Uneingeschränkter Zugang

Special functions with general kernel: Properties and applications to fractional partial differential equations

 und   
22. Sept. 2024

Zitieren
COVER HERUNTERLADEN

Introduction

Fractional calculus has been developed by many scientists from the past to the present and various fractional integral and derivative operators have been defined, see Baleanu et al. [1], Hilfer [2], Miller and Ross [3], Samko et al. [4], Podlubny [5] and Kilbas et al. [6]. Later, scientists were interested in fractional order differential equations and obtained their solutions by integral transformations, see Tanriverdi et al. [7], Ata and Kıymaz [8], Luchko et al. [9], Ata and Kıymaz [10] and Lin and Lu [11].

Special functions have an important role in many scientific fields such as physics, mathematics and engineering. Some of these special functions are gamma, beta, Gauss hypergeometric and confluent hypergeometric functions and we give these special functions below.

The gamma function Andrews et al. [12] for ℜ(σ) > 0 is defined by Γ(σ)=0ωσ1expωdω. \[\Gamma (\sigma ) = \int\limits_0^\infty {\omega ^{\sigma - 1}}\exp \left( { - \omega } \right)d\omega .\]

The beta function Andrews et al. [12] for ℜ(σ) > 0 and ℜ(τ) > 0 is given by B(σ,τ)=01ωσ1(1ω)τ1dω. \[B(\sigma ,\tau ) = \int\limits_0^1 {\omega ^{\sigma - 1}}{(1 - \omega )^{\tau - 1}}d\omega .\]

The Gauss hypergeometric function Kilbas et al. [6] for ℜ(ϑ3) > ℜ(ϑ2) > 0 is defined by 2F1(ϑ1,ϑ2;ϑ3;z)=k=0(ϑ1)kBϑ2+k,ϑ3ϑ2Bϑ2,ϑ3ϑ2zkk!,for |z|<1. \[_2{F_1}({\vartheta _1},{\vartheta _2};{\vartheta _3};z) = \sum\limits_{k = 0}^\infty {({\vartheta _1})_k}{{B\left( {{\vartheta _2} + k,{\vartheta _3} - {\vartheta _2}} \right)} \over {B\left( {{\vartheta _2},{\vartheta _3} - {\vartheta _2}} \right)}}{{{z^k}} \over {k!}},\quad {\rm{for}} |z|< 1.\]

The confluent hypergeometric function Kilbas et al. [6] for ℜ(ϑ3) > ℜ(ϑ2) > 0 is given by Φ(ϑ2;ϑ3;z)=k=0Bϑ2+k,ϑ3ϑ2Bϑ2,ϑ3ϑ2zkk!. \[\Phi ({\vartheta _2};{\vartheta _3};z) = \sum\limits_{k = 0}^\infty {{B\left( {{\vartheta _2} + k,{\vartheta _3} - {\vartheta _2}} \right)} \over {B\left( {{\vartheta _2},{\vartheta _3} - {\vartheta _2}} \right)}}{{{z^k}} \over {k!}}.\]

Here denotes (·)k is known as the Pochhammer symbol Andrews et al. [12] and defined by (ϑ)k=ϑ(ϑ+1)(ϑ+k1)and(ϑ)01. \[{(\vartheta )_k} = \vartheta (\vartheta + 1) \cdots (\vartheta + k - 1)\quad {\rm{and}}\quad {(\vartheta )_0} \equiv 1.\]

Scientists have obtained various generalizations of these special functions by working on the special functions mentioned above. We let ℜ(p) > 0, ℜ(q) > 0, ℜ(κ) > 0, ℜ(μ) > 0, ℜ(α) > 0, ℜ(β) > 0, ℜ(σ) > 0, ℜ(τ) > 0, ℜ(ϑ3) > ℜ(ϑ2) > 0 unless otherwise stated.

