Zitieren

Simarjot Kaur Randhawa, Mandeep Singh, “Classification of Heart Sound Signals Using Multimodal Features,” Second International Symposium on Computer Vision and the internet, Elsevier, Procedeia Computer science, vol. 58, 2015, pp. 165–171. RandhawaSimarjot Kaur SinghMandeep “Classification of Heart Sound Signals Using Multimodal Features,” Second International Symposium on Computer Vision and the internet, Elsevier, Procedeia Computer science 58 2015 165 171 Search in Google Scholar

Cota Navin Gupta, Ramaswamy Palaniappan, Sreeraman Rajan, Sundaram Swaminathan, S.M. Krishnan, “Segmentation and Classification of heart sound,” International Conference: Canadian Conference on Electrical and Computer Engineering, June 2005, DOI: 10.1109/CCECE.2005.1557305, IEEE Xplore. GuptaCota Navin PalaniappanRamaswamy RajanSreeraman SwaminathanSundaram KrishnanS.M. “Segmentation and Classification of heart sound,” International Conference: Canadian Conference on Electrical and Computer Engineering June 2005 10.1109/CCECE.2005.1557305 IEEE Xplore Open DOISearch in Google Scholar

Lecun, Y.; Bengio, Y.; Hinton, G. Deep Learning. Nature 2015, 521, 7553. LecunY. BengioY. HintonG. Deep Learning Nature 2015 521 7553 Search in Google Scholar

Joyanta Kumar Roy & Tanmay Sinha Roy, “A Simple technique for heart sound detection and real-time analysis,” Proceedings of ICST 2017 held at Macquarie University Sidney, Sensing Technology (ICST), 2017 Eleventh International Conference, 4–6 Dec. 2017, 10.1109/ICSensT.2017.8304502. RoyJoyanta Kumar RoyTanmay Sinha “A Simple technique for heart sound detection and real-time analysis,” Proceedings of ICST 2017 held at Macquarie University Sidney, Sensing Technology (ICST), 2017 Eleventh International Conference 4–6 Dec. 2017 10.1109/ICSensT.2017.8304502 Open DOISearch in Google Scholar

S. Barma, B.-W. Chen, W. Ji, F. Jiang, and J.-F. Wang, “Measurement of duration, the energy of instantaneous-frequencies, and splits of subcomponents of the second heart sound,” IEEE Transactions on Instrumentation Measurement, vol. 64, no. 7, pp. 1958–1967, Jul. 2015. BarmaS. ChenB.-W. JiW. JiangF. WangJ.-F. “Measurement of duration, the energy of instantaneous-frequencies, and splits of subcomponents of the second heart sound,” IEEE Transactions on Instrumentation Measurement 64 7 1958 1967 Jul. 2015 Search in Google Scholar

M. Tavel, “Classification of systolic murmurs: Still in search of a consensus,” Am. Heart, J., vol. 134, no. 2, pp. 330–336, 1997. TavelM. “Classification of systolic murmurs: Still in search of a consensus,” Am. Heart, J. 134 2 330 336 1997 Search in Google Scholar

Priya Ranjan Muduli, Atindra Kanti Mandal, and Anirban Mukherjee; An Anti-Noise-Folding Algorithm for the Recovery of Biomedical Signals from Noisy Measurements, IEEE Transactions on Instrumentation and Measurement, vol. 66, no. 11, pp. 2909–2916, 2017. MuduliPriya Ranjan MandalAtindra Kanti MukherjeeAnirban An Anti-Noise-Folding Algorithm for the Recovery of Biomedical Signals from Noisy Measurements IEEE Transactions on Instrumentation and Measurement 66 11 2909 2916 2017 Search in Google Scholar

Tanmay Sinha Roy, Prof. Joyanta Kumar Roy, Dr. Nirupama Mandal, “A Study of Phonocardiography (PCG) Signal Analysis by K-Mean Clustering”, In: Mandal, J.K., Roy, J.K. (eds) Proceedings of International Conference on Computational Intelligence and Computing 2022, Algorithms for Intelligent Systems. Springer, Singapore. https://doi.org/10.1007/978-981-16-3368-3_16. RoyTanmay Sinha RoyJoyanta KumarProf. MandalNirupamaDr. “A Study of Phonocardiography (PCG) Signal Analysis by K-Mean Clustering” In: MandalJ.K. RoyJ.K. (eds) Proceedings of International Conference on Computational Intelligence and Computing 2022, Algorithms for Intelligent Systems Springer Singapore https://doi.org/10.1007/978-981-16-3368-3_16. Search in Google Scholar

Madhusudhan Mishra, Sanmitra Banerjee, Dennis Thomas, Sagnik Dutta, and Anirban Mukherjee; Detection of Third Heart Sound using Variational Mode Decomposition, IEEE Transactions on Instrumentation and Measurement, vol. 67, no. 7, pp. 1713–1721, 2018. MishraMadhusudhan BanerjeeSanmitra ThomasDennis DuttaSagnik MukherjeeAnirban Detection of Third Heart Sound using Variational Mode Decomposition IEEE Transactions on Instrumentation and Measurement 67 7 1713 1721 2018 Search in Google Scholar

Madhusudhan Mishra, Hrishikesh Menon, Anirban Mukherjee, “Characterization of S1 and S2 Heart Sounds Using Stacked Autoencoder and Convolutional Neural Network”, IEEE Transactions on Instrumentation and Measurement, vol. 68, no. 9, pp. 3211–3220, 2019. MishraMadhusudhan MenonHrishikesh MukherjeeAnirban “Characterization of S1 and S2 Heart Sounds Using Stacked Autoencoder and Convolutional Neural Network” IEEE Transactions on Instrumentation and Measurement 68 9 3211 3220 2019 Search in Google Scholar

El-Segaier M, Lilja O, Lukkarinen S, Sörnmo L, Seppanen R, Pesonen E., Computer-based detection and analysis of heart sound and murmur, Ann Biomed Eng., 2005, Jul;33(7):937–42, http://www.ncbi.nlm.nih.gov/pubmed/16060534. El-SegaierM LiljaO LukkarinenS SörnmoL SeppanenR PesonenE. Computer-based detection and analysis of heart sound and murmur Ann Biomed Eng. 2005 Jul 33 7 937 42 http://www.ncbi.nlm.nih.gov/pubmed/16060534. Search in Google Scholar

Nygaard, H., et al. Assessing the severity of aortic valve stenosis by spectral analysis of cardiac murmurs (spectral vibrocardiography). Part I: Technical aspects. J. Heart Valve Dis. 2(4):454–467, 1993. NygaardH. Assessing the severity of aortic valve stenosis by spectral analysis of cardiac murmurs (spectral vibrocardiography). Part I: Technical aspects J. Heart Valve Dis. 2 4 454 467 1993 Search in Google Scholar

Anju and Sanjay Kumar, “Detection of Cardiac Murmur.” Anju et al., International Journal of Computer Science and Mobile Computing, Vol.3 Issue.7 July–2014, pg. 81–87, ISSN 2320–088X. Anju KumarSanjay “Detection of Cardiac Murmur.” Anju et al., International Journal of Computer Science and Mobile Computing 3 7 July 2014 81 87 ISSN 2320–088X. Search in Google Scholar

Turkoglu I, Arslan A, Ilkay E (2002) An expert system for diagnosis of heart valve diseases. Expert Systems with Applications 23: 229–236. TurkogluI ArslanA IlkayE 2002 An expert system for diagnosis of heart valve diseases Expert Systems with Applications 23 229 236 Search in Google Scholar

Dr. Naveen Kumar Dewangan, Dr. S. P. Shukla, Mrs. Kiran Dewangan “PCG Signal Analysis using Discrete Wavelet Transform,” International Journal of Advanced in Management, Technology, and Engineering Sciences, Volume 8, Issue III, MARCH/2018, ISSN NO: 2249-7455. DewanganNaveen KumarDr. ShuklaS. P.Dr. DewanganKiranMrs. “PCG Signal Analysis using Discrete Wavelet Transform,” International Journal of Advanced in Management, Technology, and Engineering Sciences 8 III MARCH 2018 ISSN NO: 2249-7455. Search in Google Scholar

Thomas Schanze, “Removing noise in biomedical signal recordings by singular value decomposition,” Journal of Current Directions in Biomedical Engineering, 2017; vol-2, pp. 253–256. SchanzeThomas “Removing noise in biomedical signal recordings by singular value decomposition,” Journal of Current Directions in Biomedical Engineering 2017 2 253 256 Search in Google Scholar

Mazinz. Othman, Asmaan. Khaleel, “Phonocardiogram signal analysis for murmur diagnosing using Shannon energy envelop and sequenced dwt decomposition,” Journal of Engineering Science and Technology, Vol. 12, No. 9, 2017, ISSN:2393 – 2402. OthmanMazinz KhaleelAsmaan “Phonocardiogram signal analysis for murmur diagnosing using Shannon energy envelop and sequenced dwt decomposition,” Journal of Engineering Science and Technology 12 9 2017 ISSN:2393 – 2402. Search in Google Scholar

Radek Martinek, Jan Nedoma, Marcel Fajkus, Radana Kahankova, “A Phonocardiographic-Based Fiber-Optic Sensor and Adaptive Filtering System for Noninvasive Continuous Fetal Heart Rate Monitoring,” Sensors 2017, vol 17, Issue 4, https://doi.org/10.3390/s17040890. MartinekRadek NedomaJan FajkusMarcel KahankovaRadana “A Phonocardiographic-Based Fiber-Optic Sensor and Adaptive Filtering System for Noninvasive Continuous Fetal Heart Rate Monitoring,” Sensors 2017 17 4 https://doi.org/10.3390/s17040890. Search in Google Scholar

Abhijay Rao, “Biomedical Signal Processing,” International Journal of Electrical, Electronics, and Data communication(IJEEDC), 2019, vol 7, Issue 8. RaoAbhijay “Biomedical Signal Processing,” International Journal of Electrical, Electronics, and Data communication(IJEEDC) 2019 7 8 Search in Google Scholar

Hadrina Sh-Hussain, M. M. Mohamad, Chee-Ming Ting, and Raja Zahilah, “HEART SOUND MONITORING SYSTEM,” ARPN Journal of Engineering and Applied Sciences, VOL. 11, NO. 7, APRIL 2016, ISSN: 1819-6608. Sh-HussainHadrina MohamadM. M. TingChee-Ming ZahilahRaja “HEART SOUND MONITORING SYSTEM,” ARPN Journal of Engineering and Applied Sciences 11 7 APRIL 2016 ISSN: 1819-6608. Search in Google Scholar

