Uneingeschränkter Zugang

Prediction of Fresh and Hardened Properties of Self-Compacting Heavy-Weight Concrete Using Response Surface


Zitieren

Akkurt, I., Başyiǧit, C., Akkaş, A., Kilinçarslan, Ş., Mavi, B., & Günoǧlu, K. (2012). Determination of some heavyweight aggregate half value layer thickness used for radiation shielding. Acta Physica Polonica A, 121(1), 138–140. https://doi.org/10.12693/APhysPolA.121.138.10.12693/APhysPolA.121.138 Search in Google Scholar

Alyamac, K. E., & Ince, R. (2009). A preliminary concrete mix design for SCC with marble powders. Construction and Building Materials, 23(3), 1201–1210.10.1016/j.conbuildmat.2008.08.012 Search in Google Scholar

Aslani, F., Hamidi, F., Valizadeh, A., & Dang, A. T. N. (2020). High-performance fibre-reinforced heavyweight self-compacting concrete: Analysis of fresh and mechanical properties. Construction and Building Materials, 232, 117230. https://doi.org/10.1016/j.conbuildmat.2019.117230.10.1016/j.conbuildmat.2019.117230 Search in Google Scholar

ASTM C618. (2019). Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete, ASTM International (ASTM). Search in Google Scholar

Awolusi, T. F., Oke, O. L., Akinkurolere, O. O., & Sojobi, A. O. (2019). Application of response surface methodology: Predicting and optimizing the properties of concrete containing steel fibre extracted from waste tires with limestone powder as filler. Case Studies in Construction Materials, 10, e00212. https://doi.org/10.1016/j.cscm.2018.e00212.10.1016/j.cscm.2018.e00212 Search in Google Scholar

Barbuta, M., & Lepadutu, D. (2008). Mechanical Characteristics Investigation of Polymer Concrete Using Mixture Design of Experiments and Response Surface Method. Journal of Applied Sciences, 8(12), 2242–2249.10.3923/jas.2008.2242.2249 Search in Google Scholar

Bouzoubaâ, N., & Lachemi, M. (2001). Self-compacting concrete incorporating high volumes of class F fly ash: Preliminary results. Cement and Concrete Research, 31(3), 413–420. https://doi.org/10.1016/S0008-8846(00)00504-4.10.1016/S0008-8846(00)00504-4 Search in Google Scholar

Dean, A., Voss, D., & Draguljić, D. (1999). Design and analysis of experiments (Vol. 1). Springer. Search in Google Scholar

Değirmencioğlu, A., & Yazgı, A. (2006). Response Surface Methodology “Theoretical Background for Optimization Based Studies and Implementations in Agricultural Mechanization.” Journal of Agricultural Machinery Science, 2(2), 111–115. Search in Google Scholar

Demirel, B., & Alyamac, K. E. (2018). Waste marble powder/dust. In Waste and Supplementary Cementitious Materials in Concrete: Characterisation, Properties and Applications (pp. 181–197). https://doi.org/10.1016/B978-0-08-102156-9.00006-7.10.1016/B978-0-08-102156-9.00006-7 Search in Google Scholar

Design-expert software, Version 10. Inc., S.-E, Minneapolis, MN, USA, 2016. (n.d.). Retrieved from http://www.statease.com/. Search in Google Scholar

Ghalehnovi, M., Roshan, N., Hakak, E., Shamsabadi, E. A., & de Brito, J. (2019). Effect of red mud (bauxite residue) as cement replacement on the properties of self-compacting concrete incorporating various fillers. Journal of Cleaner Production, 240, 118213. https://doi.org/10.1016/j.jclepro.2019.118213.10.1016/j.jclepro.2019.118213 Search in Google Scholar

Hanafiah, Saloma, Victor, & Amalina, K. N. (2017). The effect of w/c ratio on microstructure of self-compacting concrete (SCC) with sugarcane bagasse ash (SCBA). AIP Conference Proceedings, 1903(November). https://doi.org/10.1063/1.5011545.10.1063/1.5011545 Search in Google Scholar