The generalized gamma functions were introduced by Parmar [13] and Şahin et al. [14] respectively as follows Γp(α,β;κ)(σ)=0ωσ11F1α;β;ωpωκdω, \[\Gamma _p^{(\alpha ,\beta ;\kappa )}(\sigma ) = \int\limits_0^\infty {\omega ^{\sigma - 1}}_1{F_1}\left( {\alpha ;\beta ; - \omega - {p \over {{\omega ^\kappa }}}} \right)d\omega ,\] Γp,q(κ,μ)(σ)=0ωσ1expωκpqωμdω. \[\Gamma _{p,q}^{(\kappa ,\mu )}(\sigma ) = \int\limits_0^\infty {\omega ^{\sigma - 1}}\exp \left( { - {{{\omega ^\kappa }} \over p} - {q \over {{\omega ^\mu }}}} \right)d\omega .\]

The generalized beta functions were introduced by Khan and Husain [15], Çetinkaya et al. [16] and Şahin et al. [14] respectively as follows Bα,βp,κ,μ(σ,τ)=01ωσ1(1ω)τ1 Eα,βpωκ(1ω)μdω, \[B_{\alpha ,\beta }^{p,\kappa ,\mu }(\sigma ,\tau ) = \int\limits_0^1 {\omega ^{\sigma - 1}}{(1 - \omega )^{\tau - 1}} {E_{\alpha ,\beta }}\left( { - {p \over {{\omega ^\kappa }{{(1 - \omega )}^\mu }}}} \right)d\omega ,\] Bp,q(α,β;κ,μ)(σ,τ)=01ωσ1(1ω)τ1 1F1α;β;pωκq(1ω)μdω, \[B_{p,q}^{(\alpha ,\beta ;\kappa ,\mu )}(\sigma ,\tau ) = \int\limits_0^1 {\omega ^{\sigma - 1}}{(1 - \omega )^{\tau - 1}}{ _1}{F_1}\left( {\alpha ;\beta ; - {p \over {{\omega ^\kappa }}} - {q \over {{{(1 - \omega )}^\mu }}}} \right)d\omega ,\] Bp,q(κ,μ)(σ,τ)=01ωσ1(1ω)τ1 exppωκexpq(1ω)μdω. \[B_{p,q}^{(\kappa ,\mu )}(\sigma ,\tau ) = \int\limits_0^1 {\omega ^{\sigma - 1}}{(1 - \omega )^{\tau - 1}} \exp \left( { - {p \over {{\omega ^\kappa }}}} \right)\exp \left( { - {q \over {{{(1 - \omega )}^\mu }}}} \right)d\omega .\]

The generalized Gauss and confluent hypergeometric functions were introduced by Khan and Husain [15] and Şahin et al. [14] respectively as follows Fα,βp,κ,μ(ϑ1,ϑ2;ϑ3;z)=k=0(ϑ1)kBα,βp,κ,μϑ2+k,ϑ3ϑ2Bϑ2,ϑ3ϑ2zkk!,for |z|<1, \[F_{\alpha ,\beta }^{p,\kappa ,\mu }({\vartheta _1},{\vartheta _2};{\vartheta _3};z) = \sum\limits_{k = 0}^\infty {({\vartheta _1})_k}{{B_{\alpha ,\beta }^{p,\kappa ,\mu }\left( {{\vartheta _2} + k,{\vartheta _3} - {\vartheta _2}} \right)} \over {B\left( {{\vartheta _2},{\vartheta _3} - {\vartheta _2}} \right)}}{{{z^k}} \over {k!}},\quad {\rm{for}} |z|< 1,\] Φα,βp,κ,μ(ϑ2;ϑ3;z)=k=0Bα,βp,κ,μϑ2+k,ϑ3ϑ2Bϑ2,ϑ3ϑ2zkk! \[\Phi _{\alpha ,\beta }^{p,\kappa ,\mu }({\vartheta _2};{\vartheta _3};z) = \sum\limits_{k = 0}^\infty {{B_{\alpha ,\beta }^{p,\kappa ,\mu }\left( {{\vartheta _2} + k,{\vartheta _3} - {\vartheta _2}} \right)} \over {B\left( {{\vartheta _2},{\vartheta _3} - {\vartheta _2}} \right)}}{{{z^k}} \over {k!}}\] and Fp,q(κ,μ)(ϑ1,ϑ2;ϑ3;z)=k=0(ϑ1)kBp,q(κ,μ)ϑ2+k,ϑ3ϑ2Bϑ2,ϑ3ϑ2zkk!,for |z|<1, \[F_{p,q}^{(\kappa ,\mu )}({\vartheta _1},{\vartheta _2};{\vartheta _3};z) = \sum\limits_{k = 0}^\infty {({\vartheta _1})_k}{{B_{p,q}^{(\kappa ,\mu )}\left( {{\vartheta _2} + k,{\vartheta _3} - {\vartheta _2}} \right)} \over {B\left( {{\vartheta _2},{\vartheta _3} - {\vartheta _2}} \right)}}{{{z^k}} \over {k!}},\quad {\rm{for}} |z|< 1,\] Φp,q(κ,μ)(ϑ2;ϑ3;z)=k=0Bp,q(κ,μ)ϑ2+k,ϑ3ϑ2Bϑ2,ϑ3ϑ2zkk!. \[\Phi _{p,q}^{(\kappa ,\mu )}({\vartheta _2};{\vartheta _3};z) = \sum\limits_{k = 0}^\infty {{B_{p,q}^{(\kappa ,\mu )}\left( {{\vartheta _2} + k,{\vartheta _3} - {\vartheta _2}} \right)} \over {B\left( {{\vartheta _2},{\vartheta _3} - {\vartheta _2}} \right)}}{{{z^k}} \over {k!}}.\]