G. VenkataHari Prasad, Dr. P. Rajesh Kumar, “Analysis of Various DWT Methods for Feature Extracted PCG Signals,” International Journal of Engineering Research & Technology (IJERT), Vol. 4 Issue 04, April–2015, ISSN: 2278-0181. VenkataHari PrasadG. Rajesh KumarP.Dr. “Analysis of Various DWT Methods for Feature Extracted PCG Signals,” International Journal of Engineering Research & Technology (IJERT) 4 04 April 2015 ISSN: 2278-0181. Search in Google Scholar

Pan, H.; Wang, B.; Jiang, H. Deep Learning for Object Saliency Detection and Image Segmentation. arXiv 2015, arXiv:1505.01173. PanH. WangB. JiangH. Deep Learning for Object Saliency Detection and Image Segmentation arXiv 2015 arXiv:1505.01173. Search in Google Scholar

Lubaib. P, Ahammed Muneer KV, “The Heart Defect Analysis Based on PCG Signals Using Pattern Recognition Techniques,” Elsevier, International Conference on Emerging Trends in Engineering, Science, and Technology, 2015. LubaibP Ahammed MuneerKV “The Heart Defect Analysis Based on PCG Signals Using Pattern Recognition Techniques,” Elsevier, International Conference on Emerging Trends in Engineering, Science, and Technology 2015 Search in Google Scholar

Ajay Kumar Roy, Abhishek Misal, G. R. Sinha, “Classification of PCG Signals: A Survey,” International Journal of Computer Applications, Recent Advances in Information Technology, 2014, ISSN NO: 0975 – 8887. RoyAjay Kumar MisalAbhishek SinhaG. R. “Classification of PCG Signals: A Survey,” International Journal of Computer Applications, Recent Advances in Information Technology 2014 ISSN NO: 0975 – 8887. Search in Google Scholar

Gyanaprava Mishra, Kumar Biswal, Asit Kumar Mishra, “Denoising of Heart Sound Signal using Wavelet Transform,” International Journal of Research in Engineering and Technology, Volume: 02 Issue: 04, Apr–2013, ISSN: 2319-1163. MishraGyanaprava BiswalKumar MishraAsit Kumar “Denoising of Heart Sound Signal using Wavelet Transform,” International Journal of Research in Engineering and Technology 02 04 Apr 2013 ISSN: 2319-1163. Search in Google Scholar

Zhidong Zhao, Qinqin Shen, and Fangqin Ren, “Heart Sound Biometric System Based on Marginal Spectrum Analysis,” Sensors 2013, 13, pp. 2530–2551; doi: 10.3390/s130202530. ZhaoZhidong ShenQinqin RenFangqin “Heart Sound Biometric System Based on Marginal Spectrum Analysis,” Sensors 2013 13 2530 2551 10.3390/s130202530 Open DOISearch in Google Scholar

Mandeep Singh, Amandeep Cheema, “Heart Sounds Classification using Feature Extraction of Phonocardiography Signal,” International Journal of Computer Applications, Volume 77, No. 4, September 2013, ISSN NO:0975 – 8887 SinghMandeep CheemaAmandeep “Heart Sounds Classification using Feature Extraction of Phonocardiography Signal,” International Journal of Computer Applications 77 4 September 2013 ISSN NO:0975 – 8887 Search in Google Scholar

Fatemeh Safara, Shyamala Doraisamy, Azreen Azman, Azrul Jantan, Asri Ranga Abdullah Ramaiah, “Multi-level basis selection of wavelet packet decomposition tree for heart sound classification,” Journal of Computers in Biology and Medicine, Elsevier, 2013, pp. 1407–1414. SafaraFatemeh DoraisamyShyamala AzmanAzreen JantanAzrul RamaiahAsri Ranga Abdullah “Multi-level basis selection of wavelet packet decomposition tree for heart sound classification,” Journal of Computers in Biology and Medicine, Elsevier 2013 1407 1414 Search in Google Scholar

Sheik Hussain Salleh, Hadrina Sheik Hussain, Tan TianSwee, Chee-Ming Ting, Alias Mohd Noor, Surasak Pipatsart, Jalil Ali, PreechaP Yupapin, “Acoustic cardiac signals analysis: A Kalman filter-based approach,” International Journal of Nanomedicine, 2012, pp. 2873–2881. SallehSheik Hussain HussainHadrina Sheik TianSweeTan TingChee-Ming NoorAlias Mohd PipatsartSurasak AliJalil YupapinPreechaP “Acoustic cardiac signals analysis: A Kalman filter-based approach,” International Journal of Nanomedicine 2012 2873 2881 Search in Google Scholar

Abhishek Misal and Sinha g.r., “Denoising of PCG signal by using wavelet transforms,” Journal of Advances in Computational Research, ISSN: 0975-3273 & E-ISSN: 0975-9085, Volume 4, Issue 1, 2012, pp. 46–49. MisalAbhishek Sinhag.r. “Denoising of PCG signal by using wavelet transforms,” Journal of Advances in Computational Research ISSN: 0975-3273 & E-ISSN: 0975-9085, 4 1 2012 46 49 Search in Google Scholar

Hemant P. Kasturiwale, “Analysis & Interpretation of Biomedical Signals using component extraction techniques,” International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com Vol. 2, Issue 2, Mar–Apr 2012, pp. 1043–1047. KasturiwaleHemant P. “Analysis & Interpretation of Biomedical Signals using component extraction techniques,” International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com 2 2 Mar–Apr 2012 1043 1047 Search in Google Scholar

James McNames, Senior Member, IEEE, and Mateo Aboy*, Member, IEEE, “Statistical Modeling of Cardiovascular Signals and Parameter Estimation Based on the Extended Kalman Filter,” IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 55, NO. 1, JANUARY 2008. McNamesJames Senior Member, IEEE, and Mateo Aboy*, Member, IEEE “Statistical Modeling of Cardiovascular Signals and Parameter Estimation Based on the Extended Kalman Filter,” IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING 55 1 JANUARY 2008 Search in Google Scholar

Talha J. Ahmad, Hussnain Ali, Shoab A. Khan, “Classification of Phonocardiogram using an Adaptive Fuzzy Inference System,” Conference: Proceedings of the 2009 International Conference on Image Processing, Computer Vision, & Pattern Recognition, IPCV 2009, July 13–16, 2009, Las Vegas, Nevada, U.S.A., Vol–II. AhmadTalha J. AliHussnain KhanShoab A. “Classification of Phonocardiogram using an Adaptive Fuzzy Inference System,” Conference: Proceedings of the 2009 International Conference on Image Processing, Computer Vision, & Pattern Recognition, IPCV 2009 July 13–16, 2009 Las Vegas, Nevada, U.S.A. Vol–II. Search in Google Scholar

S Debbal, F Bereksi-Reguig, “Graphic representation and analysis of the PCG signal using the continuous wavelet transform,” The Internet Journal of Bioengineering, 2006, Vol 2, Issue-2. DebbalS Bereksi-ReguigF “Graphic representation and analysis of the PCG signal using the continuous wavelet transform,” The Internet Journal of Bioengineering 2006 2 2 Search in Google Scholar

Cota Navin Gupta, Ramaswamy Palaniappan, Sreeraman Rajan, Sundaram Swaminathan, S.M. Krishnan, “Segmentation and Classification of heart sounds,” International Conference Canadian Conference on Electrical and Computer Engineering, June 2005, DOI: 10.1109/CCECE.2005.1557305, IEEE Xplore. GuptaCota Navin PalaniappanRamaswamy RajanSreeraman SwaminathanSundaram KrishnanS.M. “Segmentation and Classification of heart sounds,” International Conference Canadian Conference on Electrical and Computer Engineering June 2005 10.1109/CCECE.2005.1557305 IEEE Xplore. Open DOISearch in Google Scholar

JitMuthuswamy, “BIOMEDICAL SIGNAL ANALYSIS,” CH-18, 2004. JitMuthuswamy “BIOMEDICAL SIGNAL ANALYSIS,” CH-18, 2004 Search in Google Scholar

FaizanJaved, P A Venkatachalam, Ahmad Fadzil M H, A Signal Processing Module for the Analysis of Heart Sounds and Heart Murmurs, Journal of Physics: Conference Series 34 (2006) pp. 1098–1105. JavedFaizan VenkatachalamP A Ahmad FadzilM H A Signal Processing Module for the Analysis of Heart Sounds and Heart Murmurs Journal of Physics: Conference Series 34 2006 1098 1105 Search in Google Scholar

Liang, H.; Lukkarinen, S.; and Hartimo, I. (1997). Heart sound segmentation algorithm based on heart sound envelogram. Computers in Cardiology, 24(7), pp. 105–108. LiangH. LukkarinenS. HartimoI. 1997 Heart sound segmentation algorithm based on heart sound envelogram Computers in Cardiology 24 7 105 108 Search in Google Scholar

Muruganantham. Methods for Classification of Phonocardiogram. TENCON, (2003). Muruganantham Methods for Classification of Phonocardiogram TENCON 2003 Search in Google Scholar

Jiang, Z., and Choi, S. A cardiac sound characteristic waveform method for in-home heart disorder monitoring with an electric stethoscope. Expert Systems with Applications 31, (2005), pp. 286–298. JiangZ. ChoiS. A cardiac sound characteristic waveform method for in-home heart disorder monitoring with an electric stethoscope Expert Systems with Applications 31 2005 286 298 Search in Google Scholar

V Janse, S. B. Magre, P. K. Kurzekar, and R. R. Deshmukh. 2014. “A Comparative Study between MFCC and DWT Feature Extraction Technique,” vol. 3, no. 1, pp. 3124–3127. JanseV MagreS. B. KurzekarP. K. DeshmukhR. R. 2014 “A Comparative Study between MFCC and DWT Feature Extraction Technique,” 3 1 3124 3127 Search in Google Scholar

H. Liang and I. Hartimo, “A heart sound feature extraction algorithm based on wavelet decomposition and reconstruction,” Proc. 20th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. Vol.20 Biomed. Eng. Tower. Year 2000 Beyond (Cat. No.98CH36286), vol. 3, no. 3, pp. 1539–1542, 1998. LiangH. HartimoI. “A heart sound feature extraction algorithm based on wavelet decomposition and reconstruction,” Proc. 20th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. Vol.20 Biomed. Eng. Tower. Year 2000 Beyond (Cat. No.98CH36286) 3 3 1539 1542 1998 Search in Google Scholar

Joyanta Kumar Roy, Tanmay Sinha Roy, Subhas Chandra Mukhopadhyay, “Heart Sound: Detection and Analytical Approach Towards Diseases,” Modern Sensing Technologies pp 103–145, Edited by Subhas Chandra Mukhopadhyay, Published by Springer Nature Switzerland AG2019, DOI: https://doi.org/10.1007/978-3-319-99540-3_7. RoyJoyanta Kumar RoyTanmay Sinha MukhopadhyaySubhas Chandra “Heart Sound: Detection and Analytical Approach Towards Diseases,” Modern Sensing Technologies 103 145 Edited by MukhopadhyaySubhas Chandra Published by Springer Nature Switzerland AG2019 DOI: https://doi.org/10.1007/978-3-319-99540-3_7. Search in Google Scholar

