Uneingeschränkter Zugang

A Comparative Study: Effects of Fineness of Cement on Consistency and Compressive Strength of Different Branded Cement in Pakistan


Zitieren

Aginam, C., Chidolue, C., of, C. N.-I. J., & 2013, undefined. (n.d.). Investigating the effects of coarse aggregate types on the compressive strength of concrete. Citeseer, 3, 1140–1144. Retrieved August 29, 2022, from https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.414.7556&rep=rep1&type=pdf. Search in Google Scholar

Amin, N.-, & Ali, K. (2010). Chemical Analysis and Comparison of Ordinary Portland Cement of Khyber Pakhtoon Khwa Pakistan. Chemical Engineering Research Bulletin, 14(1). https://doi.org/10.3329/cerb.v14i1.4320. Search in Google Scholar

Amin, N. U. & A. K. (2009). Recycling of bagasse ash in cement manufacturing and its impact on clinker potential and environmental pollution. Journal of the Chemical Society of Pakistan, 31, 361–367. Search in Google Scholar

Asef, M. F., Ahmed, K. S., & Ahmed, M. (2022). Physical and Strength Properties of Cements Manufactured in Bangladesh: A Case Study. MIST INTERNATIONAL JOURNAL OF SCIENCE AND TECHNOLOGY, 10, 49–59. https://doi.org/10.47981/j.mijst.10(01)2022.319(49-59). Search in Google Scholar

Celik, I. B. (2009). The effects of particle size distribution and surface area upon cement strength development. Powder Technology, 188(3), 272–276. https://doi.org/10.1016/j.powtec.2008.05.007. Search in Google Scholar

clarck, & john L. (n.d.). structural lightweight aggregate concrete. 1993. Search in Google Scholar

D. Pomeroy. (1987). Concrete durability: From basic research to practical reality. ,” Spec. Publ.,, 100, 111–130. Search in Google Scholar

Duggal, S. (2009). Building materials. Daryaganji, New Delhi, India. New Age International Publisher. Search in Google Scholar

Aginam, C., Chidolue, C., of, C. N.-I. J., & 2013, undefined. (n.d.). Investigating the effects of coarse aggregate types on the compressive strength of concrete. Citeseer, 3, 1140–1144. Retrieved August 29, 2022, from https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.414.7556&rep=rep1&type=pdf. Search in Google Scholar

Amin, N.-, & Ali, K. (2010). Chemical Analysis and Comparison of Ordinary Portland Cement of Khyber Pakhtoon Khwa Pakistan. Chemical Engineering Research Bulletin, 14(1). https://doi.org/10.3329/cerb.v14i1.4320. Search in Google Scholar

Amin, N. U. & A. K. (2009). Recycling of bagasse ash in cement manufacturing and its impact on clinker potential and environmental pollution. Journal of the Chemical Society of Pakistan, 31, 361–367. Search in Google Scholar

Asef, M. F., Ahmed, K. S., & Ahmed, M. (2022). Physical and Strength Properties of Cements Manufactured in Bangladesh: A Case Study. MIST INTERNATIONAL JOURNAL OF SCIENCE AND TECHNOLOGY, 10, 49–59. https://doi.org/10.47981/j.mijst.10(01)2022.319(49-59). Search in Google Scholar

Celik, I. B. (2009). The effects of particle size distribution and surface area upon cement strength development. Powder Technology, 188(3), 272–276, https://doi.org/10.1016/j.powtec.2008.05.007. Search in Google Scholar

Clarck, & John L., 1993. Structural lightweight aggregate concrete. 1993. Search in Google Scholar

D. Pomeroy. (1987). Concrete durability: From basic research to practical reality. ,” Spec. Publ.,, 100, 111–130. Search in Google Scholar

Duggal, S. (2009). Building materials. Daryaganji, New Delhi, India. New Age International Publisher. Search in Google Scholar

Ghosh, S. (2014). Advances in cement technology: critical reviews and case studies on manufacturing, quality control, optimization, and use (Elsevier, Ed.). Search in Google Scholar

H. Kemer, R. Bouras, N. Mesboua, M. Sonebi, & O. Kinnane. (2021). Shear-thickening behavior of sustainable cement paste—Controlling physical parameters of new sources of supplementary cementitious materials. Construction and Building Materials, 310, 125–277. Search in Google Scholar

Karakaş, A. (2020). M. R. Smith and L. Collis (eds): Aggregates: sand, gravel, and crushed rock aggregates for construction purposes (3rd edition). Arabian Journal of Geosciences, 13(1), 11. https://doi.org/10.1007/s12517-019-4975-y. Search in Google Scholar

McCarter, W. and G. S. (1989). Admixtures in cement: a study of dosage rates on early hydration. Materials and Structures, 22(2), 112–120. Search in Google Scholar

Mohammed, T. U., Hasnat, A., Sharkia, S., Hasan, P., Islam, B. K. M. A., & Sharkia, S. (n.d.). Advancing and Integrating Construction Education, Research & Practice. https://www.researchgate.net/publication/220018676. Search in Google Scholar

Muhammad Adil Sultan, M jawad, Slah Uddin, Dr Shahn cheema, & Aamir mushtaq. (2023). Analysis of the Chemical Compositions of Locally Branded Manufactured Cement of Pakistan. Ecological Engineering \& Environmental Technology, 24(3). Search in Google Scholar

MUNIR, & Atif. (2009). A COMPREHENSIVE REPORT ON PAKISTAN’S CEMENT INDUSTRY. World Cement. Search in Google Scholar

N. Mesboua, K. Benyounes, S. Kennouche, Y. Ammar, A. Benmounah, & H.Kemer. (2021). Calcinated Bentonite as Supplementary Cementitious Materials in Cement-Based Mortar. Journal of Applied Engineering Sciences, 11(1), 23–32. Search in Google Scholar

Yahaya and Muibat D. (2009). Physico-chemical classification of Nigerian cement. Australian Journal of Technology, 12,no.3. Search in Google Scholar

eISSN:
2284-7197
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
2 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Technik, Einführungen und Gesamtdarstellungen, andere, Elektrotechnik, Energietechnik, Geowissenschaften, Geodäsie