Also for other studies that can be found in the specific literature, see Abubakar [17], Abubakar [18], Al-Gonah and Mohammed [19], Ata and Kıymaz [20], Ata [21], Ata and Kıymaz [22], Atash et al. [23], Chaudhry and Zubair [24], Chaudhry et al. [25], Chaudhry et al. [26], Choi et al. [27], Goswami et al. [28], Goyal et al. [29], Kulip et al. [30], Lee et al. [31], Mubeen et al. [32], Özergin et al. [33], Rahman et al. [34], Rahman et al. [35], Shadab et al. [36], Ata and Kıymaz [37], Srivastava et al. [38], Ata [39], Kıymaz et al. [40], Srivastava et al. [41] and Kıymaz et al. [42].

The motivation of this paper is to introduce special functions with general kernel that generate generalized gamma, beta, Gauss hypergeometric and confluent hypergeometric functions and to obtain solutions of fractional partial differential equations involving special functions with general kernel.

The remainder of this paper is organized as follows: In Section 2, we provide the basic information needed throughout the paper. In Section 3, we describe the special functions with general kernel and show that they generate other special functions. In Section 4, we give some properties of the special functions with general kernel. In Section 5, we obtain solutions of fractional partial differential equations involving special functions with general kernel and then we present graphs for some specific values. In Section 6, we give the beta distribution with general kernel and introduce the incomplete beta function with general kernel. Finally, we give conclusions and remarks in Section 7.

Preliminaries

The Laplace and inverse Laplace transforms are obtained from the Fourier integral formula in Debnath and Bhatta [43]. They are also very powerful tools for solving ordinary, partial and fractional differential equations. Since the special functions with general kernel that we define in this paper are multi-parameters, it is more convenient to apply the double Laplace transform to them. Therefore, we use this transformation in this paper. In this section, we now give the basic materials needed throughout the paper.

Definition 2.1

(Anwar et al. [44]). The partial fractional Caputo derivative is given by qcD0+ε2 pcD0+ε1f(p,q)=1Γ(mε1)1Γ(nε2)0q0p(px)mε11(qy)nε21m+nf(x,y)ynxmdxdy, \[{{}^{c}_{q}D_{0^{+}}^{\varepsilon_{2}}} {{}^{c}_{p}D_{0^{+}}^{\varepsilon_{1}}} f(p,q) =\frac{1}{\Gamma(m-\varepsilon_{1})}\frac{1}{\Gamma(n-\varepsilon_{2})}\int\limits_{0}^{q}\int\limits_{0}^{p}(p-x)^{m-\varepsilon_{1}-1}(q-y)^{n-\varepsilon_{2}-1}\frac{\partial^{m+n}f(x,y)}{\partial y^{n}\partial x^{m}}dxdy,\] where m − 1 < ℜ(ɛ1) ≤ m, n − 1 < ℜ(ɛ2) ≤ n, m,n ∈ ℕ.