Joyanta Kumar Roy, Tanmay Sinha Roy, Nirupama Mandal & Octavian Adrian Postolache “A Simple technique for heart sound detection and identification using Kalman filter in real-time analysis,” Proceedings of ISSI 2018 held at Shanghai, China, International Symposium Sensing And Instrumentation IoT Era (ISSI), 2018 First International Conference, 6–7 Sept. 2018, 978-1-5386-5638-9/18/$31.00 ©2018 IEEE. RoyJoyanta Kumar RoyTanmay Sinha MandalNirupama PostolacheOctavian Adrian “A Simple technique for heart sound detection and identification using Kalman filter in real-time analysis,” Proceedings of ISSI 2018 held at Shanghai, China, International Symposium Sensing And Instrumentation IoT Era (ISSI), 2018 First International Conference 6–7 Sept. 2018 978-1-5386-5638-9/18/$31.00 ©2018 IEEE. Search in Google Scholar

Todd R. Reed, Nancy E. Reed, Peter Fritzson, “Heart sound analysis for symptom detection and computer-aided diagnosis,” Simulation Modeling Practice and Theory 12 (2004) pp. 129–146. ReedTodd R. ReedNancy E. FritzsonPeter “Heart sound analysis for symptom detection and computer-aided diagnosis,” Simulation Modeling Practice and Theory 12 2004 129 146 Search in Google Scholar

Amarnath, R. Methods for classification of phonocardiogram. TENCON2003. Conference on Convergent Technologies for the Asia-pacific region 2003; 4; 1514–1515. AmarnathR. Methods for classification of phonocardiogram. TENCON2003 Conference on Convergent Technologies for the Asia-pacific region 2003 4 1514 1515 Search in Google Scholar

Bulgrin, J. R., et al. Comparison of short-time Fourier, wavelet, and time-domain analyses of intracardiac sounds. Biomed. Sci. Instrum. 29:465–472, 1993. BulgrinJ. R. Comparison of short-time Fourier, wavelet, and time-domain analyses of intracardiac sounds Biomed. Sci. Instrum. 29 465 472 1993 Search in Google Scholar

A. K. Dwivedi, S. A. Imtiaz, and E. Rodriguez-Villegas, “Algorithms for automatic analysis and classification of heart sounds-A systematic review,” IEEE Access, vol. 7, pp. 8316–8345, 2018. DwivediA. K. ImtiazS. A. Rodriguez-VillegasE. “Algorithms for automatic analysis and classification of heart sounds-A systematic review,” IEEE Access 7 8316 8345 2018 Search in Google Scholar

Bentley, P., Norden, G., Coimbra, M., Mannor, S. The PASCAL Classifying Heart Sounds Challenge (2011), www.peterjbentley.com/heartchallenge/index.html. BentleyP. NordenG. CoimbraM. MannorS. The PASCAL Classifying Heart Sounds Challenge 2011 www.peterjbentley.com/heartchallenge/index.html. Search in Google Scholar

Cheema A, Singh M, “Steps Involved in Heart Sound Analysis-A Review of Existing Trends,” International Journal of Engineering Trends and Technology 2013; 4 (7); 2921–2925. CheemaA SinghM “Steps Involved in Heart Sound Analysis-A Review of Existing Trends,” International Journal of Engineering Trends and Technology 2013 4 7 2921 2925 Search in Google Scholar

Wu JB, Zhou S, Wu Z, Wu XM (2012) Research on the method of characteristic extraction and classification of phonocardiogram. In: Systems and Informatics (ICSAI), 2012 International Conference on. pp. 1732–1735. WuJB ZhouS WuZ WuXM 2012 Research on the method of characteristic extraction and classification of phonocardiogram In: Systems and Informatics (ICSAI), 2012 International Conference 1732 1735 Search in Google Scholar

Avci E, Turkoglu I (2009) An intelligent diagnosis system based on principle component analysis and anfis for the heart valve diseases. Expert Systems with Applications 36: 2873–2878. AvciE TurkogluI 2009 An intelligent diagnosis system based on principle component analysis and anfis for the heart valve diseases Expert Systems with Applications 36 2873 2878 Search in Google Scholar

Syed Z, Leeds D, Curtis D, Nesta F, Levine R, et al. (2007) A Framework for the Analysis of Acoustical Cardiac Signals. Biomedical Engineering, IEEE Transactions on 54: 651–662. SyedZ LeedsD CurtisD NestaF LevineR 2007 A Framework for the Analysis of Acoustical Cardiac Signals Biomedical Engineering, IEEE Transactions 54 651 662 Search in Google Scholar

Deng, M.; Meng, T.; Cao, J.; Wang, S.; Zhang, J.; Fan, H. Heart sound classification based on improved MFCC features and convolutional recurrent neural networks. Neural Netw. 2020, 130, 22–32. DengM. MengT. CaoJ. WangS. ZhangJ. FanH. Heart sound classification based on improved MFCC features and convolutional recurrent neural networks Neural Netw. 2020 130 22 32 Search in Google Scholar

Maknickas, V.; Maknickas, A. Recognition of normal, abnormal phonocardiographic signals using deep convolutional neural networks and mel-frequency spectral coefficients. Physiol. Meas. 2017, 38, 1671–1684. MaknickasV. MaknickasA. Recognition of normal, abnormal phonocardiographic signals using deep convolutional neural networks and mel-frequency spectral coefficients Physiol. Meas. 2017 38 1671 1684 Search in Google Scholar

Alafif, T.; Boulares, M.; Barnawi, A.; Alafif, T.; Althobaiti, H.; Alferaidi, A. Normal and Abnormal Heart Rates Recognition Using Transfer Learning. In Proceedings of the 2020 12th International Conference on Knowledge and Systems Engineering (KSE.), Can Tho, Vietnam, 12–14 November 2020; pp. 275–280. AlafifT. BoularesM. BarnawiA. AlafifT. AlthobaitiH. AlferaidiA. Normal and Abnormal Heart Rates Recognition Using Transfer Learning In Proceedings of the 2020 12th International Conference on Knowledge and Systems Engineering (KSE.) Can Tho, Vietnam 12–14 November 2020 275 280 Search in Google Scholar

Abduh, Z.; Nehary, E.A.; Wahed, M.A.; Kadah, Y.M. Classification of heart sounds using fractional Fourier Transform based mel-frequency spectral coefficients and traditional classifiers. Biomed. Signal Process. Control 2019, 9, 1–8. AbduhZ. NeharyE.A. WahedM.A. KadahY.M. Classification of heart sounds using fractional Fourier Transform based mel-frequency spectral coefficients and traditional classifiers Biomed. Signal Process. Control 2019 9 1 8 Search in Google Scholar

Chen, L.; Ren, J.; Hao, Y.; Hu, X. The Diagnosis for the Extrasystole Heart Sound Signals Based on the Deep Learning. J. Med. Imaging Health Inform. 2018, 8, 959–968. ChenL. RenJ. HaoY. HuX. The Diagnosis for the Extrasystole Heart Sound Signals Based on the Deep Learning J. Med. Imaging Health Inform. 2018 8 959 968 Search in Google Scholar

Rubin, J.; Abreu, R.; Ganguli, A.; Nelaturi, S.; Matei, I.; Sricharan, K. Classifying heart sound recordings using deep convolutional neural networks and mel-frequency cepstral coefficients. In Proceedings of the 2016 Computing in Cardiology Conference (CinC), Vancouver, BC, Canada, 11–14 September 2016; pp. 813–816. RubinJ. AbreuR. GanguliA. NelaturiS. MateiI. SricharanK. Classifying heart sound recordings using deep convolutional neural networks and mel-frequency cepstral coefficients In Proceedings of the 2016 Computing in Cardiology Conference (CinC) Vancouver, BC, Canada 11–14 September 2016 813 816 Search in Google Scholar

Nilanon, T.; Yao, J.; Hao, J.; Purushotham, S. Normal/abnormal heart sound recordings classification using convolutional neural network. In Proceedings of the Computing in Cardiology Conference (CinC), Vancouver, BC, Canada, 11–14 September 2016; pp. 585–588. NilanonT. YaoJ. HaoJ. PurushothamS. Normal/abnormal heart sound recordings classification using convolutional neural network In Proceedings of the Computing in Cardiology Conference (CinC) Vancouver, BC, Canada 11–14 September 2016 585 588 Search in Google Scholar

Dominguez-Morales, J.P.; Jimenez-Fernandez, A.F.; Dominguez-Morales, M.J.; Jimenez-Moreno, G. Deep Neural Networks for the Recognition and Classification of Heart Murmurs Using Neuromorphic Auditory Sensors. IEEE Trans. Biomed. Circuits Syst. 2018, 12, 24–34. Dominguez-MoralesJ.P. Jimenez-FernandezA.F. Dominguez-MoralesM.J. Jimenez-MorenoG. Deep Neural Networks for the Recognition and Classification of Heart Murmurs Using Neuromorphic Auditory Sensors IEEE Trans. Biomed. Circuits Syst. 2018 12 24 34 Search in Google Scholar

Bozkurt, B.; Germanakis, I.; Stylianou, Y. A study of time-frequency features for CNN-based automatic heart sound classification for pathology detection. Comput. Biol. Med. 2018, 100, 132–143. BozkurtB. GermanakisI. StylianouY. A study of time-frequency features for CNN-based automatic heart sound classification for pathology detection Comput. Biol. Med. 2018 100 132 143 Search in Google Scholar

Chen, W.; Sun, Q.; Wang, J.; Wu, H.; Zhou, H.; Li, H.; Shen, H.; Xu, C. Phonocardiogram Classification Using Deep Convolutional Neural Networks with Majority Vote Strategy. J. Med. Imaging Health Inform. 2019, 9, 1692–1704. ChenW. SunQ. WangJ. WuH. ZhouH. LiH. ShenH. XuC. Phonocardiogram Classification Using Deep Convolutional Neural Networks with Majority Vote Strategy J. Med. Imaging Health Inform. 2019 9 1692 1704 Search in Google Scholar

Cheng, X.; Huang, J.; Li, Y.; Gui, G. Design and Application of a Laconic Heart Sound Neural Network. IEEE Access 2019, 7, 124417–124425. ChengX. HuangJ. LiY. GuiG. Design and Application of a Laconic Heart Sound Neural Network IEEE Access 2019 7 124417 124425 Search in Google Scholar

Demir, F.; Sęngür, A.; Bajaj, V.; Polat, K. Towards the classification of heart sounds based on convolutional deep neural network. Health Inf. Sci. Syst. 2019, 7, 1–9. DemirF. SęngürA. BajajV. PolatK. Towards the classification of heart sounds based on convolutional deep neural network Health Inf. Sci. Syst. 2019 7 1 9 Search in Google Scholar

