Uneingeschränkter Zugang

The Use of Laser Scanning and Unmanned Aerial Vehicles in Construction Surveying in the Light of Legal Regulations in Poland


Zitieren

Agüera-Vega, F., Carvajal-Ramírez, F., Martínez-Carricondo, P., 2017. Assessment of photogrammetric mapping accuracy based on variation ground control point’s number using unmanned aerial vehicle. Measurement, vol. 98, pp. 221-227. https://doi.org/10.1016/j.measurement.2016.12.002.10.1016/j.measurement.2016.12.002Open DOISearch in Google Scholar

Ajayi, O.G., Palmer, M., Salubi, A.A., 2018. Modelling farmland topography for suitable site selection of dam construction using unmanned aerial vehicle (UAV) photogrammetry. Remote Sensing Applications: Society and Environment, vol. 11, pp. 220-230. https://doi.org/10.1016/j.rsase.2018.07.007.10.1016/j.rsase.2018.07.007Open DOISearch in Google Scholar

Álvares, J.S., Costa, D.B., de Melo, R.R.S., 2018. Exploratory study of using unmanned aerial system imagery for construction site 3D mapping. Construction Innovation, vol. 18 Issue 3, pp. 301-320. https://doi.org/10.1108/CI-05-2017-0049.10.1108/CI-05-2017-0049Open DOISearch in Google Scholar

Balawejder, M., Adamczyk, T., Cygan, M., 2016. The Problem of Adjusting Polish Spatial Information Resources to the Standards of the INSPIRE. In Proceedings of the GISODYSSEY 2016, Geographic Information Systems Conference and Exhibition, Perugia, Italy, 5–9 September 2016; pp. 14–24. http://gis.us.edu.pl/index.php/past-gis-conferences/23-gisodyssey-2016.Search in Google Scholar

Balawejder, M., Warchoł, A., Matuła, P., Kret, M., 2016. Use technology LIDAR in passive documentation of historical sites. Use and Protection of Land Rasources: Actual Issues of the Science and Practice, p.97-100, Lviv, УДК 332.33, ББК 65.9(4Укр)32-51я54,В-43. http://www.lnau.lviv.ua/lnau/attachments/3665_Konf_LNAU_18.05.2016.pdf#page=97.Search in Google Scholar

Benassi, F., Dall’Asta, E., Diotri, F., Forlani, G., Morra di Cella, U., Roncella, R., Santise, M., 2017. Testing Accuracy and Repeatability of UAV Blocks Oriented with GNSSSupported Aerial Triangulation. Remote Sens., vol. 9, 172. https://doi.org/10.3390/rs9020172.10.3390/rs9020172Open DOISearch in Google Scholar

Campana, S., 2017. Drones in Archaeology. State-of-the-art and Future Perspectives. Archaeol. Prospect., vol. 24, pp. 275–296. https://doi.org/10.1002/arp.1569.10.1002/arp.1569Open DOISearch in Google Scholar

Cosarca, C., Jocea, A. and Savu, A., 2009. Analysis of error sources in Terrestrial Laser Scanning. RevCAD Journal of Geodesy and Cadaster, vol. 9, pp. 115–124.Search in Google Scholar

Ćwiąkała, P., Kocierz, R., Puniach, E., Nędzka, M., Mamczarz, K., Niewiem, W., Wiącek, P., 2018. Assessment of the Possibility of Using Unmanned Aerial Vehicles (UAVs) for the Documentation of Hiking Trails in Alpine Areas. Sensors, vol. 18, no. 1, 81. https://doi.org/10.3390/s18010081.10.3390/s18010081579584529286327Open DOISearch in Google Scholar

Ćwiąkała, P., Puniach, E., Wdowiak, P., 2018. Optimisation of the UAV-based photogrammetric data collection process in documentation of linear objects of substantial height differences. Geographic Information Systems Conference and Exhibition “GIS ODYSSEY 2018” Perugia, Italy, Conference proceedings, pp. 146-156. http://www.gis.us.edu.pl/index.php/conference-proceedings-2018.Search in Google Scholar

Eschmann, C., Kuo, C.-M., Kuo, C.-H., Boller, C., 2013. High-Resolution Multisensor Infrastructure Inspection with Unmanned Aircraft Systems. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XL-1/W2, 125-129. DOI: 0.5194/isprsarchives-XL-1-W2-125-2013.10.5194/isprsarchives-XL-1-W2-125-2013Search in Google Scholar

Frykowska, A., Stachelek, J., 2018. A no-reference method of geometric content quality analysis of 3D models generated from laser scanning point clouds for hBIM. Journal of Cultural Heritage (available online 19 April 2018). https://doi.org/10.1016/j.culher.2018.04.003.10.1016/j.culher.2018.04.003Open DOISearch in Google Scholar