Definition 2.2

(Debnath [45]). The double Laplace and inverse Laplace transforms respectively are defined by LqLp[f(p,q)](s1,s2)=00exp(s1p)exp(s2q)f(p,q)dpdq \[\mathfrak{L}_{q}\mathfrak{L}_{p}\Big[ f(p,q)\Big](s_{1},s_{2}) =\int\limits_{0}^{\infty}\int\limits_{0}^{\infty}\exp(-s_{1}p)\exp(-s_{2}q)f(p,q)dpdq\] and Lq1Lp1[LqLp[f(p,q)](s1,s2)](p,q)=f(p,q)=1(2πi)2cic+i did+i exp(s1p)exp(s2q)×LqLp[f(p,q)](s1,s2)ds1ds2, \[\begin{align} \mathfrak{L}_{q}^{-1}\mathfrak{L}_{p}^{-1}\Big[ \mathfrak{L}_{q}\mathfrak{L}_{p}\Big[ f(p,q)\Big](s_{1},s_{2}) \Big] (p,q)=f(p,q) & =\frac{1}{(2\pi i)^{2}}\int\limits_{c-i\infty}^{c+i\infty}~\int\limits_{d-i\infty}^{d+i\infty}\exp(s_{1}p)\exp(s_{2}q) \\ &\quad\times\mathfrak{L}_{q}\mathfrak{L}_{p}\Big[ f(p,q)\Big](s_{1},s_{2})ds_{1}ds_{2}, \end{align}\] where ℜ(s1) ≧ c and ℜ(s2) ≧ d.

We give the double Laplace transforms of partial fractional Caputo derivatives below.

Theorem 2.1

(Anwar et al. [44]). Let ℜ(ɛ1), ℜ(ɛ2) > 0 and m − 1 < ℜ(ɛ1) ≤ m, n−1 < ℜ(ɛ2) ≤ n for m, n ∈ ℕ. Then, we have LqLp[qcD 0+ ε2 pcD 0+ ε1f(p,q)](s1,s2) =s1 ε1s2 ε2(LqLp[f(p,q)](s1,s2) i=0 m1s1 1iLq if(0,q) pi(s2) j=0 n1s2 1jLp jf(p,0) qj(s1)+ i=0 m1 j=0 n1s1 1is2 1j i+jf(0,0) qjpi). \[\begin{align} \mathfrak{L}_{q}\mathfrak{L}_{p}\Big[ {}^{c}_{q}D_{0^{+}}^{\varepsilon_{2}}~{}^{c}_{p}D_{0^{+}}^{\varepsilon_{1}} f(p,q)\Big](s_{1},s_{2})&=s_{1}^{\varepsilon_{1}}s_{2}^{\varepsilon_{2}}\Bigg(\mathfrak{L}_{q}\mathfrak{L}_{p}\Big[f(p,q)\Big](s_{1},s_{2})-\sum_{i=0}^{m-1}s_{1}^{-1-i}\mathfrak{L}_{q}\left[\frac{\partial^{i}f(0,q)}{\partial p^{i}} \right](s_{2}) \\ &-\sum_{j=0}^{n-1}s_{2}^{-1-j}\mathfrak{L}_{p}\left[\frac{\partial^{j}f(p,0)}{\partial q^{j}} \right](s_{1})+\sum_{i=0}^{m-1}\sum_{j=0}^{n-1}s_{1}^{-1-i}s_{2}^{-1-j}~\frac{\partial^{i+j}f(0,0)}{\partial q^{j}\partial p^{i}} \Bigg). \end{align} \]

Special functions with general kernel

In this section, we introduce the gamma, beta, Gauss hypergeometric and confluent hypergeometric functions with general kernel and present some of their basic properties. We also show that they generate the special functions given in Section 1.

Definition 3.1

The gamma function with general kernel is defined by KΓ^(σ):=0ωσ1 Kω,Xdω,(p)>0,(q)>0,(κ)>0,(μ)>0,(σ)>0, \[\matrix{ {\matrix{ {^K\widehat \Gamma (\sigma ): = \int\limits_0^\infty {\omega ^{\sigma - 1}} K\left( {\omega ,{\bf{X}}} \right)d\omega ,} \cr {\left( {\Re (p) > 0,\Re (q) > 0,\Re (\kappa ) > 0,\Re (\mu ) > 0,\Re (\sigma ) > 0} \right),} \cr } } \cr } \] where K is the general kernel and X = X(p,q,κ,μ) is a multi-parameter variable.