Ryu, H.; Park, J.; Shin, H. Classification of heart sound recordings using convolution neural network. In Proceedings of the 2016 Computing in Cardiology Conference (CinC), Vancouver, BC, Canada, 11–14 September 2016; pp. 1153–1156. RyuH. ParkJ. ShinH. Classification of heart sound recordings using convolution neural network In Proceedings of the 2016 Computing in Cardiology Conference (CinC) Vancouver, BC, Canada 11–14 September 2016 1153 1156 Search in Google Scholar

Xu, Y.; Xiao, B.; Bi, X.; Li, W.; Zhang, J.; Ma, X. Pay more attention with fewer parameters: A novel 1-D convolutional neural network for heart sounds classification. In Proceedings of the Computing in Cardiology Conference (CinC), Maastricht, The Netherlands, 23–26 September 2018; Volume 45, pp. 1–4. XuY. XiaoB. BiX. LiW. ZhangJ. MaX. Pay more attention with fewer parameters: A novel 1-D convolutional neural network for heart sounds classification In Proceedings of the Computing in Cardiology Conference (CinC) Maastricht, The Netherlands 23–26 September 2018 45 1 4 Search in Google Scholar

Xiao, B.; Xu, Y.; Bi, X.; Li, W.; Ma, Z.; Zhang, J.; Ma, X. Follow the Sound of Children’s Heart: A Deep-Learning-Based Computer-Aided Pediatric CHDs Diagnosis System. IEEE Internet Things J. 2020, 7, 1994–2004. XiaoB. XuY. BiX. LiW. MaZ. ZhangJ. MaX. Follow the Sound of Children’s Heart: A Deep-Learning-Based Computer-Aided Pediatric CHDs Diagnosis System IEEE Internet Things J. 2020 7 1994 2004 Search in Google Scholar

Oh, S.L.; Jahmunah, V.; Ooi, C.P.; Tan, R.-S.; Ciaccio, E.J.; Yamakawa, T.; Tanabe, M.; Kobayashi, M.; Acharya, U.R. Classification of heart sound signals using a novel deep WaveNet model. Comput. Methods Programs Biomed. 2020, 196, 105604. OhS.L. JahmunahV. OoiC.P. TanR.-S. CiaccioE.J. YamakawaT. TanabeM. KobayashiM. AcharyaU.R. Classification of heart sound signals using a novel deep WaveNet model Comput. Methods Programs Biomed. 2020 196 105604 Search in Google Scholar

Khan, F.A.; Abid, A.; Khan, M.S. Automatic heart sound classification from segmented/unsegmented phonocardiogram signals using time and frequency features. Physiol. Meas. 2020, 41, 055006. KhanF.A. AbidA. KhanM.S. Automatic heart sound classification from segmented/unsegmented phonocardiogram signals using time and frequency features Physiol. Meas. 2020 41 055006 Search in Google Scholar

Yang, T.-C.; Hsieh, H. Classification of acoustic physiological signals based on deep learning neural networks with augmented features. In Proceedings of the 2016 Computing in Cardiology Conference (CinC), Vancouver, BC, Canada, 11–14 September 2016; pp. 569–572. YangT.-C. HsiehH. Classification of acoustic physiological signals based on deep learning neural networks with augmented features In Proceedings of the 2016 Computing in Cardiology Conference (CinC) Vancouver, BC, Canada 11–14 September 2016 569 572 Search in Google Scholar

Raza, A.; Mehmood, A.; Ullah, S.; Ahmad, M.; Choi, G.S.; On, B.W. Heartbeat sound signal classification using deep learning. Sensors 2019, 19, 4819. RazaA. MehmoodA. UllahS. AhmadM. ChoiG.S. OnB.W. Heartbeat sound signal classification using deep learning Sensors 2019 19 4819 Search in Google Scholar

Tschannen, M.; Kramer, T.; Marti, G.; Heinzmann, M.; Witkowski, T. Heart Sound Classification Using Deep Structured Features. In Proceedings of the Computing in Cardiology Conference (CinC), Vancouver, BC, Canada, 11–14 September 2016; Volume 43, pp. 565–568. TschannenM. KramerT. MartiG. HeinzmannM. WitkowskiT. Heart Sound Classification Using Deep Structured Features In Proceedings of the Computing in Cardiology Conference (CinC) Vancouver, BC, Canada 11–14 September 2016 43 565 568 Search in Google Scholar

Yaseen, Gui-Young Son, and Soonil Kwon, “Classification of heart sound signal using multiple features,” Appl. Sci. 2018, 8, 2344, DOI: 10.3390/app8122344. Yaseen SonGui-Young KwonSoonil “Classification of heart sound signal using multiple features,” Appl. Sci. 2018 8 2344 10.3390/app8122344 Open DOISearch in Google Scholar

Gomes, E.F.; Bentley, P.J.; Coimbra, M.; Pereira, E.; Deng, Y. Classifying Heart Sounds: Approaches to the PASCAL Challenge. In Proceedings of the HEALTHINF 2013-Proceedings of the International Conference on Health Informatics, Barcelona, Spain, 11–14 February 2013; pp. 337–340. GomesE.F. BentleyP.J. CoimbraM. PereiraE. DengY. Classifying Heart Sounds: Approaches to the PASCAL Challenge In Proceedings of the HEALTHINF 2013-Proceedings of the International Conference on Health Informatics Barcelona, Spain 11–14 February 2013 337 340 Search in Google Scholar

Liu C, Springer D, Li Q, Moody B, Juan RA, Chorro FJ, Castells F, Roig JM, Silva I, Johnson AE, Syed Z, Schmidt SE, Papadaniil CD, Hadjileontiadis L, Naseri H, Moukadem A, Dieterlen A, Brandt C, Tang H, Samieinasab M, Samieinasab MR, Sameni R, Mark RG, Clifford GD. An open-access database for the evaluation of heart sound algorithms. Physiol Meas. 2016 Dec; 37(12):2181–2213. LiuC SpringerD LiQ MoodyB JuanRA ChorroFJ CastellsF RoigJM SilvaI JohnsonAE SyedZ SchmidtSE PapadaniilCD HadjileontiadisL NaseriH MoukademA DieterlenA BrandtC TangH SamieinasabM SamieinasabMR SameniR MarkRG CliffordGD An open-access database for the evaluation of heart sound algorithms Physiol Meas. 2016 Dec 37 12 2181 2213 Search in Google Scholar

Kaggle heartbeat sounds https://www.kaggle.com/datasets/kinguistics/heartbeat-sounds. Kaggle heartbeat sounds https://www.kaggle.com/datasets/kinguistics/heartbeat-sounds Search in Google Scholar

WHO. Cardiovascular Diseases (CVDs) [EB/OL]. Available online: https://www.who.int/zh/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds). WHO Cardiovascular Diseases (CVDs) [EB/OL] Available online: https://www.who.int/zh/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds). Search in Google Scholar

Springer, D.B.; Tarassenko, L.; Clifford, G.D. Logistic Regression-HSMM-Based Heart Sound Segmentation. IEEE Trans. Biomed. Eng. 2016, 63, 822 SpringerD.B. TarassenkoL. CliffordG.D. Logistic Regression-HSMM-Based Heart Sound Segmentation IEEE Trans. Biomed. Eng. 2016 63 822 Search in Google Scholar

Li, S.; Li, F.; Tang, S.; Xiong, W. A Review of Computer-Aided Heart Sound Detection Techniques. BioMed Res. Int. 2020, 2020, 1–10. LiS. LiF. TangS. XiongW. A Review of Computer-Aided Heart Sound Detection Techniques BioMed Res. Int. 2020 2020 1 10 Search in Google Scholar

Malarvili, M.; Kamarulafizam, I.; Hussain, S.; Helmi, D. Heart sound segmentation algorithm based on instantaneous energy of electrocardiogram. Comput. Cardiol. 2003 2003, 327–330. MalarviliM. KamarulafizamI. HussainS. HelmiD. Heart sound segmentation algorithm based on instantaneous energy of electrocardiogram Comput. Cardiol. 2003 2003 327 330 Search in Google Scholar

Liu, Q.; Wu, X.; Ma, X. An automatic segmentation method for heart sounds. Biomed. Eng. Online 2018, 17, 22–29. LiuQ. WuX. MaX. An automatic segmentation method for heart sounds Biomed. Eng. Online 2018 17 22 29 Search in Google Scholar

Renna, F.; Oliveira, J.H.; Coimbra, M.T. Deep Convolutional Neural Networks for Heart Sound Segmentation. IEEE J. Biomed. Health Inform. 2019, 23, 2435–2445. RennaF. OliveiraJ.H. CoimbraM.T. Deep Convolutional Neural Networks for Heart Sound Segmentation IEEE J. Biomed. Health Inform. 2019 23 2435 2445 Search in Google Scholar

Liu, C.; Springer, D.; Li, Q.; Moody, B.; Juan, R.A.; Chorro, F.J.; Castells, F.; Roig, J.M.; Silva, I.; Johnson, A.E.W.; et al. An open access database for the evaluation of heart sound algorithms. Physiol. Meas. 2016, 37, 2181–2213. LiuC. SpringerD. LiQ. MoodyB. JuanR.A. ChorroF.J. CastellsF. RoigJ.M. SilvaI. JohnsonA.E.W. An open access database for the evaluation of heart sound algorithms Physiol. Meas. 2016 37 2181 2213 Search in Google Scholar

Giordano, N.; Knaflitz, M. A Novel Method for Measuring the Timing of Heart Sound Components through Digital Phonocardiography. Sensors 2019, 19, 1868. GiordanoN. KnaflitzM. A Novel Method for Measuring the Timing of Heart Sound Components through Digital Phonocardiography Sensors 2019 19 1868 Search in Google Scholar

Liu, C.; Springer, D.; Clifford, G.D. Performance of an open-source heart sound segmentation algorithm on eight independent databases. Physiol. Meas. 2017, 38, 1730–1745. LiuC. SpringerD. CliffordG.D. Performance of an open-source heart sound segmentation algorithm on eight independent databases Physiol. Meas. 2017 38 1730 1745 Search in Google Scholar

Potes, C.; Parvaneh, S.; Rahman, A.; Conroy, B. Ensemble feature-based and deep learning-based classifiers for detecting abnormal heart sounds. Proc. Comput. Cardiol. Conf. 2016, 621–624. PotesC. ParvanehS. RahmanA. ConroyB. Ensemble feature-based and deep learning-based classifiers for detecting abnormal heart sounds Proc. Comput. Cardiol. Conf. 2016 621 624 Search in Google Scholar