Goodwin, N.R., Armston, J.D., Muir, J., Stiller, I., 2017. Monitoring gully change: A comparison of airborne and terrestrial laser scanning using a case study from Aratula, Queensland. Geomorphology, vol. 282, 195-208. https://doi.org/10.1016/j.geomorph.2017.01.001.10.1016/j.geomorph.2017.01.001Open DOISearch in Google Scholar

Han, J.Y., Huang, N.J., Chuang, J.T.Y., 2017. Application of laser scanning for rapid geologic documentation of trench exposures. Engineering Geology, vol. 224, 97-104. https://doi.org/10.1016/j.enggeo.2017.05.010.10.1016/j.enggeo.2017.05.010Open DOISearch in Google Scholar

Hofierka, J., Gallay, M., Kaňuk, J., Šašak, J., 2017. Modelling Karst Landscape with Massive Airborne and Terrestrial Laser Scanning Data. In: Ivan, I., Singleton, A., Horák, J., Inspektor, T. (Eds.), The Rise of Big Spatial Data. Lecture Notes in Geoinformation and Cartography. Springer, Cham, pp. 141-154. https://doi.org/10.1007/978-3-319-45123-7_11.10.1007/978-3-319-45123-7_11Open DOISearch in Google Scholar

Hron, V., Halounová, L., 2015. Automatic Generation of 3D Building Models from Point Clouds. In: Ivan I., Benenson I., Jiang B., Horák J., Haworth J., Inspektor T. (Eds), Geoinformatics for Intelligent Transportation. Lecture Notes in Geoinformation and Cartography. Springer, Cham. https://doi.org/10.1007/978-3-319-11463-7_8.10.1007/978-3-319-11463-7_8Open DOISearch in Google Scholar

Klapa, P., Mitka, B., 2017. Application of terrestrial laser scanning to the development and updating of the base map. Geodesy and Cartography, vol. 66, no. 1, 2017, 59-72. DOI: 10.1515/geocart-2017-0002.10.1515/geocart-2017-0002Open DOISearch in Google Scholar

Królikowski, J., 2017. Skrzydlaty pomocnik. Przegląd bezzałogowych płatowców do celów geodezyjnych (Winged assistant. Overview of unmanned aerial vehicles for surveying purposes). Geodeta, vol. 1, no. 265, p. 20.Search in Google Scholar

Kwartnik-Pruc, A., 2015. Possibilities of using innovative sources of information on real estate in the spatial data collection process. Real Estate Management and Valuation, vol. 23, no. 1, pp. 103-113. https://doi.org/10.1515/remav-2015-0010.10.1515/remav-2015-0010Open DOISearch in Google Scholar

Lichti, D.D.,Licht, M.G., 2006. Experiences with terrestrial laser scanner modelling and accuracy assessment. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XXXVI, no. 5, pp. 155-160.Search in Google Scholar

Liu, P., Chen, A.Y., Huang, Y.-N., Han, J.-Y., Lai, J.-S., Kang, S.-C., Wu, T.-H., Wen, M.-C., Tsai. M.-H., 2014. A review of rotorcraft Unmanned Aerial Vehicle (UAV) developments and applications in civil engineering. Smart Structures and Systems, vol. 13, 6, 1065-1094. http://dx.doi.org/10.12989/sss.2014.13.6.1065.10.12989/sss.2014.13.6.1065Search in Google Scholar

Lõhmus, H., Ellmann, A., Märdla, S., Idnurm, S., 2018. Terrestrial laser scanning for the monitoring of bridge load tests – two case studies. Survey Review, vol. 50, no. 360, pp. 270-284. 10.1080/00396265.2016.1266117.10.1080/00396265.2016.1266117Search in Google Scholar

Martíneza, J., Soria-Medinab, A., Ariasa, P., Buffara-Antunes, A.F., 2012. Automatic processing of Terrestrial Laser Scanning data of building façades. Automation in Construction, vol. 22, pp. 298–305. https://doi.org/10.1016/j.autcon.2011.09.005.10.1016/j.autcon.2011.09.005Open DOISearch in Google Scholar

Medjkane, M., Maquaire, O., Costa, S., Roulland, T., Letortu, P., Fauchard, C., Antoine, R., Davidson, R., 2018. High-resolution monitoring of complex coastal morphology changes: cross-efficiency of SfM and TLS-based survey (Vaches-Noires cliffs, Normandy, France). Landslides, vol. 15, no. 6, pp. 1097-1108. https://doi.org/10.1007/s10346-017-0942-4.10.1007/s10346-017-0942-4Open DOISearch in Google Scholar

Mukupa, W., Roberts, G. W., Hancock, C. M., Al-Manasir, K., 2017. A review of the use of terrestrial laser scanning application for change detection and deformation monitoring of structures. Survey Review, vol. 49, no. 353, pp. 99-116. 10.1080/00396265.2015.1133039.Search in Google Scholar