Definition 3.2

The beta function with general kernel is defined by KB^(σ,τ):=01ωσ1(1ω)τ1 Kω,Xdω,(p)>0,(q)>0,(κ)>0,(μ)>0,(σ)>0,(τ)>0, \[\matrix{ {^K\widehat B(\sigma ,\tau ): = \int\limits_0^1 {\omega ^{\sigma - 1}}{{(1 - \omega )}^{\tau - 1}} K\left( {\omega ,{\bf{X}}} \right)d\omega ,} \cr {\left( {\Re (p) > 0,\Re (q) > 0,\Re (\kappa ) > 0,\Re (\mu ) > 0,\Re (\sigma ) > 0,\Re (\tau ) > 0} \right),} } \] where K is the general kernel and X = X(p,q,κ,μ) is a multi-parameter variable.

Definition 3.3

The Gauss hypergeometric function with general kernel is defined by KF^ϑ1,ϑ2;ϑ3;z:=k=0(ϑ1)kKB^(ϑ2+k,ϑ3ϑ2)B(ϑ2,ϑ3ϑ2)zkk!,for |z|<1,(p)>0,(q)>0,(κ)>0,(μ)>0,(ϑ3)>(ϑ2)>0, \[\matrix{ {^K\widehat F\left( {{\vartheta _1},{\vartheta _2};{\vartheta _3};z} \right): = \sum\limits_{k = 0}^\infty {{({\vartheta _1})}_k}{{^K\widehat B({\vartheta _2} + k,{\vartheta _3} - {\vartheta _2})} \over {B({\vartheta _2},{\vartheta _3} - {\vartheta _2})}}{{{z^k}} \over {k!}},\quad {\rm{for}} |z|< 1,} \cr {\left( {\Re (p) > 0,\Re (q) > 0,\Re (\kappa ) > 0,\Re (\mu ) > 0,\Re ({\vartheta _3}) > \Re ({\vartheta _2}) > 0} \right),} } \] where K is the general kernel and X = X(p,q,κ,μ) is a multi-parameter variable.

Definition 3.4

The confluent hypergeometric function with general kernel is defined by KΦ^ϑ2;ϑ3;z:=k=0KB^(ϑ2+k,ϑ3ϑ2)B(ϑ2,ϑ3ϑ2)zkk!,(p)>0,(q)>0,(κ)>0,(μ)>0,(ϑ3)>(ϑ2)>0, \[\matrix{ {^K\widehat \Phi \left( {{\vartheta _2};{\vartheta _3};z} \right): = \sum\limits_{k = 0}^\infty {{^K\widehat B({\vartheta _2} + k,{\vartheta _3} - {\vartheta _2})} \over {B({\vartheta _2},{\vartheta _3} - {\vartheta _2})}}{{{z^k}} \over {k!}},} \cr {\left( {\Re (p) > 0,\Re (q) > 0,\Re (\kappa ) > 0,\Re (\mu ) > 0,\Re ({\vartheta _3}) > \Re ({\vartheta _2}) > 0} \right),} \cr } \] where K is the general kernel and X = X(p,q,κ,μ) is a multi-parameter variable.

Remark 3.1

We note that the general kernel function K can be any special function such as an exponential function, Kummer function, Mittag-Leffler function, Wright function, Fox-Wright function or M-series.

Throughout this paper, we will take ℜ(p) > 0, ℜ(q) > 0, ℜ(κ) > 0, ℜ(μ) > 0, ℜ(ϑ3) > ℜ(ϑ2) > 0, ℜ(σ) > 0, ℜ(τ) > 0 unless otherwise stated. We now show that they generate the special functions given in Section 1. We also note that they generate the other special functions, which can be found in literature.

Taking the general kernels as follows Kω,X:=Kωpωκ, \[K\left( {\omega ,{\bf{X}}} \right): = K\left( { - \omega - {p \over {{\omega ^\kappa }}}} \right),\] Kω,X:=Kωκpqωμ. \[K\left( {\omega ,{\bf{X}}} \right): = K\left( { - {{{\omega ^\kappa }} \over p} - {q \over {{\omega ^\mu }}}} \right).\]

Using Eqs. (17) and (18) in Eq. (13), respectively we have KΓ^(σ):=0ωσ1 Kωpωκdω, \[^K\widehat \Gamma (\sigma ): = \int\limits_0^\infty {\omega ^{\sigma - 1}} K\left( { - \omega - {p \over {{\omega ^\kappa }}}} \right)d\omega ,\] KΓ^(σ):=0ωσ1 Kωκpqωμdω. \[^K\widehat \Gamma (\sigma ): = \int\limits_0^\infty {\omega ^{\sigma - 1}} K\left( { - {{{\omega ^\kappa }} \over p} - {q \over {{\omega ^\mu }}}} \right)d\omega .\]

If we take the K in Eq. (19) as the function 1F1, we obtain Eq. (1).

