Zitieren

Masters, S., Parks, J., Atassi, A., Edwards, M.A., 2015. Distribution systemwater age can create premise plumbing corrosion hotspots. Environ. Monit. Assess. 187 (9), 18. Search in Google Scholar

Abokifa, A.A., Yang, Y.J., Lo, C.S., Biswas, P., 2016. Water quality modeling inthe dead Search in Google Scholar

end sections of drinking water distribution networks. Water Res. 89, 107–117.Chowdhury, S., Kabir, F., Mazumder, M.A.J., Zahir, M.H., 2018. Modeling leadconcentration in drinking water of residential plumbing pipes and hot watertanks. Sci. Total Environ. 635, 35–44. Search in Google Scholar

Wang, Z.M., Devine Hugh, A., Zhang, W., Waldroup, K., 2014. Using a GIS andGISassisted water quality model to analyze the deterministic factors for lead andcopper corrosion in drinking water distribution systems. J. Environ. Eng. 140 (9),A4014004. Search in Google Scholar

Maheshwari, A., Abokifa, A., Gudi, R.d., Biswas, P. 2020. Optimization ofdisinfectant dosage for simultaneous control of lead and disinfection-byproductsin water distribution networks. Journal of Environmental Management. 276(2020) 111186. Search in Google Scholar

Agencija Republike Slobvenije za okolje. Dostop do pitne vode.http://kazalci.arso.gov.si/sl/content/dostop-do-pitne-vode-0 (27.7.2022) Search in Google Scholar

Pravilnik o pitni vodi. Uradni list RS, št. 19/04, 35/04, 26/06, 92/06, 25/09,74/15 in 51/17. Search in Google Scholar

Digiano, F.A., Zhang, W.D., 2004. Uncertainty analysis in a mechanistic modelof bacterial regrowth in distribution systems. Environ. Sci. Technol. 38 (22),5925–5931. Search in Google Scholar

Kleijnen, R.G., Knoben, B.G.M., Hoofwijk, B.L., Pol, D.G.J., Heintges, G.H.L., DeVisser, J.F., The Chlorine Dilemma Final Report, Eindhoven University ofTechnology /department of Chemical Engineering and Chemistry. 2011. Search in Google Scholar

Helbling, E.Damian, VanBriesen, M.Jeanne, 2009. Modeling residual chlorineresponse to a microbial contamination event in drinking water distributionsystems. J. Environ. Eng. 135 (10), 918–927. Search in Google Scholar

Brown, D., Bridgeman, J., & West, J. R. (2011). Predicting chlorine decay andTHM formation in water supply systems. Reviews in Environmental Science andBio/Technology, 10(1), 79–99. doi:10.1007/s11157-011-9229-8. Search in Google Scholar

Al-Jasser, A. O. (2007). Chlorine decay in drinking-water transmission anddistribution systems: pipe service age effect. Water Research, 41(2), 387–396.doi:10.1016/j.watres.2006.08.032. Search in Google Scholar

Carrico, B., & Singer, P. C. (2010). Impact of booster chlorination on chlorinedecay and THM production: simulated analysis. October (October 2009), 2005–2010. Search in Google Scholar

Courtis, B., West, J., & Bridgeman, J. (2009). Temporal and spatial variationsin bulk chlorine decay within a water supply system. Journal of EnvironmentalEngineering, 135(3), 147. doi:10.1061/(ASCE)0733-9372(2009) 135:3(147). Search in Google Scholar

Fisher, I., Kastl, G., & Sathasivan, A. (2011). Evaluation of suitable chlorinebulk-decay models for water distribution systems. Water research, 45(16),4896–4908. Elsevier Ltd. doi: 10.1016/j.watres.2011.06.032. Search in Google Scholar

Hallam, N. B., Hua, F., West, J. R., Forster, C. F., & Simms, J. (2003). Bulkdecay of chlorine in water distribution systems. Journal of Water ResourcesPlanning and Management, 129 (1), 78. d o i :10.1061/(ASCE)0733-9496(2003)129:1(78). Search in Google Scholar

Jabari Kohpaei, A., & Sathasivan, A. (2011). Chlorine decay prediction inbulk water using the parallel second order model: An analytical solutiondevelopment. Chemical Engineering Journal 171(1):232–241. doi:10.1016/j.cej.2011. 03.034. Search in Google Scholar

Yang, J. Y., Goodrich, J. A., Clark, R. M., & Li, S. Y. (2008). Modeling andtesting of reactive contaminant transport in drinking water pipes: chlorineresponse and implications for online contaminant detection. Water Research,42(6–7), 1397–1412. doi:10.1016/j.watres.2007.10.009. Search in Google Scholar

Khan, F., Husain, T., & Lumb, A. (2003). Water quality evaluation and trendanalysis in selected watersheds of the Atlantic region of Canada. EnvironmentalMonitoring and Assessment 88(1):221–248. Available from http://www.springerlink.com/index/H7183287VR00814V.pdf. Search in Google Scholar

Ozdemir, O. N., & Ucak, A. (2002). Simulation of chlorine decay in drinking-water distribution systems. Journal of Environmental Engineering, 128(1), 31.doi:10.1061/(ASCE)0733-9372(2002)128:1(31). Search in Google Scholar

Shang, F., Uber, James G, & Rossman, L. a. (2008). Modeling reaction andtransport of multiple species in water distribution systems. EnvironmentalScience & Technology 42(3):808–14. Available from pubmed/18323106. Search in Google Scholar