Baydoun, M.; Safatly, L.; Ghaziri, H.; El Hajj, A. Analysis of heart sound anomalies using ensemble learning. Biomed. Signal Process. Control 2020, 62, 102019. BaydounM. SafatlyL. GhaziriH. El HajjA. Analysis of heart sound anomalies using ensemble learning Biomed. Signal Process. Control 2020 62 102019 Search in Google Scholar

Thomae, C.; Dominik, A. Using deep gated R.N.N. with a convolutional front end for end-to-end heart sound classification. In Proceedings of the 2016 Computing in Cardiology Conference (CinC), Vancouver, BC, Canada, 11–14 September 2016; pp. 625–628. ThomaeC. DominikA. Using deep gated R.N.N. with a convolutional front end for end-to-end heart sound classification In Proceedings of the 2016 Computing in Cardiology Conference (CinC) Vancouver, BC, Canada 11–14 September 2016 625 628 Search in Google Scholar

Narváez, P.; Percybrooks, W.S. Synthesis of Normal Heart Sounds Using Generative Adversarial Networks and Empirical Wavelet Transform. Appl. Sci. 2020, 10, 7003. NarváezP. PercybrooksW.S. Synthesis of Normal Heart Sounds Using Generative Adversarial Networks and Empirical Wavelet Transform Appl. Sci. 2020 10 7003 Search in Google Scholar

Ren, Z.; Cummins, N.; Pandit, V.; Han, J.; Qian, K.; Schuller, B. Learning Image-based Representations for Heart Sound Classification. In Proceedings of the 2018 International Conference on Digital Health, Lyon, France, 23–26 April 2018; pp. 143–147. RenZ. CumminsN. PanditV. HanJ. QianK. SchullerB. Learning Image-based Representations for Heart Sound Classification In Proceedings of the 2018 International Conference on Digital Health Lyon, France 23–26 April 2018 143 147 Search in Google Scholar

Humayun, A.I.; Khan, T.; Ghaffarzadegan, S.; Feng, Z.; Hasan, T. An Ensemble of Transfer, Semi-supervised and Supervised Learning Methods for Pathological Heart Sound Classification. arXiv 2018, arXiv:1806.06506. HumayunA.I. KhanT. GhaffarzadeganS. FengZ. HasanT. An Ensemble of Transfer, Semi-supervised and Supervised Learning Methods for Pathological Heart Sound Classification arXiv 2018 arXiv:1806.06506. Search in Google Scholar

Yosinski, J.; Clune, J.; Bengio, Y.; Lipson, H. How transferable are features in deep neural networks? In Proceedings of the 27th International Conference on Neural Information Processing Systems, Montreal, QC, Canada, 8–13 December 2014; pp. 3320–3328. YosinskiJ. CluneJ. BengioY. LipsonH. How transferable are features in deep neural networks? In Proceedings of the 27th International Conference on Neural Information Processing Systems Montreal, QC, Canada 8–13 December 2014 3320 3328 Search in Google Scholar

Schuster, M.; Paliwal, K. Bidirectional recurrent neural networks. IEEE Trans. Signal Process. 1997, 45, 2673–2681. SchusterM. PaliwalK. Bidirectional recurrent neural networks IEEE Trans. Signal Process. 1997 45 2673 2681 Search in Google Scholar

Singh, A., Dutta, M., & Travieso, K. (2017). Analysis of heart sound for automated diagnosis of cardiac disorders. International Conference and Workshop on Bioinspired Intelligence. Funchal, Portugal: IEEE. https://doi.org/10.1109/IWOBI.2017.7985528. SinghA. DuttaM. TraviesoK. 2017 Analysis of heart sound for automated diagnosis of cardiac disorders International Conference and Workshop on Bioinspired Intelligence Funchal, Portugal IEEE. https://doi.org/10.1109/IWOBI.2017.7985528. Search in Google Scholar

Cho, J.; Lee, K.; Shin, E.; Choy, G.; Do, S. How Much Data Is Needed to Train A Medical Image Deep Learning System to Achieve Necessary High Accuracy? arXiv 2016, arXiv:1511.06348. ChoJ. LeeK. ShinE. ChoyG. DoS. How Much Data Is Needed to Train A Medical Image Deep Learning System to Achieve Necessary High Accuracy? arXiv 2016 arXiv:1511.06348. Search in Google Scholar

Baydoun, M.; Safatly, L.; Ghaziri, H.; El Hajj, A. Analysis of heart sound anomalies using ensemble learning. Biomed. Signal Process. Control 2020, 62, 102019. BaydounM. SafatlyL. GhaziriH. El HajjA. Analysis of heart sound anomalies using ensemble learning Biomed. Signal Process. Control 2020 62 102019 Search in Google Scholar

Tanmay Sinha Roy, Joyanta Kumar Roy, Nirupama Mandal, Classifier identification using deep Learning and machine learning algorithms for the detection of valvular heart diseases, Biomedical Engineering Advances, Volume 3, 2022, 100035, ISSN 2667-0992. RoyTanmay Sinha RoyJoyanta Kumar MandalNirupama Classifier identification using deep Learning and machine learning algorithms for the detection of valvular heart diseases Biomedical Engineering Advances 3 2022 100035 ISSN 2667-0992. Search in Google Scholar

Luisada, A.A.; Liu, C.K.; Aravanis, C.; Testelli, M.; Morris, J. On the mechanism of production of the heart sounds. Am. Heart J. 1958, 55, 383–399. LuisadaA.A. LiuC.K. AravanisC. TestelliM. MorrisJ. On the mechanism of production of the heart sounds Am. Heart J. 1958 55 383 399 Search in Google Scholar

Gerbarg, D.S.; Taranta, A.; Spagnuolo, M.; Hofler, J.J. Computer analysis of phonocardiograms. Prog. Cardiovasc. Dis. 1963, 5, 393–405. GerbargD.S. TarantaA. SpagnuoloM. HoflerJ.J. Computer analysis of phonocardiograms Prog. Cardiovasc. Dis. 1963 5 393 405 Search in Google Scholar

McLane, I.; Emmanouilidou, D.; West, J.E.; Elhilali, M. Design and Comparative Performance of a Robust Lung Auscultation System for Noisy Clinical Settings. IEEE J. Biomed. Health Inform. 2021, 25, 2583–2594. McLaneI. EmmanouilidouD. WestJ.E. ElhilaliM. Design and Comparative Performance of a Robust Lung Auscultation System for Noisy Clinical Settings IEEE J. Biomed. Health Inform. 2021 25 2583 2594 Search in Google Scholar

Zhang, X.; Maddipatla, D.; Narakathu, B.B.; Bazuin, B.J.; Atashbar, M.Z. Development of a Novel Wireless Multi-Channel Stethograph System for Monitoring Cardiovascular and Cardiopulmonary diseases. IEEE Access 2021, 9, 128951–128964. ZhangX. MaddipatlaD. NarakathuB.B. BazuinB.J. AtashbarM.Z. Development of a Novel Wireless Multi-Channel Stethograph System for Monitoring Cardiovascular and Cardiopulmonary diseases IEEE Access 2021 9 128951 128964 Search in Google Scholar

Toda, M.; Thompson, M.L. Contact-type Vibration Sensors Using Curved Clamped PVDF Film. IEEE Sens. J. 2006, 6, 1170–1177. TodaM. ThompsonM.L. Contact-type Vibration Sensors Using Curved Clamped PVDF Film IEEE Sens. J. 2006 6 1170 1177 Search in Google Scholar

Duan, S.; Wang, W.; Zhang, S.; Yang, X.; Zhang, Y.; Zhang, G. A Bionic MEMS Electronic Stethoscope with Double-Sided Diaphragm Packaging. IEEE Access 2021, 9, 27122–27129. DuanS. WangW. ZhangS. YangX. ZhangY. ZhangG. A Bionic MEMS Electronic Stethoscope with Double-Sided Diaphragm Packaging IEEE Access 2021 9 27122 27129 Search in Google Scholar

Shi, P.; Li, Y.; Zhang, W.; Zhang, G.; Cui, J.; Wang, S.; Wang, B. Design and Implementation of Bionic MEMS Electronic Heart Sound Stethoscope. IEEE Sens. J. 2022, 22, 1163–1172. ShiP. LiY. ZhangW. ZhangG. CuiJ. WangS. WangB. Design and Implementation of Bionic MEMS Electronic Heart Sound Stethoscope IEEE Sens. J. 2022 22 1163 1172 Search in Google Scholar

Andreozzi, E.; Fratini, A.; Esposito, D.; Naik, G.; Polley, C.; Gargiulo, G.D.; Bifulco, P. Forcecardiography: A Novel Technique to Measure Heart Mechanical Vibrations onto the Chest Wall. Sensors 2020, 20, 3885. AndreozziE. FratiniA. EspositoD. NaikG. PolleyC. GargiuloG.D. BifulcoP. Forcecardiography: A Novel Technique to Measure Heart Mechanical Vibrations onto the Chest Wall Sensors 2020 20 3885 Search in Google Scholar

Andreozzi, E.; Gargiulo, G.D.; Esposito, D.; Bifulco, P. A Novel Broadband Forcecardiography Sensor for Simultaneous Monitoring of Respiration, Infrasonic Cardiac Vibrations and Heart Sounds. Front. Physiol. 2021, 18, 725716. AndreozziE. GargiuloG.D. EspositoD. BifulcoP. A Novel Broadband Forcecardiography Sensor for Simultaneous Monitoring of Respiration, Infrasonic Cardiac Vibrations and Heart Sounds Front. Physiol. 2021 18 725716 Search in Google Scholar

Chien, J.; Huang, M.; Lin, Y.; Chong, F. A study of heart sound and sound lung separation by independent component analysis technique. In Proceedings of the 2006 International Conference of the IEEE Engineering in Medicine and Biology Society, New York, NY, U.S.A., 30 August–3 September 2006; pp. 5708–5711. ChienJ. HuangM. LinY. ChongF. A study of heart sound and sound lung separation by independent component analysis technique In Proceedings of the 2006 International Conference of the IEEE Engineering in Medicine and Biology Society New York, NY, U.S.A. 30 August–3 September 2006 5708 5711 Search in Google Scholar

Hadjileontiadis LJ, Panas SM. A wavelet-based reduction of heart sound noise from lung sounds. Int J Med Inform. 1998 Oct–Dec; 52(1–3):183–90. HadjileontiadisLJ PanasSM A wavelet-based reduction of heart sound noise from lung sounds Int J Med Inform. 1998 Oct–Dec 52 1–3 183 90 Search in Google Scholar

Liu, F., Wang, Y., and Wang, Y., “Research and Implementation of Heart Sound Denoising”, Physics Procedia, 2012, vol. 25, pp. 777–785. LiuF. WangY. WangY. “Research and Implementation of Heart Sound Denoising” Physics Procedia 2012 25 777 785 Search in Google Scholar