If we take the K in Eq. (20) as the function exp, we obtain Eq. (2).

Taking the general kernels as follows Kω,X:=Kpωκ(1ω)μ, \[K\left( {\omega ,{\bf{X}}} \right): = K\left( { - {p \over {{\omega ^\kappa }{{(1 - \omega )}^\mu }}}} \right),\] Kω,X:=Kpωκq(1ω)μ, \[K\left( {\omega ,{\bf{X}}} \right): = K\left( { - {p \over {{\omega ^\kappa }}} - {q \over {{{(1 - \omega )}^\mu }}}} \right),\] Kω,X:=Kpωκ, \[K\left( {\omega ,{\bf{X}}} \right): = K\left( { - {p \over {{\omega ^\kappa }}}} \right),\] Kω,X:=Kq(1ω)μ. \[K\left( {\omega ,{\bf{X}}} \right): = K\left( { - {q \over {{{(1 - \omega )}^\mu }}}} \right).\]

Using Eqs. (21) and (22) in Eq. (14), respectively we have KB^(σ,τ):=01ωσ1(1ω)τ1 Kpωκ(1ω)μdω, \[^K\widehat B(\sigma ,\tau ): = \int\limits_0^1 {\omega ^{\sigma - 1}}{(1 - \omega )^{\tau - 1}} K\left( { - {p \over {{\omega ^\kappa }{{(1 - \omega )}^\mu }}}} \right)d\omega ,\] KB^(σ,τ):=01ωσ1(1ω)τ1 Kpωκq(1ω)μdω. \[^K\widehat B(\sigma ,\tau ): = \int\limits_0^1 {\omega ^{\sigma - 1}}{(1 - \omega )^{\tau - 1}} K\left( { - {p \over {{\omega ^\kappa }}} - {q \over {{{(1 - \omega )}^\mu }}}} \right)d\omega .\]

Multiplying (23) by (24) and then writing in Eq. (14), we have KB^(σ,τ):=01ωσ1(1ω)τ1 KpωκKq(1ω)μdω. \[^K\widehat B(\sigma ,\tau ): = \int\limits_0^1 {\omega ^{\sigma - 1}}{(1 - \omega )^{\tau - 1}} K\left( { - {p \over {{\omega ^\kappa }}}} \right)K\left( { - {q \over {{{(1 - \omega )}^\mu }}}} \right)d\omega .\]

If we take the K in Eq. (25) as the function Eα,β, we obtain Eq. (3).

If we take the K in Eq. (26) as the function 1F1, we obtain Eq. (4).

If we take the K in Eq. (27) as the function exp, we obtain Eq. (5).

Finally,

If we use Eq. (25) in Eqs. (15) and (16), and take the K as the function Eα,β, we obtain Eqs. (6) and (7).

If we use Eq. (27) in Eqs. (15) and (16), and take the K as the function exp, we obtain Eqs. (8) and (9).

Fundamental properties of special functions with general kernel

In this section, we give fundamental properties of special functions with general kernel.

Theorem 4.1

We have the following formula KΓ^(σ) KΓ^(τ)=40π20r2(σ+τ)1cos2σ1(θ)sin2τ1(θ) Kr2cos2(θ),XKr2sin2(θ),Xdrdθ. \[^K\widehat \Gamma (\sigma {) ^K}\widehat \Gamma (\tau ) = 4\int\limits_0^{{\pi \over 2}} \int\limits_0^\infty {r^{2(\sigma + \tau ) - 1}}\mathop {\cos }\nolimits^{2\sigma - 1} (\theta )\mathop {\sin }\nolimits^{2\tau - 1} (\theta ) K\left( {{r^2}\mathop {\cos }\nolimits^2 (\theta ),{\bf{X}}} \right)K\left( {{r^2}\mathop {\sin }\nolimits^2 (\theta ),{\bf{X}}} \right)drd\theta .\]