Nex F., Remondino F. (2014). UAV for 3D mapping applications: a review. Applied Geomatics, vol. 6, no. 1, pp. 1-15. https://doi.org/10.1007/s12518-013-0120-x.10.1007/s12518-013-0120-xOpen DOISearch in Google Scholar

Pritchard, D., Sperner, J., Hoepner, S., Tenschert, R., 2017. Terrestrial laser scanning for heritage conservation: the Cologne Cathedral documentation project. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. IV-2/W2, pp. 213-220.10.5194/isprs-annals-IV-2-W2-213-2017Search in Google Scholar

Puniach, E., Ćwiąkała, P. Dec, H., 2018. Impact of Ground Control Points (GCPs) distribution and unmanned aerial vehicle (UAV) flight parameters on accuracy of Digital Surface Model (DSM). Geographic Information Systems Conference and Exhibition “GIS ODYSSEY 2018” Conference proceedings, p. 387-396, from http://www.gis.us.edu.pl/index.php/conference-proceedings-2018, accessed on 2018-10-04.Search in Google Scholar

Puniach, E., Bieda, A., Ćwiąkała, P., Kwartnik-Pruc, A., Parzych, P., 2018. Use of Unmanned Aerial Vehicles (UAVs) for updating farmland cadastral data in areas subject to landslides. ISPRS Int. J. Geo-Inf., vol. 7, 331. https://doi.org/10.3390/ijgi7080331.10.3390/ijgi7080331Open DOISearch in Google Scholar

Reinoso, J.F., Gonçalves, J.E., Pereira, C., Bleninger, T., 2018. Cartography for Civil Engineering Projects: Photogrammetry Supported by Unmanned Aerial Vehicles. Iranian Journal of Science and Technology, Transactions of Civil Engineering, vol. 42, no. 1, pp. 91-96. https://doi.org/10.1007/s40996-017-0076-x.10.1007/s40996-017-0076-xOpen DOISearch in Google Scholar

Ridolfi, E., Buffi, G., Venturi, S., Manciola, P., 2017. Accuracy Analysis of a Dam Model from Drone Surveys. Sensors, vol. 17, 1777. https://doi.org/10.3390/s17081777.10.3390/s17081777557994728771185Open DOISearch in Google Scholar

Rozporządzenie Ministra Gospodarki Przestrzennej i Budownictwa z dnia 21 lutego 1995 r. w sprawie rodzaju i zakresu opracowań geodezyjno-kartograficznych oraz czynności geodezyjnych obowiązujących w budownictwie (Regulation of the Minister of Spatial Economy and Construction of 21 February 1995 on the type and scope of geodetic and cartographic documentation, as well as surveying activities in force in the field of construction) (Journal of Laws no. 25 item. 133), from http://prawo.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=wdu19950250133, accessed on 2018-08-26.Search in Google Scholar

Rozporządzenie Ministra Spraw Wewnętrznych i Administracji z dnia 3 listopada 2011(a) r. w sprawie baz danych dotyczących zobrazowań lotniczych i satelitarnych oraz ortofotomapy i numerycznego modelu terenu (Regulation of the Minister of Interior and Administration of November 3, 2011(a) on databases regarding aerial and satellite imaging and orthophotomap and Digital Terrain Model) (Journal of Laws 2011 no. 263 item 1571), from http://prawo.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20112631571, accessed on 2018-08-26.Search in Google Scholar

Rozporządzenie Ministra Spraw Wewnętrznych i Administracji z dnia 9 listopada 2011(b) r. w sprawie standardów technicznych wykonywania geodezyjnych pomiarów sytuacyjnych i wysokościowych oraz opracowywania i przekazywania wyników tych pomiarów do państwowego zasobu geodezyjnego i kartograficznego (Regulation of the Minister of Interior and Administration of November 9, 2011(b) on technical standards of performance of plane and vertical land surveys as well as developing and submitting the results of these surveys to the national geodetic and cartographic resource) (Journal of Laws 2011 no. 263 item 1572), from http://prawo.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20112631572, accessed on 2018-08-26.Search in Google Scholar

Rozporządzenie Ministra Administracji i Cyfryzacji z dnia 5 września 2013 r. w sprawie organizacji i trybu prowadzenia Państwowego Zasobu Geodezyjnego i Kartograficznego (Regulation of the Minister of Administration and Digitization Regulation of the Minister of Administration and Digitization of September 5, 2013 on the organization and the mode of conducting the national geodetic and cartographic resource) (Journal of Laws 2013 item 1183), from http://prawo.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20130001183, accessed on 2018-08-26.Search in Google Scholar

