Uneingeschränkter Zugang

Testing Deformation and Compressive Strength of the Frozen Fine-Grained Soils with Changed Porosity and Density


Zitieren

Akagawa, S., Satoh, M., Kanie, S., Mikami, T., 2006. Effect of Tensile Strength on Ice Lens Initiation Temperature. In: 13th International Conference on Cold Regions Engineering, July 23-26, 2006, Orono, Maine, United States, pp. 1-12. https://doi.org/10.1061/40836(210)43.10.1061/40836(210)43 Search in Google Scholar

Arenson, L. U., Xia, D., Sego, D. C., Biggar, K. W. 2006. Change in Ice Lens Formation for Saline and Non-Saline Devon Silt as a Function of Temperature and Pressure. In: 13th International Conference on Cold Regions Engineering. July 23-26, 2006, Orono, Maine, United States. https://doi.org/10.1061/9780784482469.049.10.1061/9780784482469.049 Search in Google Scholar

Brown, W. G., 1965. Frost Heave in Ice Rinks and Cold Storage Buildings, CBD-61, Research Council Canada. https://doi.org/10.4224/40000839. Search in Google Scholar

Chen, D. H., Scullion, T., Hong, F., Lee, J., 2012. Pavement Swelling and Heaving at State Highway 6. Journal of Performance of Constructed Facilities, 26(3), pp. 335-344. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000237.10.1061/(ASCE)CF.1943-5509.0000237 Search in Google Scholar

Chen, J., Li, A., Bao, C., Dai, Y., Liu, M., Lin, Z., Niu, F., Zhou, T., 2021. A deep learning forecasting method for frost heave deformation of high-speed railway subgrade. Cold Regions Science and Technology, 185, pp. 103265. https://doi.org/10.1016/j.coldregions.2021.103265.10.1016/j.coldregions.2021.103265 Search in Google Scholar

Crowther, G. S., 2015. Lateral Pile Analysis Frozen Soil Strength Criteria. Journal of Cold Regions Engineering, 29(2): 04014011. https://doi.org/10.1061/(ASCE)CR.1943-5495.0000078.10.1061/(ASCE)CR.1943-5495.0000078 Search in Google Scholar

Dahlin T., Svensson M., Lindh P. DC Resistivity and SASW for Validation of Efficiency in Soil Stabilisation Prior to Road Construction. In Procs. EEGS’99, 1999.10.3997/2214-4609.201406466 Search in Google Scholar

Darrow, M. M., Huang, S. L., Shur, Y., Akagawa, S., 2008. Improvements in Frost Heave Laboratory Testing of Fine-Grained Soils. Journal of Cold Regions Engineering, 22(3), 65-78. https://doi.org/10.1061/(ASCE)0887-381X(2008)22:3(65).10.1061/(ASCE)0887-381X(2008)22:3(65) Search in Google Scholar

Deprez, M., De Kock, T., De Schutter, G., Cnudde, V., 2020. A review on freeze-thaw action and weathering of rocks. Earth-Science Reviews 203, pp. 103143. https://doi.org/10.1016/j.earscirev.2020.103143.10.1016/j.earscirev.2020.103143 Search in Google Scholar

Dirksen, C., 1964. Water Movement and Frost Heaving in Unsaturated Soil without an External Source of Water, Ph. D. thesis, Cornell University, United States – New York, 152 pp. Search in Google Scholar

Duncan C.I. (1992) Physical Properties of Soils. In: Soils and Foundations for Architects and Engineers. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-6545-8_2.10.1007/978-1-4757-6545-8_2 Search in Google Scholar

Ferris, G., 2009. Differential Frost Heave at Pipeline-Road Crossings. In: 14th Conference on Cold Regions Engineering, August 31 – September 2, 2009, Duluth, Minnesota, United States, pp. 68-78. https://doi.org/10.1061/41072(359)9.10.1061/41072(359)9 Search in Google Scholar

Guymon, G. L., Berg, R. L., Hromadka, T. V., 1993. Mathematical Model of Frost Heave and Thaw Settlement in Pavements, US Army Corps Cold Regions Research & Engineering Laboratory, 130 pp. Search in Google Scholar

Hagerty, D. J., Peck, R. B., 1971. Heave and Lateral Movements due to Pile Driving. ASCE Soil Mechanics and Foundation Division Journal 97(11), pp. 1513-1532. https://doi.org/10.1061/JSFEAQ.0001700.10.1061/JSFEAQ.0001700 Search in Google Scholar