Proof

Substituting ω = u2 in Eq. (13), we get KΓ^(σ)=20u2σ1 Ku2,Xdu. \[^K\widehat \Gamma (\sigma ) = 2\int\limits_0^\infty {u^{2\sigma - 1}} K\left( {{u^2},{\bf{X}}} \right)du.\] Therefore, KΓ^(σ) KΓ^(τ)=400u2σ1v2τ1 Ku2,XKv2,Xdudv. \[^K\widehat \Gamma (\sigma {) ^K}\widehat \Gamma (\tau ) = 4\int\limits_0^\infty \int\limits_0^\infty {u^{2\sigma - 1}}{v^{2\tau - 1}} K\left( {{u^2},{\bf{X}}} \right)K\left( {{v^2},{\bf{X}}} \right)dudv.\]

Taking u = r cos(θ) and v = r sin(θ) yields KΓ^(σ) KΓ^(τ)=40π20r2(σ+τ)1cos2σ1(θ)sin2τ1(θ) Kr2cos2(θ),XKr2sin2(θ),Xdrdθ. \[^K\widehat \Gamma (\sigma {) ^K}\widehat \Gamma (\tau ) = 4\int\limits_0^{{\pi \over 2}} \int\limits_0^\infty {r^{2(\sigma + \tau ) - 1}}\mathop {\cos }\nolimits^{2\sigma - 1} (\theta )\mathop {\sin }\nolimits^{2\tau - 1} (\theta ) K\left( {{r^2}\mathop {\cos }\nolimits^2 (\theta ),{\bf{X}}} \right)K\left( {{r^2}\mathop {\sin }\nolimits^2 (\theta ),{\bf{X}}} \right)drd\theta .\]

Theorem 4.2

We have the following integral representations KB^(σ,τ)=20π2sin2σ1(θ)cos2τ1(θ) Ksin2(θ),Xdθ,KB^(σ,τ)=0tσ1(1+t)σ+τ Kt1+t,Xdt,KB^(σ,τ)=(ba)1στab(ta)σ1(bt)τ1 Ktaba,Xdt. \[\matrix{ {^K\widehat B(\sigma ,\tau )} \hfill & = \hfill & {2\int\limits_0^{{\pi \over 2}} \mathop {\sin }\nolimits^{2\sigma - 1} (\theta )\mathop {\cos }\nolimits^{2\tau - 1} (\theta ) K\left( {\mathop {\sin }\nolimits^2 (\theta ),{\bf{X}}} \right)d\theta ,} \hfill \cr {^K\widehat B(\sigma ,\tau )} \hfill & = \hfill & {\int\limits_0^\infty {{{t^{\sigma - 1}}} \over {{{(1 + t)}^{\sigma + \tau }}}} K\left( {{t \over {1 + t}},{\bf{X}}} \right)dt,} \hfill \cr {^K\widehat B(\sigma ,\tau )} \hfill & = \hfill & {{{(b - a)}^{1 - \sigma - \tau }}\int\limits_a^b {{(t - a)}^{\sigma - 1}}{{(b - t)}^{\tau - 1}} K\left( {{{t - a} \over {b - a}},{\bf{X}}} \right)dt.} \hfill \cr } \]

Proof

Taking ω = sin2(θ), ω=t1+t \[\omega = {t \over {1 + t}}\] and ω=taba \[\omega = {{t - a} \over {b - a}}\] in Eq. (14), respectively, completes the proof.

Theorem 4.3

We have the following functional relation KB^(σ,τ+1)+KB^(σ+1,τ)=KB^(σ,τ). \[^K\widehat B(\sigma ,\tau + 1){ + ^K}\widehat B(\sigma + 1,\tau {) = ^K}\widehat B(\sigma ,\tau ).\]