Mayorga, P.; Valdez, J.A.; Druzgalski, C.; Zeljkovic, V.; Magana-Almaguer, H.; Morales-Carbajal, C. Cardiopulmonary sound sources separation. In Proceedings of the 2021 Global Medical Engineering Physics Exchanges/Pan American Health Care Exchanges, Sevilla, Spain, 15–20 March 2021. MayorgaP. ValdezJ.A. DruzgalskiC. ZeljkovicV. Magana-AlmaguerH. Morales-CarbajalC. Cardiopulmonary sound sources separation In Proceedings of the 2021 Global Medical Engineering Physics Exchanges/Pan American Health Care Exchanges Sevilla, Spain 15–20 March 2021 Search in Google Scholar

Lin, L.; Tanumihardja, W.A.; Shih, H. Lung-heart sound separation using noise assisted multivariate empirical mode decomposition. In Proceedings of the 2013 International Symposium on Intelligent Signal Processing and Communication Systems, Naha, Japan, 12–15 November 2013; pp. 726–730. LinL. TanumihardjaW.A. ShihH. Lung-heart sound separation using noise assisted multivariate empirical mode decomposition In Proceedings of the 2013 International Symposium on Intelligent Signal Processing and Communication Systems Naha, Japan 12–15 November 2013 726 730 Search in Google Scholar

Jusak, J.; Puspasari, I.; Susanto, P. Heart murmurs extraction using the complete empirical ensemble mode decomposition and the Pearson distance metric. In Proceedings of the 2016 International Conference on Information & Communication Technology and Systems (ICTS), Surabaya, Indonesia, 12 October 2016; pp. 140–145. JusakJ. PuspasariI. SusantoP. Heart murmurs extraction using the complete empirical ensemble mode decomposition and the Pearson distance metric In Proceedings of the 2016 International Conference on Information & Communication Technology and Systems (ICTS) Surabaya, Indonesia 12 October 2016 140 145 Search in Google Scholar

Papadaniil, C.D.; Hadjileontiadis, L.J. Efficient Heart Sound Segmentation, and Extraction Using Ensemble Empirical Mode Decomposition and Kurtosis Features. IEEE J. Biomed. Health Inform. 2014, 18, 1138–1152. PapadaniilC.D. HadjileontiadisL.J. Efficient Heart Sound Segmentation, and Extraction Using Ensemble Empirical Mode Decomposition and Kurtosis Features IEEE J. Biomed. Health Inform. 2014 18 1138 1152 Search in Google Scholar

Varghese, V.N.; Ramachandran, K.I. Effective Heart Sound Segmentation and Murmur Classification Using Empirical Wavelet Transform and Instantaneous Phase for Electronic Stethoscope. IEEE Sens. J. 2017, 17, 3861–3872. VargheseV.N. RamachandranK.I. Effective Heart Sound Segmentation and Murmur Classification Using Empirical Wavelet Transform and Instantaneous Phase for Electronic Stethoscope IEEE Sens. J. 2017 17 3861 3872 Search in Google Scholar

Ntalampiras, S. Collaborative Framework for Automatic Classification of Respiratory Sounds. I.E.T. Signal Process. 2020, 14, 223–228. NtalampirasS. Collaborative Framework for Automatic Classification of Respiratory Sounds I.E.T. Signal Process 2020 14 223 228 Search in Google Scholar

Potes, C.; Parvaneh, S.; Rahman, A.; Conroy, B. Ensemble of feature-based and deep learning-based classifiers for detection of abnormal heart sounds. In Proceedings of the 2016 Computing in Cardiology Conference, Vancouver, BC, Canada, 11–14 September 2016; pp. 621–624. PotesC. ParvanehS. RahmanA. ConroyB. Ensemble of feature-based and deep learning-based classifiers for detection of abnormal heart sounds In Proceedings of the 2016 Computing in Cardiology Conference Vancouver, BC, Canada 11–14 September 2016 621 624 Search in Google Scholar

Chowdhury, T.H.; Poudel, K.N.; Hu, Y. Time-frequency Analysis, Denoising, Compression, Segmentation, and Classification of PCG Signals. IEEE Access 2020, 8, 160882–160890. ChowdhuryT.H. PoudelK.N. HuY. Time-frequency Analysis, Denoising, Compression, Segmentation, and Classification of PCG Signals IEEE Access 2020 8 160882 160890 Search in Google Scholar

Kumar, D.; Carvalho, P.; Antunes, M.; Paiva, R.P.; Henriques, J. Heart murmur classification with feature selection. In Proceedings of the 32nd Annual International Conference of the IEEE Engineering Medicine and Biology Society, Buenos Aires, Argentina, 31 August–4 September 2010. KumarD. CarvalhoP. AntunesM. PaivaR.P. HenriquesJ. Heart murmur classification with feature selection In Proceedings of the 32nd Annual International Conference of the IEEE Engineering Medicine and Biology Society Buenos Aires, Argentina 31 August–4 September 2010 Search in Google Scholar

Li, J.; Ke, L.; Du, Q.; Ding, X.; Chen, X.; Wang, D. Heart Sound Signal Classification Algorithm: A Combination of Wavelet Scattering Transform and Twin Support Vector Machine. IEEE Access 2019, 7, 179339–179348. LiJ. KeL. DuQ. DingX. ChenX. WangD. Heart Sound Signal Classification Algorithm: A Combination of Wavelet Scattering Transform and Twin Support Vector Machine IEEE Access 2019 7 179339 179348 Search in Google Scholar

Gjoreski, M.; Gradisek, A.; Budna, B.; Gams, M. Machine Learning and End-to-end Deep Learning for the Detection of Chronic Heart Failure from Heart Sounds. IEEE Access 2020, 8, 20313–20324. GjoreskiM. GradisekA. BudnaB. GamsM. Machine Learning and End-to-end Deep Learning for the Detection of Chronic Heart Failure from Heart Sounds IEEE Access 2020 8 20313 20324 Search in Google Scholar

Shuvo, S.B.; Ali, S.N.; Swapnil, S.I.; Al-Rakhami, M.S.; Gumaei, A. CardioXNet: A Novel Lightweight Deep Learning Framework for Cardiovasculr Disease Classification Using Heart Sound Recordings. IEEE Access 2021, 9, 36955–36967. ShuvoS.B. AliS.N. SwapnilS.I. Al-RakhamiM.S. GumaeiA. CardioXNet: A Novel Lightweight Deep Learning Framework for Cardiovasculr Disease Classification Using Heart Sound Recordings IEEE Access 2021 9 36955 36967 Search in Google Scholar

Liu, C.; Springer, D.; Li, Q.; Moody, B.; Juan, R.A.; Chorro, F.J.; Castells, F.; Roig, J.M.; Silva, I.; Johnson, A.E.; et al. An Open Access Database for the Evaluation of Heart Sound Algorithms. Physiol. Meas. 2016, 37, 2181–2213. LiuC. SpringerD. LiQ. MoodyB. JuanR.A. ChorroF.J. CastellsF. RoigJ.M. SilvaI. JohnsonA.E. An Open Access Database for the Evaluation of Heart Sound Algorithms Physiol. Meas. 2016 37 2181 2213 Search in Google Scholar

Wu, Y.-C.; Chang, F.-L. Development of an electronic stethoscope using raspberry. In Proceedings of the 2021 IEEE International Conference on Consumer Electronics-Taiwan, Penghu, Taiwan, 15–17 September 2021. WuY.-C. ChangF.-L. Development of an electronic stethoscope using raspberry In Proceedings of the 2021 IEEE International Conference on Consumer Electronics-Taiwan Penghu, Taiwan 15–17 September 2021 Search in Google Scholar

Ward Construction Noise. Available online: https://www.youtube.com/watch?v=XW6ahvAhsrw (accessed on 10 April 2022). Ward Construction Noise Available online: https://www.youtube.com/watch?v=XW6ahvAhsrw (accessed on 10 April 2022). Search in Google Scholar

Jolliffe, I.T.; Cadima, J. Principal Component Analysis: A Review and Recent Developments. Philos. Trans. R. Soc. A 2016, 374, 20150202. JolliffeI.T. CadimaJ. Principal Component Analysis: A Review and Recent Developments Philos. Trans. R. Soc. A 2016 374 20150202 Search in Google Scholar

Mel Frequency Cepstral Coefficient (MFCC) Tutorial. Available online: http://practicalcryptography.com/miscellaneous/machine-learning/guide-mel-frequency-cepstral-coefficients-mfccs/ (accessed on 11 April 2022). Mel Frequency Cepstral Coefficient (MFCC) Tutorial Available online: http://practicalcryptography.com/miscellaneous/machine-learning/guide-mel-frequency-cepstral-coefficients-mfccs/ (accessed on 11 April 2022). Search in Google Scholar

Ganaie, M.A.; Hu, M.; Malik, A.K.; Tanveer, M.; Sugantha, P.N. Ensemble Deep Learning: A Review. arXiv 2022, arXiv:2104.02395v2. GanaieM.A. HuM. MalikA.K. TanveerM. SuganthaP.N. Ensemble Deep Learning: A Review arXiv 2022 arXiv:2104.02395v2. Search in Google Scholar

Zabihi, M.; Rad, A.B.; Kiranyaz, S.; Gabbouj, M.; Katsaggelos, A.K. Heart sound anomaly and quality detection using ensemble of neural networks without segmentation. In Proceedings of the 2016 Computing in Cardiology Conference, Vancouver, BC, Canada, 11–14 September 2016; pp. 613–616. ZabihiM. RadA.B. KiranyazS. GabboujM. KatsaggelosA.K. Heart sound anomaly and quality detection using ensemble of neural networks without segmentation In Proceedings of the 2016 Computing in Cardiology Conference Vancouver, BC, Canada 11–14 September 2016 613 616 Search in Google Scholar

Kay, E.; Agarwal, A. Drop Connected neural network trained with diverse features for classifying heart sounds. In Proceedings of the 2016 Computing in Cardiology Conference, Vancouver, BC, Canada, 11–14 September 2016; pp. 617–620. KayE. AgarwalA. Drop Connected neural network trained with diverse features for classifying heart sounds In Proceedings of the 2016 Computing in Cardiology Conference Vancouver, BC, Canada 11–14 September 2016 617 620 Search in Google Scholar

Tschannen, M., Kramer, T., Marti, G., Heinzmann, M., and Wiatowski, T. (2016). “Heart sound classification using deep structured features,” in 2016 computing in Cardiology conference (CinC) (IEEE), 565–568. TschannenM. KramerT. MartiG. HeinzmannM. WiatowskiT. 2016 “Heart sound classification using deep structured features,” in 2016 computing in Cardiology conference (CinC) (IEEE) 565 568 Search in Google Scholar