Khalaf, M. A., Ban, C. C., & Ramli, M. (2019). The constituents, properties and application of heavyweight concrete: A review. Construction and Building Materials, 215, 73–89. https://doi.org/10.1016/j.conbuildmat.2019.04.146.10.1016/j.conbuildmat.2019.04.146 Search in Google Scholar

Kilincarslan, S., Akkurt, I., & Basyigit, C. (2006). The effect of barite rate on some physical and mechanical properties of concrete. Materials Science and Engineering A, 424(1–2), 83–86. https://doi.org/10.1016/j.msea.2006.02.033.10.1016/j.msea.2006.02.033 Search in Google Scholar

Li, Z. (2011). Advanced Concrete Technology. New Jersey: JOHN WILEY & SONS, INC.10.1002/9780470950067 Search in Google Scholar

Liu, H., Shi, J., Qu, H., & Ding, D. (2019). An investigation on physical, mechanical, leaching and radiation shielding behaviors of barite concrete containing recycled cathode ray tube funnel glass aggregate. Construction and Building Materials, 201, 818–827. https://doi.org/10.1016/j.conbuildmat.2018.12.22. Search in Google Scholar

Mahmoud, E., Ibrahim, A., El-Chabib, H., & Patibandla, V. C. (2013). Self-Consolidating Concrete Incorporating High Volume of Fly Ash, Slag, and Recycled Asphalt Pavement. International Journal of Concrete Structures and Materials, 7(2), 155–163. https://doi.org/10.1007/s40069-013-0044-1.10.1007/s40069-013-0044-1 Search in Google Scholar

Masoud, M. A., Kansouh, W. A., Shahien, M. G., Sakr, K., Rashad, A. M., & Zayed, A. M. (2020). An experimental investigation on the effects of barite/hematite on the radiation shielding properties of serpentine concretes. Progress in Nuclear Energy, 120(November 2019), 103220. https://doi.org/10.1016/j.pnucene.2019.103220.10.1016/j.pnucene.2019.103220 Search in Google Scholar

Naik, M. P. P., & Vyawahare, P. M. R. (2013). Comparative Study of Effect of Silica Fume and Quarry Dust on Strength of Self Compacting Concrete. International Journal of Engineering Research and Applications, 3(3), 1497–1500. Search in Google Scholar

Nambiar, E. K. K., & Ramamurthy, K. (2006). Models relating mixture composition to the density and strength of foam concrete using response surface methodology. Cement and Concrete Composites, 28(9), 752–760. https://doi.org/10.1016/j.cemconcomp.2006.06.001.10.1016/j.cemconcomp.2006.06.001 Search in Google Scholar

Neville, A. M. (2011). Properties of Concrete (5 th ed.). Retrieved from http://www.pearsoned.co.uk. Search in Google Scholar

Omid, L.-O., Ali, S., & Iman, M. N. (2020). The influences of maximum aggregate size and cement content on the mechanical and radiation shielding characteristics of heavyweight concrete. Progress in Nuclear Energy, 121, 103222. https://doi.org/10.1016/j.pnucene.2019.103222.10.1016/j.pnucene.2019.103222 Search in Google Scholar

Ostrowski, K., & Oleksik, K. (2018). Comparative analysis of the coarse aggregate shapes used to manufacturing high performance self-compacting concrete Analiza porównawcza kształtu kruszyw stosowanych w produkcji wysokowartościowych betonów samozagęszczalnych. 75–86. https://doi.org/10.4467/2353737XCT.18.101.8796.10.4467/2353737XCT.18.101.8796 Search in Google Scholar

Ouda, A. S. (2015). Development of high-performance heavy density concrete using different aggregates for gamma-ray shielding. Progress in Nuclear Energy, 79, 48–55. https://doi.org/10.1016/j.pnucene.2014.11.009.10.1016/j.pnucene.2014.11.009 Search in Google Scholar