Rozporządzenie Ministra Administracji i Cyfryzacji z dnia 31 stycznia 2014(a) r. w sprawie uprawnień zawodowych w dziedzinie geodezji i kartografii (Regulation of the Ministry of Administration and Digitization of January 31, 2014(a) on the qualifications in the field of geodesy and cartography (Journal of Laws 2014 item 176), from http://prawo.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20140000176, accessed on 2018-08-26.Search in Google Scholar

Rozporządzenie Ministra Administracji i Cyfryzacji z dnia 8 lipca 2014(b) r. w sprawie formularzy dotyczących zgłaszania prac geodezyjnych i prac kartograficznych, zawiadomienia o wykonaniu tych prac oraz przekazywania ich wyników do państwowego zasobu geodezyjnego i kartograficznego (Regulation of the Minister of Administration and Digitization of July 8, 2014(b) on forms for reporting of surveying and cartographic works, the notice of completion of the works and transfer of their results to the national geodetic and cartographic resource) (Journal of Laws 2014 item 924), from http://prawo.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20140000924, accessed on 2018-08-26.Search in Google Scholar

Rozporządzenie Ministra Administracji i Cyfryzacji z dnia 2 listopada 2015 r. w sprawie bazy danych obiektów topograficznych oraz mapy zasadniczej (Regulation of the Minister of Administration and Digitization of November 2, 2015 on the database of topographic objects and the base map) (Journal of item 2028) from http://prawo.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20150002028, accessed on 2018-08-26.Search in Google Scholar

Shan, J., Toth, C.K., 2018. Topographic Laser Ranging and Scanning: Principles and Processing, Second Edition. Taylor & Francis, CRC Press, Boca Raton.10.1201/9781315154381Search in Google Scholar

Soudarissanane, S., Lindenbergh, R., Menenti, M., Teunissen, P., 2011. Scanning geometry: Influencing factor on the quality of terrestrial laser scanning points. ISPRS Journal of Photogrammetry and Remote Sensing, vol. 66, no. 4, pp. 389–399. http://dx.doi.org/10.1016/j.isprsjprs.2011.01.005.10.1016/j.isprsjprs.2011.01.005Open DOISearch in Google Scholar

Torresan, C., Berton, A., Carotenuto, F., Di Gennaro, S.F., Gioli, B., Matese, A., Miglietta, F., Vagnoli, C., Zaldei, Z., Wallace, L., 2017. Forestry applications of UAVs in Europe: a review. International Journal of Remote Sensing, vol. 38, no. 8-10, pp. 2427-2447. DOI: 10.1080/01431161.2016.1252477.10.1080/01431161.2016.1252477Open DOISearch in Google Scholar

Ustawa z dnia 17 maja 1989 r. Prawo geodezyjne i kartograficzne (Geodetic and Cartographic Law) (Journal of Laws 2017 item 2101 as amended), from http://prawo.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20170002101, accessed on 2018-08-26.Search in Google Scholar

Ustawa z dnia 3 lipca 2002 r. Prawo lotnicze (The Aviation Law) (Journal of Laws 2018 item 1183 as amended), from http://prawo.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20021301112, accessed on 2018-08-26.Search in Google Scholar

Vacanas, Y., Themistocleous, K., Agapiou, A., Hadjimitsis, D., 2016. The combined use of Building Information Modelling (BIM) and Unmanned Aerial Vehicle (UAV) technologies for the 3D illustration of the progress of works in infrastructure construction projects. Fourth International Conference on Remote Sensing and Geoinformation of the Environment, Paphos, Cyprus, Proceedings Volume 9688. https://doi.org/10.1117/12.2252605.10.1117/12.2252605Open DOISearch in Google Scholar

Volk, R., Stengel, J., Schultmann, F., 2014. Building Information Modeling (BIM) for existing buildings — Literature review and future needs. Automation in Construction, vol. 38, 109-127. https://doi.org/10.1016/j.autcon.2013.10.023.10.1016/j.autcon.2013.10.023Open DOISearch in Google Scholar

Vosselman, G., Maas, H.-G., 2010. Airborne and Terrestrial Laser Scanning. Taylor & Francis, CRC Press, Boca Raton.Search in Google Scholar

Yang, H., Xu, X., Xu, W., Neumann, I., 2017. Terrestrial Laser Scanning-Based Deformation Analysis for Arch and Beam Structures. IEEE Sensors Journal, vol. 17, no. 14, pp. 4605-4611. DOI: 10.1109/JSEN.2017.2709908.10.1109/JSEN.2017.2709908Open DOISearch in Google Scholar

eISSN:
2284-7197
ISSN:
2247-3769
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
2 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Technik, Einführungen und Gesamtdarstellungen, andere, Elektrotechnik, Energietechnik, Geowissenschaften, Geodäsie