Hayashi, M., Goeller, N., Quinton, W. L., Wright, N., 2007. A simple heat-conduction method for simulating the frost-table depth in hydrological models. Hydrological Processes, 21, pp. 2610–2622. https://doi.org/10.1002/hyp.6792.10.1002/hyp.6792 Search in Google Scholar

Houston, S. L., Houston, W. N., 2017. Suction-Oedometer Method for Computation of Heave and Remaining Heave. In: Second Pan-American Conference on Unsaturated Soils. November 12–15, 2017, Dallas, Texas, United States. pp. 93-116. https://doi.org/10.1061/9780784481677.005.10.1061/9780784481677.005 Search in Google Scholar

Huang, S. L., Bray, M. T., Akagawa, S., Fukuda, M., 2004. Field Investigation of Soil Heave by a Large Diameter Chilled Gas Pipeline Experiment, Fairbanks, Alaska. Journal of Cold Regions Engineering, 18(1), 2-34. https://doi.org/10.1061/(ASCE)0887-381X(2004)18:1(2).10.1061/(ASCE)0887-381X(2004)18:1(2) Search in Google Scholar

Jackson, K. A., Uhlmann, D. R., Chalmers, B. 1966. Frost Heave in Soils. Journal of Applied Physics 37(2), pp. 848 – 852. https://doi.org/10.1063/1.1708270.10.1063/1.1708270 Search in Google Scholar

Jame, Y.: Heat and Mass Transfer in Freezing Unsaturated Soil, Ph. D. thesis, The University of Saskatchewan, Canada, 212 pp., 1978. Search in Google Scholar

Ketcham, S. A., Black, P. B., Pretto, R., 1997. Frost Heave Loading of Constrained Footing by Centrifuge Modeling. Journal of Geotechnical and Geoenvironmental Engineering, 123(9), pp. 874-880. https://doi.org/10.1061/(ASCE)1090-0241(1997)123:9(874).10.1061/(ASCE)1090-0241(1997)123:9(874) Search in Google Scholar

Klaučo, M., Gregorová, B., Stankov, U., Marković, V., Lemenkova, P., 2013. Determination of ecological significance based on geostatistical assessment: a case study from the Slovak Natura 2000 protected area. Open Geosciences, 5(1), pp. 28–42. https://doi.org/10.2478/s13533-012-0120-0.10.2478/s13533-012-0120-0 Search in Google Scholar

Konrad, J. M., 1980. Frost heave mechanics. Ph. D. thesis. Canada, Department of Civil Engineering, University of Alberta, Edmonton, Canada, 472 pp. https://doi.org/10.7939/R3WP9TH3B. Search in Google Scholar

Konrad, J. M. 1994. Sixteenth Canadian geotechnical colloquium: frost heave in soils: concepts and engineering, Canadian Geotechnical Journal, 31(2), pp. 223–245. https://doi.org/10.1139/t94-028.10.1139/t94-028 Search in Google Scholar

Lein, W. A., Slone, S. M., Smith, C. E., Bernier, A. P., 2019. Frost Depth Penetration and Frost Heave in Frost Susceptible Soils. In: International Airfield and Highway Pavements Conference: Testing and Characterization of Pavement Materials, July 21–24, 2019, Chicago, Illinois, U.S., pp. 493-503. https://doi.org/10.1061/9780784482469.049.10.1061/9780784482469.049 Search in Google Scholar

Lemenkov, V. A., 2018a. Determination of correlation in deformation, strength and viscosity of the frozen soils through external pressure by uniaxial compression. In: Current Trends and Innovations in Science and Industry, Mezhdurechensk, Russia, 24-25 April 2018. pp. 64–65. https://doi.org/10.5281/zenodo.3832280. Search in Google Scholar

Lemenkov, V. A. 2018b. Variations in porosity and deformation in dehydrated loam samples. In: Development Strategy of the Geological Exploration of the Subsoils: Present and Future, Moscow, Russia, 2018, 2, pp. 256–257. https://doi.org/10.5281/zenodo.3832310. Search in Google Scholar

Lemenkov, V. A., 2018c. Perspective methods for determining deformation of the frozen dispersed soils under external loads. In: Problems of the Arctic Region, Murmansk, Russia, pp. 29-30. https://doi.org/10.5281/zenodo.3832332. Search in Google Scholar