Iqtidar, K., Qamar, U., Aziz, S., and Khan, M. U. (2021). Phonocardiogram signal analysis for classification of coronary artery diseases using mfcc and 1d adaptive local ternary patterns. Comput. Biol. Med. 138, 104926. doi: 10.1016/j.compbiomed.2021.104926. IqtidarK. QamarU. AzizS. KhanM. U. 2021 Phonocardiogram signal analysis for classification of coronary artery diseases using mfcc and 1d adaptive local ternary patterns Comput. Biol. Med. 138 104926 10.1016/j.compbiomed.2021.104926 Open DOISearch in Google Scholar

Herzig, J., Bickel, A., Eitan, A., and Intrator, N. (2014). Monitoring cardiac stress using features extracted from S1 heart sounds. IEEE Trans. Biomed. Eng. 62, 1169–1178. doi: 10.1109/TBME.2014.2377695. HerzigJ. BickelA. EitanA. IntratorN. 2014 Monitoring cardiac stress using features extracted from S1 heart sounds IEEE Trans. Biomed. Eng. 62 1169 1178 10.1109/TBME.2014.2377695 Open DOISearch in Google Scholar

Mei, N., Wang, H., Zhang, Y., Liu, F., Jiang, X., and Wei, S. (2021). Classification of heart sounds based on quality assessment and wavelet scattering transform. Comput. Biol. Med. 137, 104814. doi: 10.1016/j.compbiomed.2021.104814. MeiN. WangH. ZhangY. LiuF. JiangX. WeiS. 2021 Classification of heart sounds based on quality assessment and wavelet scattering transform Comput. Biol. Med. 137 104814 10.1016/j.compbiomed.2021.104814 Open DOISearch in Google Scholar

Herzig, J., Bickel, A., Eitan, A., and Intrator, N. (2014). Monitoring cardiac stress using features extracted from S1 heart sounds. IEEE Trans. Biomed. Eng. 62, 1169–1178. doi: 10.1109/TBME.2014.2377695. HerzigJ. BickelA. EitanA. IntratorN. 2014 Monitoring cardiac stress using features extracted from S1 heart sounds IEEE Trans. Biomed. Eng. 62 1169 1178 10.1109/TBME.2014.2377695 Open DOISearch in Google Scholar

Demir, F., Şengür, A., Bajaj, V., and Polat, K. (2019). Towards the classification of heart sounds based on convolutional deep neural network. Health Inf. Sci. Syst. 7, 16–19. doi: 10.1007/s13755-019-0078-0. DemirF. ŞengürA. BajajV. PolatK. 2019 Towards the classification of heart sounds based on convolutional deep neural network Health Inf. Sci. Syst. 7 16 19 10.1007/s13755-019-0078-0 Open DOISearch in Google Scholar

Baydoun, M., Safatly, L., Ghaziri, H., and El Hajj, A. (2020). Analysis of heart sound anomalies using ensemble learning. Biomed. Signal Process. Control 62, 102019. doi: 10.1016/j.bspc.2020.102019. BaydounM. SafatlyL. GhaziriH. El HajjA. 2020 Analysis of heart sound anomalies using ensemble learning Biomed. Signal Process. Control 62 102019 10.1016/j.bspc.2020.102019 Open DOISearch in Google Scholar

Baghel, N., Dutta, M. K., and Burget, R. (2020). Automatic diagnosis of multiple cardiac diseases from pcg signals using convolutional neural network. Comput. Methods Programs Biomed. 197, 105750. doi: 10.1016/j.cmpb.2020.105750. BaghelN. DuttaM. K. BurgetR. 2020 Automatic diagnosis of multiple cardiac diseases from pcg signals using convolutional neural network Comput. Methods Programs Biomed. 197 105750 10.1016/j.cmpb.2020.105750 Open DOISearch in Google Scholar

Oh, S. L., Jahmunah, V., Ooi, C. P., Tan, R.-S., Ciaccio, E. J., Yamakawa, T., et al. (2020). Classification of heart sound signals using a novel deep wavenet model. Comput. Methods Programs Biomed. 196, 105604. doi: 10.1016/j.cmpb.2020.105604. OhS. L. JahmunahV. OoiC. P. TanR.-S. CiaccioE. J. YamakawaT. 2020 Classification of heart sound signals using a novel deep wavenet model Comput. Methods Programs Biomed. 196 105604 10.1016/j.cmpb.2020.105604 Open DOISearch in Google Scholar

Ren, Z., Qian, K., Dong, F., Dai, Z., Nejdl, W., Yamamoto, Y., et al. (2022). Deep attention-based neural networks for explainable heart sound classification. Elsevier: Machine Learning with Applications, 100322. RenZ. QianK. DongF. DaiZ. NejdlW. YamamotoY. 2022 Deep attention-based neural networks for explainable heart sound classification Elsevier Machine Learning with Applications 100322 Search in Google Scholar

Son, G.-Y., and Kwon, S. (2018). Classification of heart sound signal using multiple features. Appl. Sci. 8, 2344. doi: 10.3390/app8122344. SonG.-Y. KwonS. 2018 Classification of heart sound signal using multiple features Appl. Sci. 8 2344 10.3390/app8122344 Open DOISearch in Google Scholar

Tian, G., Lian, C., Zeng, Z., Xu, B., Su, Y., Zang, J., et al. (2022). Imbalanced heart sound signal classification based on two-stage trained dsanet. Springer: Cognitive Computation, 1378–1391. TianG. LianC. ZengZ. XuB. SuY. ZangJ. 2022 Imbalanced heart sound signal classification based on two-stage trained dsanet Springer Cognitive Computation 1378 1391 Search in Google Scholar

Varghees, V. N., and Ramachandran, K. (2014). A novel heart sound activity detection framework for automated heart sound analysis. Biomed. Signal Process. Control 13, 174–188. doi: 10.1016/j.bspc.2014.05.002. VargheesV. N. RamachandranK. 2014 A novel heart sound activity detection framework for automated heart sound analysis Biomed. Signal Process. Control 13 174 188 10.1016/j.bspc.2014.05.002 Open DOISearch in Google Scholar

Wu, J. M.-T., Tsai, M.-H., Huang, Y. Z., Islam, S. H., Hassan, M. M., Alelaiwi, A., et al. (2019). Applying an ensemble convolutional neural network with savitzky–golay filter to construct a phonocardiogram prediction model. Appl. Soft Comput. 78, 29–40. doi: 10.1016/j.asoc.2019.01.019. WuJ. M.-T. TsaiM.-H. HuangY. Z. IslamS. H. HassanM. M. AlelaiwiA. 2019 Applying an ensemble convolutional neural network with savitzky–golay filter to construct a phonocardiogram prediction model Appl. Soft Comput. 78 29 40 10.1016/j.asoc.2019.01.019 Open DOISearch in Google Scholar

Zeinali, Y., and Niaki, S. T. A. (2022). Heart sound classification using signal processing and machine learning algorithms. Mach. Learn. Appl. 7, 100206. doi: 10.1016/j.mlwa.2021.100206. ZeinaliY. NiakiS. T. A. 2022 Heart sound classification using signal processing and machine learning algorithms Mach. Learn. Appl. 7 100206 10.1016/j.mlwa.2021.100206 Open DOISearch in Google Scholar

Tian, G., Lian, C., Zeng, Z., Xu, B., Su, Y., Zang, J., et al. (2022). Imbalanced heart sound signal classification based on two-stage trained dsanet. Springer: Cognitive Computation, 1–14. TianG. LianC. ZengZ. XuB. SuY. ZangJ. 2022 Imbalanced heart sound signal classification based on two-stage trained dsanet Springer Cognitive Computation 1 14 Search in Google Scholar

Nogueira, D. M., Ferreira, C. A., Gomes, E. F., and Jorge, A. M. (2019). Classifying heart sounds using images of motifs, mfcc and temporal features. J. Med. Syst. 43, 168–213. doi: 10.1007/s10916-019-1286-5. NogueiraD. M. FerreiraC. A. GomesE. F. JorgeA. M. 2019 Classifying heart sounds using images of motifs, mfcc and temporal features J. Med. Syst. 43 168 213 10.1007/s10916-019-1286-5 Open DOISearch in Google Scholar

Abduh, Z., Nehary, E. A., Wahed, M. A., and Kadah, Y. M. (2019). Classification of heart sounds using fractional Fourier transform based mel-frequency spectral coefficients and stacked autoencoder deep neural network. J. Med. Imaging Health Inf. 9, 1–8. doi: 10.1166/jmihi.2019.2568. AbduhZ. NeharyE. A. WahedM. A. KadahY. M. 2019 Classification of heart sounds using fractional Fourier transform based mel-frequency spectral coefficients and stacked autoencoder deep neural network J. Med. Imaging Health Inf. 9 1 8 10.1166/jmihi.2019.2568 Open DOISearch in Google Scholar

Krishnan, P. T., Balasubramanian, P., and Umapathy, S. (2020). Automated heart sound classification system from unsegmented phonocardiogram (pcg) using deep neural network. Phys. Eng. Sci. Med. 43, 505–515. doi: 10.1007/s13246-020-00851-w. KrishnanP. T. BalasubramanianP. UmapathyS. 2020 Automated heart sound classification system from unsegmented phonocardiogram (pcg) using deep neural network Phys. Eng. Sci. Med. 43 505 515 10.1007/s13246-020-00851-w Open DOISearch in Google Scholar

Ren, Z., Qian, K., Dong, F., Dai, Z., Nejdl, W., Yamamoto, Y., et al. (2022). Deep attention-based neural networks for explainable heart sound classification. Elsevier: Machine Learning with Applications, 100322. RenZ. QianK. DongF. DaiZ. NejdlW. YamamotoY. 2022 Deep attention-based neural networks for explainable heart sound classification Elsevier Machine Learning with Applications 100322 Search in Google Scholar

En Zhou Ye, En Hui Ye, Maxime Bouthillier, Run Zhou Ye, Deep Image Translator V2: analysis of multimodal medical images using semantic segmentation maps generated through deep learning, bioRxiv 2021, doi: https://doi.org/10.1101/2021.10.12.464160. YeEn Zhou YeEn Hui BouthillierMaxime YeRun Zhou Deep Image Translator V2: analysis of multimodal medical images using semantic segmentation maps generated through deep learning bioRxiv 2021, doi: https://doi.org/10.1101/2021.10.12.464160. Search in Google Scholar

G. Buchanna, P. Premchand, A. Govardhan, Classification of Epileptic and Non-Epileptic Electroencephalogram (EEG) Signals Using Fractal Analysis and Support Vector Regression, 2022, Vol. 6, No.1, Doi: 10.28991/ESJ-2022-06-01-011. BuchannaG. PremchandP. GovardhanA. Classification of Epileptic and Non-Epileptic Electroencephalogram (EEG) Signals Using Fractal Analysis and Support Vector Regression 2022 6 1 10.28991/ESJ-2022-06-01-011 Open DOISearch in Google Scholar

