Recent Literature on Systems and Methods for the Control of Thermal Comfort in Buildings. Applied Sciences, 12(11), p.5473. Search in Google Scholar

Hafez, F.S., Sa’di, B., Safa-Gamal, M., Taufiq-Yap, Y.H., Alrifaey, M., Seyedmahmoudian, M., Stojcevski, A., Horan, B. and Mekhilef, S., 2023. Energy Efficiency in Sustainable Buildings: A Systematic Review with Taxonomy, Challenges, Motivations, Methodological Aspects, Recommendations, and Pathways for Future Research. Energy Strategy Reviews, 45, p.101013. Search in Google Scholar

Halhoul Merabet, G., Essaaidi, M., Ben Haddou, M., Qolomany, B., Qadir, J., Anan, M., Al-Fuqaha, A., Abid, M.R. and Benhaddou, D., 2021. Intelligent building control systems for thermal comfort and energy-efficiency: A systematic review of artificial intelligence-assisted techniques. Renewable and Sustainable Energy Reviews, 144, p.110969. Search in Google Scholar

Hellwig, R.T., Teli, D., Schweiker, M., Choi, J.-H., Lee, M.C.J., Mora, R., Rawal, R., Wang, Z. and Al-Atrash, F., 2019. A framework for adopting adaptive thermal comfort principles in design and operation of buildings. Energy and Buildings, 205, p.109476. Search in Google Scholar

Hui, C.X., Dan, G., Alamri, S. and Toghraie, D., 2023. Greening smart cities: An investigation of the integration of urban natural resources and smart city technologies for promoting environmental sustainability. Sustainable Cities and Society, 99, p.104985. Search in Google Scholar

Jia, L.-R., Han, J., Chen, X., Li, Q.-Y., Lee, C.-C. and Fung, Y.-H., 2021. Interaction between Thermal Comfort, Indoor Air Quality and Ventilation Energy Consumption of Educational Buildings: A Comprehensive Review. Buildings, 11(12), p.591. Search in Google Scholar

Jia, M., Komeily, A., Wang, Y. and Srinivasan, R.S., 2019. Adopting Internet of Things for the development of smart buildings: A review of enabling technologies and applications. Automation in Construction, 101, pp.111–126. Search in Google Scholar

Khovalyg, D., Kazanci, O.B., Halvorsen, H., Gundlach, I., Bahnfleth, W.P., Toftum, J. and Olesen, B.W., 2020. Critical review of standards for indoor thermal environment and air quality. Energy and Buildings, 213, p.109819. Search in Google Scholar

Klepeis, N.E., Nelson, W.C., Ott, W.R., Robinson, J.P., Tsang, A.M., Switzer, P., Behar, J. V., Hern, S.C. and Engelmann, W.H., 2001. The National Human Activity Pattern Survey (NHAPS): a resource for assessing exposure to environmental pollutants. Journal of Exposure Science & Environmental Epidemiology, 11(3), pp.231–252. Search in Google Scholar

Latha, H., Patil, S. and Kini, P., 2022. Influence of architectural space layout and building perimeter on the energy performance of buildings: A systematic literature review. International Journal of Energy and Environmental Engineering, 14, pp.431–474. Search in Google Scholar

Li, J., Sun, R. and Chen, L., 2023. A review of thermal perception and adaptation strategies across global climate zones. Urban Climate, 49, p.101559. Search in Google Scholar

Mahdavi, A., Berger, C., Amin, H., Ampatzi, E., Andersen, R.K., Azar, E., Barthelmes, V.M., Favero, M., Hahn, J., Khovalyg, D., Knudsen, H.N., Luna-Navarro, A., Roetzel, A., Sangogboye, F.C., Schweiker, M., Taheri, M., Teli, D., Touchie, M. and Verbruggen, S., 2021. The Role of Occupants in Buildings’ Energy Performance Gap: Myth or Reality? Sustainability, 13(6), p.3146. Search in Google Scholar

Mikkonen, T., Lassenius, C., Männistö, T., Oivo, M. and Järvinen, J., 2018. Continuous and collaborative technology transfer: Software engineering research with real-time industry impact. Information and Software Technology, 95, pp.34–45. Search in Google Scholar

Momeni, M. and Fartaj, A., 2023. Numerical thermal performance analysis of a PCM-to-air and liquid heat exchanger implementing latent heat thermal energy storage. Journal of Energy Storage, 58, p.106363. Search in Google Scholar

Musiał, M., Lichołai, L. and Katunský, D., 2023. Modern Thermal Energy Storage Systems Dedicated to Autonomous Buildings. Energies, 16(11), p.4442. Search in Google Scholar

Peiris, S., Lai, J.H.K., Kumaraswamy, M.M. and Hou, H. (Cynthia), 2023. Smart retrofitting for existing buildings: State of the art and future research directions. Journal of Building Engineering, 76, p.107354. Search in Google Scholar

Peng, Y., Lei, Y., Tekler, Z.D., Antanuri, N., Lau, S.-K. and Chong, A., 2022. Hybrid system controls of natural ventilation and HVAC in mixed-mode buildings: A comprehensive review. Energy and Buildings, 276, p.112509. Search in Google Scholar

Ross-Hellauer, T., Tennant, J.P., Banelytė, V., Gorogh, E., Luzi, D., Kraker, P., Pisacane, L., Ruggieri, R., Sifacaki, E. and Vignoli, M., 2020. Ten simple rules for innovative dissemination of research. PLoS computational biology, 16(4), p.e1007704. Search in Google Scholar

Soebarto, V. and Bennetts, H., 2014. Thermal comfort and occupant responses during summer in a low to middle income housing development in South Australia. Building and Environment, 75, pp.19–29. Search in Google Scholar

Xu, X., Yu, H., Sun, Q. and Tam, V.W.Y., 2023. A critical review of occupant energy consumption behavior in buildings: How we got here, where we are, and where we are headed. Renewable and Sustainable Energy Reviews, 182, p.113396. Search in Google Scholar

Yang, L., Yan, H. and Lam, J.C., 2014. Thermal comfort and building energy consumption implications – A review. Applied Energy, 115, pp.164–173. Search in Google Scholar

Yin, Z., Liu, Z., Liu, X., Zheng, W. and Yin, L., 2023. Urban heat islands and their effects on thermal comfort in the US: New York and New Jersey. Ecological Indicators, 154, p.110765. Search in Google Scholar

Zhang, J., Li, P. and Ma, M., 2022. Thermal Environment and Thermal Comfort in University Classrooms during the Heating Season. Buildings, 12(7), p.912. Search in Google Scholar

Zhang, W. and Calautit, J., 2022. Occupancy behaviour and patterns: Impact on energy consumption of high-rise households in southeast China. Smart Energy, 6, p.100072. Search in Google Scholar

Sprache:
Englisch