Lemenkov, V. A. 2018d. Analysis of the Effects of the Mineral Soil Composition on the Cohesion Between its Structural Elements. In: Modern Solutions to Scientific and Industrial Problems in Chemistry and Petrochemistry, Kazan, Russia, 2018. pp. 617–625. https://doi.org/10.5281/zenodo.3832326. Search in Google Scholar

Lemenkov, V. A. 2018e. Deformation properties of the clay soil heave with a case study of sandy loam and clay by compression tests. In: Development Strategy of the Geological Exploration of the Subsoils: Present and Future, Moscow, Russia, 2, pp. 258–259. https://doi.org/10.5281/zenodo.3832304. Search in Google Scholar

Lemenkov, V., Lemenkova, P., 2021a. Using TeX Markup Language for 3D and 2D Geological Plotting. Foundations of Computing and Decision Sciences 46(3), pp. 43–69. https://doi.org/10.2478/fcds-2021-0004.10.2478/fcds-2021-0004 Search in Google Scholar

Lemenkov, V., Lemenkova, P., 2021b. Measuring Equivalent Cohesion Ceq of the Frozen Soils by Compression Strength Using Kriolab Equipment. Civil and Environmental Engineering Reports, 31(2), pp. 63–84. https://doi.org/10.2478/ceer-2021-0020.10.2478/ceer-2021-0020 Search in Google Scholar

Lemenkova P., 2019. Statistical Analysis of the Mariana Trench Geomorphology Using R Programming Language. Geodesy and Cartography, 45, pp. 57–84. https://doi.org/10.3846/gac.2019.3785.10.3846/gac.2019.3785 Search in Google Scholar

Lemenkova, P., 2020. Using GMT for 2D and 3D Modeling of the Ryukyu Trench Topography, Pacific Ocean. Miscellanea Geographica, 25(3), pp. 1–13. https://doi.org/10.2478/mgrsd-2020-0038.10.2478/mgrsd-2020-0038 Search in Google Scholar

Li, Q., Sun, S. F. 2008. Development of the universal and simplified soil model coupling heat and water transport. Science in China Series D Earth Sciences, 51(1), pp. 88-102. https://doi.org/10.1007/s11430-007-0153-2.10.1007/s11430-007-0153-2 Search in Google Scholar

Lin, Z., Niu, F., Li, X., Li, A., Liu, M., Luo, J., Shao, Z., 2018. Characteristics and controlling factors of frost heave in high-speed railway subgrade, Northwest China. Cold Regions Science and Technology, 153, 33-44. https://doi.org/10.1016/j.coldregions.2018.05.001.10.1016/j.coldregions.2018.05.001 Search in Google Scholar

Lindh, P., Hermansson, Å., 2001. Test method to evaluate frost performance and frost heave of stabilised soil. International symposium on subgrade stabilisation and in situ pavement recycling using cement, Salamanca, October 2001. pp 241-254. Search in Google Scholar

Lindh P., 2004. Compaction- and strength properties of stabilised and unstabilised fine- grained tills. Lund University, Lund, Sweden. Doctoral Thesis. https://doi.org/10.13140/RG.2.1.1313.6481. Search in Google Scholar

Logan, T., Bilodeau, J.-P., Henry, K., 2020. Frost Action and Climate Change. Chapter 5. In: Shoop, S. A. (Ed.). Frost Action in Soils: Fundamentals and Mitigation in a Changing Climate. Publisher: American Society of Civil Engineers. https://doi.org/10.1061/9780784415085.10.1061/9780784415085 Search in Google Scholar

Long, X., Cen, G., Cai, L., Chen, Y. 2018. Model experiment of uneven frost heave of airport pavement structure on coarse-grained soils foundation. Construction and Building Materials, 188, 372 – 380. https://doi.org/10.1016/j.conbuildmat.2018.08.100.10.1016/j.conbuildmat.2018.08.100 Search in Google Scholar

López-Fernández, C., Prieto, D.A., Fernández-Viejo, G., Pando, L., Castells Fernández, E., 2013. Surface Subsidence Induced by Groundwater Drainage Tunneling in Granite Residual Soils (Burata Railway Tunnel, Spain). Journal of Geotechnical and Geoenvironmental Engineering, 139(5), 821-824. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000805.10.1061/(ASCE)GT.1943-5606.0000805 Search in Google Scholar

McCabe, E.Y. and Kettle, R.J., 1995. Soil Freezing Response: Influence of Test Conditions. Geotechnical Testing Journal, 8(2), pp. 49 – 58. https://doi.org/10.1520/GTJ10510J.10.1520/GTJ10510J Search in Google Scholar