Gjoreski M., Gradišek A., Budna B., Gams M., Poglajen G. Machine Learning and End-to-End Deep Learning for the Detection of Chronic Heart Failure From Heart Sounds. IEEE Access. 2020;8:20313–20324. doi: 10.1109/ACCESS.2020.2968900. GjoreskiM. GradišekA. BudnaB. GamsM. PoglajenG. Machine Learning and End-to-End Deep Learning for the Detection of Chronic Heart Failure From Heart Sounds IEEE Access 2020 8 20313 20324 10.1109/ACCESS.2020.2968900 Open DOISearch in Google Scholar

M. Porumb, E. Iadanza, S. Massaro, and L. Pecchia, “A convolutional neural network approach to detect congestive heart failure,” Biomed. Signal Process. Control, vol. 55, Jan. 2020, Art. no. 101597. PorumbM. IadanzaE. MassaroS. PecchiaL. “A convolutional neural network approach to detect congestive heart failure,” Biomed. Signal Process. Control 55 Jan. 2020 Art. no. 101597. Search in Google Scholar

N. Giordano and M. Knaflitz, “A novel method for measuring the timing of heart sound components through digital phonocardiography,” Sensors, vol. 19, no. 8, p. 1868, Apr. 2019. GiordanoN. KnaflitzM. “A novel method for measuring the timing of heart sound components through digital phonocardiography,” Sensors 19 8 1868 Apr. 2019 Search in Google Scholar

Wang T., Chen L., Yang T., Huang P., Wang L., Zhao L., Zhang S., Ye Z., Chen L., Zheng Z., et al. Congenital Heart Disease and Risk of Cardiovascular Disease: A Meta-Analysis of Cohort Studies. J. Am. Heart Assoc. 2019;8:e012030. doi: 10.1161/JAHA.119.012030. WangT. ChenL. YangT. HuangP. WangL. ZhaoL. ZhangS. YeZ. ChenL. ZhengZ. Congenital Heart Disease and Risk of Cardiovascular Disease: A Meta-Analysis of Cohort Studies J. Am. Heart Assoc. 2019 8 e012030 10.1161/JAHA.119.012030 Open DOISearch in Google Scholar

Li H., Wang X., Liu C., Wang Y., Li P., Tang H., Yao L., Zhang H. Dual-Input Neural Network Integrating Feature Extraction and Deep Learning for Coronary Artery Disease Detection Using Electrocardiogram and Phonocardiogram. IEEE Access. 2019; 7:146457–146469. doi: 10.1109/ACCESS.2019.2943197. LiH. WangX. LiuC. WangY. LiP. TangH. YaoL. ZhangH. Dual-Input Neural Network Integrating Feature Extraction and Deep Learning for Coronary Artery Disease Detection Using Electrocardiogram and Phonocardiogram IEEE Access 2019 7 146457 146469 10.1109/ACCESS.2019.2943197 Open DOISearch in Google Scholar

Vargas-Lopez O., Amezquita-Sanchez J.P., De-Santiago-Perez J.J., Rivera-Guillen J.R., Valtierra-Rodriguez M., Toledano-Ayala M., Perez-Ramirez C.A. A New Methodology Based on EMD and Nonlinear Measurements for Sudden Cardiac Death Detection. Sensors. 2020; 20:9. doi: 10.3390/s20010009. Vargas-LopezO. Amezquita-SanchezJ.P. De-Santiago-PerezJ.J. Rivera-GuillenJ.R. Valtierra-RodriguezM. Toledano-AyalaM. Perez-RamirezC.A. A New Methodology Based on EMD and Nonlinear Measurements for Sudden Cardiac Death Detection Sensors 2020 20 9 10.3390/s20010009 Open DOISearch in Google Scholar

Cheema A., Singh M. An application of phonocardiography signals for psychological stress detection using non-linear entropy based features in empirical mode decomposition domain. Appl. Soft Comput. 2019; 77:24–33. doi: 10.1016/j.asoc.2019.01.006. CheemaA. SinghM. An application of phonocardiography signals for psychological stress detection using non-linear entropy based features in empirical mode decomposition domain Appl. Soft Comput. 2019 77 24 33 10.1016/j.asoc.2019.01.006 Open DOISearch in Google Scholar

Aziz S., Awais M., Akram T., Khan U., Alhussein M., Aurangzeb K. Automatic Scene Recognition through Acoustic Classification for Behavioral Robotics. Electronics. 2019; 8:483. doi: 10.3390/electronics8050483. AzizS. AwaisM. AkramT. KhanU. AlhusseinM. AurangzebK. Automatic Scene Recognition through Acoustic Classification for Behavioral Robotics Electronics 2019 8 483 10.3390/electronics8050483 Open DOISearch in Google Scholar

Khan M.U., Aziz S., Sohail M., Shahid A.A., Samer S. Automated Detection and Classification of Gastrointestinal Diseases using surface-EMG Signals; Proceedings of the 2019 22nd International Multitopic Conference (INMIC); Islamabad, Pakistan. 29–30 November 2019; pp. 1–8. KhanM.U. AzizS. SohailM. ShahidA.A. SamerS. Automated Detection and Classification of Gastrointestinal Diseases using surface-EMG Signals Proceedings of the 2019 22nd International Multitopic Conference (INMIC) Islamabad, Pakistan 29–30 November 2019 1 8 Search in Google Scholar

Chowdhury M.E., Khandakar A., Alzoubi K., Mansoor S., M Tahir A., Reaz M.B.I., Al-Emadi N. Real-Time Smart-Digital Stethoscope System for Heart Diseases Monitoring. Sensors. 2019; 19:2781. doi: 10.3390/s19122781. ChowdhuryM.E. KhandakarA. AlzoubiK. MansoorS. M TahirA. ReazM.B.I. Al-EmadiN. Real-Time Smart-Digital Stethoscope System for Heart Diseases Monitoring Sensors 2019 19 2781 10.3390/s19122781 Open DOISearch in Google Scholar

Alturki F.A., AlSharabi K., Abdurraqeeb A.M., Aljalal M. EEG Signal Analysis for Diagnosing Neurological Disorders Using Discrete Wavelet Transform and Intelligent Techniques. Sensors. 2020; 20:2505. doi: 10.3390/s20092505. AlturkiF.A. AlSharabiK. AbdurraqeebA.M. AljalalM. EEG Signal Analysis for Diagnosing Neurological Disorders Using Discrete Wavelet Transform and Intelligent Techniques Sensors 2020 20 2505 10.3390/s20092505 Open DOISearch in Google Scholar

Dash D., Ferrari P., Dutta S., Wang J. NeuroVAD: Real-Time Voice Activity Detection from Non-Invasive Neuromagnetic Signals. Sensors. 2020; 20:2248. doi: 10.3390/s20082248. DashD. FerrariP. DuttaS. WangJ. NeuroVAD: Real-Time Voice Activity Detection from Non-Invasive Neuromagnetic Signals Sensors 2020 20 2248 10.3390/s20082248 Open DOISearch in Google Scholar

Aziz S., Khan M.U., Choudhry Z.A., Aymin A., Usman A. ECG-based Biometric Authentication using Empirical Mode Decomposition and Support Vector Machines; Proceedings of the 2019 IEEE 10th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON); Vancouver, BC, Canada. 17–19 October 2019; pp. 0906–0912. AzizS. KhanM.U. ChoudhryZ.A. AyminA. UsmanA. ECG-based Biometric Authentication using Empirical Mode Decomposition and Support Vector Machines Proceedings of the 2019 IEEE 10th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON) Vancouver, BC, Canada 17–19 October 2019 0906 0912 Search in Google Scholar

Khan M.U., Aziz S., Ibraheem S., Butt A., Shahid H. Characterization of Term and Preterm Deliveries using Electrohysterograms Signatures; Proceedings of the 2019 IEEE 10th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON); Vancouver, BC, Canada. 17–19 October 2019; pp. 0899–0905. KhanM.U. AzizS. IbraheemS. ButtA. ShahidH. Characterization of Term and Preterm Deliveries using Electrohysterograms Signatures Proceedings of the 2019 IEEE 10th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON) Vancouver, BC, Canada 17–19 October 2019 0899 0905 Search in Google Scholar

Czabanski R., Horoba K., Wrobel J., Matonia A., Martinek R., Kupka T., Jezewski M., Kahankova R., Jezewski J., Leski J.M. Detection of atrial fibrillation episodes in long-term heart rhythm signals using a support vector machine. Sensors. 2020; 20:765. doi: 10.3390/s20030765. CzabanskiR. HorobaK. WrobelJ. MatoniaA. MartinekR. KupkaT. JezewskiM. KahankovaR. JezewskiJ. LeskiJ.M. Detection of atrial fibrillation episodes in long-term heart rhythm signals using a support vector machine Sensors 2020 20 765 10.3390/s20030765 Open DOISearch in Google Scholar

T. S. Roy, J. K. Roy and N. Mandal, “Early Screening of Valvular Heart Disease Prediction using CNN-based Mobile Network,” International Conference on Computer, Electrical & Communication Engineering (ICCECE), 2023, Kolkata, India, 2023, pp. 1–8, doi: 10.1109/ICCECE51049.2023.10085513. RoyT. S. RoyJ. K. MandalN. “Early Screening of Valvular Heart Disease Prediction using CNN-based Mobile Network,” International Conference on Computer, Electrical & Communication Engineering (ICCECE) 2023 Kolkata, India 2023, 1 8 10.1109/ICCECE51049.2023.10085513 Open DOISearch in Google Scholar

T.S. Roy, J.K. Roy, N. Mandal, Design of ear-contactless stethoscope and improvement in the performance of deep learning based on CNN to classify the heart sound, Med Biol Eng Comput (2023). https://doi.org/10.1007/s11517-023-02827-w. RoyT.S. RoyJ.K. MandalN. Design of ear-contactless stethoscope and improvement in the performance of deep learning based on CNN to classify the heart sound Med Biol Eng Comput 2023 https://doi.org/10.1007/s11517-023-02827-w. Search in Google Scholar

Tanmay Sinha Roy, Joyanta Kumar Roy, Nirupama Mandal, Design and development of electronic stethoscope for early screening of valvular heart disease prediction, Biomedical Signal Processing and Control, Volume 86, Part A, 2023, 105086, ISSN 1746–8094, https://doi.org/10.1016/j.bspc.2023.105086. RoyTanmay Sinha RoyJoyanta Kumar MandalNirupama Design and development of electronic stethoscope for early screening of valvular heart disease prediction Biomedical Signal Processing and Control 86 Part A, 2023, 105086, ISSN 1746–8094, https://doi.org/10.1016/j.bspc.2023.105086. Search in Google Scholar

eISSN:
1178-5608
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
Volume Open
Fachgebiete der Zeitschrift:
Technik, Einführungen und Gesamtdarstellungen, andere