Özen, S., Şengül, C., Erenoğlu, T., Çolak, Ü., Reyhancan, İ. A., & Taşdemir, M. A. (2016). Properties of Heavyweight Concrete for Structural and Radiation Shielding Purposes. Arabian Journal for Science and Engineering, 41(4), 1573–1584. https://doi.org/10.1007/s13369-015-1868-6.10.1007/s13369-015-1868-6 Search in Google Scholar

Revuelta, D., Barona, A., & Navarro, D. (2009). Medida de las principales propiedades en el estado fresco, y de la resistencia a la segregación, en un hormigón autocompactante de alta densidad fabricado con barita. Materiales de Construccion, 59(295), 31–44. https://doi.org/10.3989/mc.2009.43907.10.3989/mc.2009.43907 Search in Google Scholar

Smith, W. F. (2005). Experimental design for formulation. SIAM.10.1137/1.9780898718393 Search in Google Scholar

The European Project Group. (2005). The European Guidelines for Self-Compacting Concrete. The European Guidelines for Self Compacting Concrete, (May), 63. Search in Google Scholar

Topcu, I. B. (2003). Properties of heavyweight concrete produced with barite. Cement and Concrete Research, 33(6), 815–822. https://doi.org/10.1016/S0008-8846(02)01063-3.10.1016/S0008-8846(02)01063-3 Search in Google Scholar

TS 639. (1975). Fly Ash, Turkish Standard Institutions, Ankara, 1975.(in Turkish). Ankara. Search in Google Scholar

TS 706 EN 12620+A1. (2009). Aggregates for concrete, Turkish Standard Institutions, Ankara,2009. Search in Google Scholar

TS EN 12390-3. (2003). Concrete-Hardened Concrete Tests-Part 3: Determination of compressive strength in test specimens, Turkish Standards Institutions, Ankara, 2003 (in Turkish). Search in Google Scholar

TS EN 197-1. (2002). Cement-Part 1: General Cements-Composition, Features and Eligibility Criteria, Turkish Standard Institutions, Ankara, 2012 (in Turkish). Ankara. Search in Google Scholar

Tunc, E. T., & Alyamac, K. E. (2020). Determination of the relationship between the Los Angeles abrasion values of aggregates and concrete strength using the Response Surface Methodology. Construction and Building Materials, 260, 437–446. https://doi.org/10.1016/j.conbuildmat.2020.119850.10.1016/j.conbuildmat.2020.119850 Search in Google Scholar

Turker, P., Erdogan, B., Kantas, F., & Yeginobalı, A. (2009). Classification and properties of fly ash in Turkey, TCMB/R&D/Y03.03,Ankara(in Turkish). Ankara. Search in Google Scholar

Valizadeh, A., Aslani, F., Asif, Z., & Roso, M. (2019). Development of heavyweight self-compacting concrete and ambient-cured heavyweight geopolymer concrete using magnetite aggregates. Materials, 12(7). https://doi.org/10.3390/ma12071035.10.3390/ma12071035647962930925817 Search in Google Scholar

Venkatakrishnaiah, R., & Sakthivel, G. (2015). Bulk utilization of flyash in self compacting concrete. KSCE Journal of Civil Engineering, 19(7), 2116–2120. https://doi.org/10.1007/s12205-015-0706-4.10.1007/s12205-015-0706-4 Search in Google Scholar

Zabihi-samani, M., Mokhtari, S. P., & Raji, F. (2018). Effects of Fly Ash on Mechanical Properties of Concrete. 8(2), 35–40. https://doi.org/10.2478/jaes-2018-0016.10.2478/jaes-2018-0016 Search in Google Scholar

eISSN:
2284-7197
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
2 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Technik, Einführungen und Gesamtdarstellungen, andere, Elektrotechnik, Energietechnik, Geowissenschaften, Geodäsie