Michalowski, R. L., Zhu, M., 2007. Modeling Heaving in Frost-Susceptible Soils. Computer Applications In Geotechnical Engineering, Geotechnical Special Publication. Geo-Denver 2007 February 18-21, 2007, Denver, Colorado, United States. pp. 1-10. https://doi.org/10.1061/40901(220)18.10.1061/40901(220)18 Search in Google Scholar

Muller, S. W., French, H., Nelson, F., 2008. Frozen in Time: Permafrost and Engineering Problems. American Society of Civil Engineers. https://doi.org/10.1061/9780784409893.10.1061/9780784409893 Search in Google Scholar

Nagare, R. M., 2011. Coupled Heat and Water Transport in Frozen Organic Soils. Ph. D. thesis, The University of Western Ontario, London, Canada, 191 pp. https://ir.lib.uwo.ca/etd/158. Search in Google Scholar

Nishikawa, J., Sakuraba, M., 2002. Frost Heave Experiment in Open Pit. In: 11th International Conference on Cold Regions Engineering, May 20-22, 2002, Anchorage, Alaska, United States, pp. 675-682. https://doi.org/10.1061/40621(254)58.10.1061/40621(254)58 Search in Google Scholar

Penner. E., 1959. The mechanism of frost heaving in soils. Highway Research Board Bulletin, 221, p. l-22. Search in Google Scholar

Penner, E., 1960. The importance of freezing rate in frost action in soil. Proceedings-American society for testing and materials, 60, pp. 1151-1165. Search in Google Scholar

Penner, E, 1961. Alternative freezing and thawing not a requirement for frost heaving in soils. Canadian Journal of Soil Science, 16(1), pp. 160 – 163. https://doi.org/10.4141/cjss61-021.10.4141/cjss61-021 Search in Google Scholar

Penner, E, Ueda, T., 1977. The dependence of frost heaving on load application—preliminary results. In: Proceedings of the International Symposium on Frost Action in Soils, 1, pp. 137–143, Luleå University of Technology, Lulea, Sweden. Search in Google Scholar

Puppala, A. J., Griffin, J. A., Hoyos, L. R., Chomtid, S., 2004. Studies on Sulfate-Resistant Cement Stabilization Methods to Address Sulfate-Induced Soil Heave. Journal of Geotechnical and Geoenvironmental Engineering, 130(4), 391-402. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:4(391).10.1061/(ASCE)1090-0241(2004)130:4(391) Search in Google Scholar

Ravaska, O., Vesala, E., 2000. A permafrost foundation analysis. In: Ground Freezing 2000 – Frost Action in Soils. 1st Ed. https://doi.org/10.1201/9781003078654-48.10.1201/9781003078654-48 Search in Google Scholar

Rempel, A. W., Wettlaufer, J. S., Worster, M. G., 2004. Premelting dynamics in a continuum model of frost heave. Journal of Fluid Mechanics, 498, pp. 227–244. https://doi.org/10.1017/S0022112003006761.10.1017/S0022112003006761 Search in Google Scholar

Rempel, A.W., 2012. Hydromechanical Processes in Freezing Soils. Vadose Zone Journal, 11, vzj2012.0045. https://doi.org/10.2136/vzj2012.0045.10.2136/vzj2012.0045 Search in Google Scholar

Shen, Y., Liu, X., Zuo, R., Tang, T., Tian, Y., Wang, Y., 2020. Effect of frost heave on a silt column filled with rubber-asphalt-fiber. Cold Regions Science and Technology, 174, 102991. https://doi.org/10.1016/j.coldregions.2020.102991.10.1016/j.coldregions.2020.102991 Search in Google Scholar

Schenke, H. W., Lemenkova, P., 2008. Zur Frage der Meeresboden-Kartographie: Die Nutzung von AutoTrace Digitizer für die Vektorisierung der Bathymetrischen Daten in der Petschora-See. Hydrographische Nachrichten, 81, pp. 16–21. https://doi.org/10.6084/m9.figshare.7435538. Search in Google Scholar

Selvadurai, A. P. S., Shinde, S. B., 1993. Frost Heave Induced Mechanics of Buried Pipelines. Journal of Geotechnical Engineering, 119(12), pp. 1929-1951. https://doi.org/10.1061/(ASCE)0733-9410(1993)119:12(1929).10.1061/(ASCE)0733-9410(1993)119:12(1929) Search in Google Scholar