Taylor, P., Ozdemir, O N, & Demir, E. (2010). Experimental study of chlorinebulk decay in water supply pipes Experimental study of chlorine bulk decay inwater supply pipes Etude expérimentale de la décroissance volumique du chloredans les canalisations d ’ alimentation en eau. Engineering :37–41. Search in Google Scholar

Ahmed A. Abokifa, Y. Jeffrey Yang, Cynthia S. Lo, Pratim Biswas.Investigating the role of biofilms in trihalomethane formation in waterdistribution systems with a multicomponent model. Water Research. 2016, 104:208-219. Search in Google Scholar

World Health Organzation. (2017). Guidelines for drinking-water quality:fourth edition incorporating the first addendum. Geneva: World HealthOrganization. 2017: 631. Search in Google Scholar

Hernandez-Castro, S. (2007). Two-stage stochastic approach to the optimallocation of booster disinfection stations. Industrial and Engineering ChemistryResearch, 46(19), 6284–6292. doi:10.1021/ie070141a. Search in Google Scholar

Boccelli, D. L., Tryby, M. E., Uber, J. G., & Summers, R. S. (2003). A reactivespecies model for chlorine decay and THM formation under rechlorinationconditions. Water Research, 37(11), 2654–2666. doi:10.1016/S0043-1354(03)00067-8. Search in Google Scholar

Kang, D., & Lansey, K. (2010). Real-time optimal valve operation and boosterdisinfection for water quality in water distribution systems. Journal of WaterResources Planning and Management, 136(4), 463. doi:10. 1061/(ASCE)WR.1943-5452.0000056. Search in Google Scholar

Ostfeld, A., & Salomons, E. (2006). Conjunctive optimal scheduling ofpumping and booster chlorine injections in water distribution systems.Engineering Optimization 38(3):337–352. doi: 10.1080/03052150500478007. Search in Google Scholar

Parks, S. L. I., & VanBriesen, J. M. (2009). Booster disinfection for responseto contamination in a drinking water distribution system. Journal of WaterResources Planning and Management, 135(6), 502. doi:10.1061/(ASCE)0733-9496(2009)135:6(502). Search in Google Scholar

Prasad, T. D., Walters, G., & Savic, D. (2004). Booster disinfection of watersupply networks: multiobjective approach. Journal of Water Resources Planningand Management, 130(5), 367. doi:10.1061/(ASCE)0733-9496(2004)130:5(367). Search in Google Scholar

Cozzolino, L., Pianese, D., & Pirozzi, F. (2005). Control of DBPs in waterdistribution systems through optimal chlorine dosage and disinfection stationallocation. Desalination, 176(1–3), 113–125. doi:10.1016/j.desal.2004.10.021. Search in Google Scholar

Gibbs, M. S., Dandy, G. C., & Maier, H. R. (2010). Calibration and optimizationof the pumping and disinfection of a real water supply system. Journal of WaterResources Planning and Management, 136(4), 493. doi:10.1061/(ASCE)WR.1943-5452.0000060. Search in Google Scholar

Lansey, K., Pasha, F., Pool, S., Elshorbagy, W., & Uber, J. (2007). Locatingsatellite booster disinfectant stations. Journal of Water Resources Planning andManagement, 133(4), 372. doi:10.1061/(ASCE)0733-9496(2007)133: 4(372). Search in Google Scholar

Propato, M. (2006). Contamination warning in water networks: generalmixed-integer linear models for sensor location design. Journal of WaterResources Planning and Management, 132(4), 225. doi:10.1061/(ASCE)0733-9496(2006) 132:4(225). Search in Google Scholar

Tryby, M. E., Boccelli, D. L., Uber, J. G., & Rossman, L. A. (2002). Facilitylocation model for booster disinfection of water supply networks. Journal ofWater Resources Planning and Management, 128(5), 322. doi:10.1061/(ASCE)0733-9496(2002)128:5(322). Search in Google Scholar

Komunalno podjetje Velenje. Letno poročilo 2015. http://www.kp-velenje.si/index.php/dejavnosti/komunala/oskrba-s-pitno-vodo (10.1.2019) Search in Google Scholar

Smeets, P. W. M. H., Medema, G. J., van Dijk, J. C., The Dutch secret: how toprovide safe drinking water without chlorine in the Netherlands. Drink. WaterEngineering and Science, 2009, 2: 1–14. Search in Google Scholar

Komunalno podjetje Velenje. Interna navodila za določevanjenajverjetnejšega števila skupnih koliformnih bakterij in E. coli - mpn (mostprobable number). 2020. Search in Google Scholar

BactiQuant, Monitor and take control of the water quality in the productionchain from raw water to the end use.https://issuu.com/companybactiquant/docs/bactiquant_water_utility_brochure_production_chain (10.4.2019) Search in Google Scholar

Elga process water, veolia water, 2013. Bactiquant-water Total bacterialanalysis in minutes. Bactiquant – water webinar presentationhttps://www.slideshare.net/vittoriofigurato/bactiquantwater-webinar-presentation (24.9.2020) Search in Google Scholar

Abhilasha Maheshwari, Ahmed Abokifa, Ravindra D. Gudi, Pratim Biswas.sOptimisation of disinfectant dosage for simultaneous control of lead anddisinfection-byproducts in water distribution networks, Journal of EnvironmentalManagement. 2020, 276: 111186. Search in Google Scholar

CDC – Centers for Deseases Control and Prevention, 2022. Disinfection By-Products. https://www.cdc.gov/healthywater/global/household-water-treatment/chlorination-byproducts.html (11.3.2022) Search in Google Scholar

Thompson, C., Gillespie, S., Goslan E.,eds. Disinfection by-products indrinking water. Cambridge: Royal Society of Chemistry. 2016. Search in Google Scholar