Taber, S., 1929. Frost heaving. Journal of Geology, 37(5), pp. 428 – 461. https://doi.org/10.1086/623637.10.1086/623637 Search in Google Scholar

Taber, S., 1930. The mechanics of frost heaving. Journal of Geology, 38(4), pp. 303–317. https://doi.org/10.1086/623720.10.1086/623720 Search in Google Scholar

Wang, X., Wang, C., Wang, X., Huo, Z., 2020. Response of soil compaction to the seasonal freezing-thawing process and the key controlling factors. CATENA, 184, 104247. https://doi.org/10.1016/j.catena.2019.104247.10.1016/j.catena.2019.104247 Search in Google Scholar

Wersäll, C., Massarsch, K. R., 2013. Soil heave due to pile driving in clay. Sound Geotechnical Research to Practice, Geotechnical Special Publication (GSP 230) Honoring Robert D. Holtz, Edited by Armin W. Stuedlein, Ph. D., P.E., and Barry R. Christopher, Ph.D., P.E., ASCE, pp. 481 – 499. https://doi.org/10.1061/9780784412770.032.10.1061/9780784412770.032 Search in Google Scholar

Widianto, Heilenman, G., Owen, J., Fente, J., 2009. Foundation Design for Frost Heave. In: 14th Conference on Cold Regions Engineering. August 31-September 2, 2009. Duluth, Minnesota, United States, pp. 599 – 608. https://doi.org/10.1061/41072(359)58.10.1061/41072(359)58 Search in Google Scholar

Wu, Y., Zhai, E., Zhang, X., Wang, G., Lu, Y., 2021. A study on frost heave and thaw settlement of soil subjected to cyclic freeze-thaw conditions based on hydro-thermal-mechanical coupling analysis. Cold Regions Science and Technology, 188, 103296. https://doi.org/10.1016/j.coldregions.2021.103296.10.1016/j.coldregions.2021.103296 Search in Google Scholar

Xie, H., Shanmugam, A. K., Issa, R. R. A., 2018. Big Data Analysis for Monitoring of Kick Formation in Complex Underwater Drilling Projects. Journal of Computing in Civil Engineering, 32(5), pp. 04018030. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000773.10.1061/(ASCE)CP.1943-5487.0000773 Search in Google Scholar

Zhang, Y., Michalowski, R. L., 2014. Thermal-Hydro-Mechanical Modeling of Frost Action in Frost-Susceptible Soils. Geotechnical Special Publication, Geo-Shanghai 2014 May 26-28, 2014, Shanghai, China, pp. 735-744. https://doi.org/10.1061/9780784413388.077.10.1061/9780784413388.077 Search in Google Scholar

Zhang, Y., White, D. J., Vennapusa, P. K. R., Johnson, A. E., Prokudin, M. M. 2018. Investigating Frost Heave Deterioration at Pavement Joint Locations. Journal of Performance of Constructed Facilities, 32(2), 04018001. https://doi.org/10.1061/(ASCE)CF.1943-5509.0001143.10.1061/(ASCE)CF.1943-5509.0001143 Search in Google Scholar

Zheng, H., Kanie, S., 2015. Combined Thermal-Hydraulic-Mechanical Frost Heave Model Based on Takashi’s Equation. Journal of Cold Regions Engineering, 29(4), 04014019. https://doi.org/10.1061/(ASCE)CR.1943-5495.0000089.10.1061/(ASCE)CR.1943-5495.0000089 Search in Google Scholar

Zhou, F., Zai, J., Mei, G., Zhou, G., 2006. Analysis of Soil Heave Due to Pile-Sinking in Soft Clay. GeoShanghai International Conference, June 6-8, 2006, Shanghai, China, pp. 271-276. https://doi.org/10.1061/40865(197)35.10.1061/40865(197)35 Search in Google Scholar

Zhu, Y., Li, Y., Hao, Z., Luo, L., Luo, J., Wang, L., 2021. An analytical solution for the frost heaving force and displacement of a noncircular tunnel. Computers and Geotechnics, 133, 104022. https://doi.org/10.1016/j.compgeo.2021.104022.10.1016/j.compgeo.2021.104022 Search in Google Scholar

eISSN:
2284-7197
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
2 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Technik, Einführungen und Gesamtdarstellungen, andere, Elektrotechnik, Energietechnik, Geowissenschaften, Geodäsie