Proof

Using Eq. (14), we have KB^(σ,τ+1)+KB^(σ+1,τ)=01ωσ1(1ω)τ Kω,Xdω+01 ωσ(1ω)τ1 Kω,Xdω=01 (ωσ1(1ω)τ+ωσ(1ω)τ1) Kω,Xdω=01 ωσ1(1ω)τ1 Kω,Xdω=KB^(σ,τ). \[\matrix{ {^K\widehat B(\sigma ,\tau + 1){ + ^K}\widehat B(\sigma + 1,\tau )} \hfill & = \hfill & {\int\limits_0^1 {\omega ^{\sigma - 1}}{{(1 - \omega )}^\tau } K\left( {\omega ,{\bf{X}}} \right)d\omega + \int\limits_0^1 {\omega ^\sigma }{{(1 - \omega )}^{\tau - 1}} K\left( {\omega ,{\bf{X}}} \right)d\omega } \hfill \cr {} \hfill & = \hfill & {\int\limits_0^1 ({\omega ^{\sigma - 1}}{{(1 - \omega )}^\tau } + {\omega ^\sigma }{{(1 - \omega )}^{\tau - 1}}) K\left( {\omega ,{\bf{X}}} \right)d\omega } \hfill \cr {} \hfill & = \hfill & {\int\limits_0^1 {\omega ^{\sigma - 1}}{{(1 - \omega )}^{\tau - 1}} K\left( {\omega ,{\bf{X}}} \right)d\omega } \hfill \cr {} \hfill & = \hfill & {^K\widehat B(\sigma ,\tau ).} \hfill \cr } \]

Theorem 4.4

We have the following summation relation KB^(σ,1τ)=k=0(τ)kk! KB^(σ+k,1),for (1τ)>0. \[^K\widehat B(\sigma ,1 - \tau ) = \sum\limits_{k = 0}^\infty {{{{(\tau )}_k}} \over {k!}}{ ^K}\widehat B(\sigma + k,1),\quad {\rm{for}} \Re (1 - \tau ) > 0.\]

Proof

From Eq. (14), we have KB^(σ,1τ)=01ωσ1(1ω)τ Kω,Xdω. \[^K\widehat B(\sigma ,1 - \tau ) = \int\limits_0^1 {\omega ^{\sigma - 1}}{(1 - \omega )^{ - \tau }} K\left( {\omega ,{\bf{X}}} \right)d\omega .\]

The binomial series [12] is defined by (1ω)τ=k=0(τ)kωkk!,for |ω|<1. \[{(1 - \omega )^{ - \tau }} = \sum\limits_{k = 0}^\infty {(\tau )_k}{{{\omega ^k}} \over {k!}},\quad {\rm{for}} |\omega |< 1.\]

Using Eq. (29) in Eq. (28), completes the proof.

Theorem 4.5

We have the following integral representations KF^ϑ1,ϑ2;ϑ3;z=1B(ϑ2,ϑ3ϑ2)01ωϑ21(1ω)ϑ3ϑ21(1zω)ϑ1 Kω,Xdω, \[^K\widehat F\left( {{\vartheta _1},{\vartheta _2};{\vartheta _3};z} \right) = {1 \over {B({\vartheta _2},{\vartheta _3} - {\vartheta _2})}}\int\limits_0^1 {\omega ^{{\vartheta _2} - 1}}{(1 - \omega )^{{\vartheta _3} - {\vartheta _2} - 1}}{(1 - z\omega )^{ - {\vartheta _1}}} K\left( {\omega ,{\bf{X}}} \right)d\omega ,\] KF^ϑ1,ϑ2;ϑ3;z=2B(ϑ2,ϑ3ϑ2)0π2sin2ϑ21(θ)cos2ϑ32ϑ21(θ)1zsin2(θ)ϑ1Ksin2(θ),Xdθ, \[^K\widehat F\left( {{\vartheta _1},{\vartheta _2};{\vartheta _3};z} \right) = {2 \over {B({\vartheta _2},{\vartheta _3} - {\vartheta _2})}}\int\limits_0^{{\pi \over 2}} \mathop {\sin }\nolimits^{2{\vartheta _2} - 1} (\theta )\mathop {\cos }\nolimits^{2{\vartheta _3} - 2{\vartheta _2} - 1} (\theta ){\left( {1 - z\mathop {\sin }\nolimits^2 (\theta )} \right)^{ - {\vartheta _1}}}K\left( {\mathop {\sin }\nolimits^2 (\theta ),{\bf{X}}} \right)d\theta ,\] KF^ϑ1,ϑ2;ϑ3;z=1B(ϑ2,ϑ3ϑ2)0tϑ21(1+t)ϑ1ϑ3(1+t(1z))ϑ1 Kt1+t,Xdt, \[^K\widehat F\left( {{\vartheta _1},{\vartheta _2};{\vartheta _3};z} \right) = {1 \over {B({\vartheta _2},{\vartheta _3} - {\vartheta _2})}}\int\limits_0^\infty {t^{{\vartheta _2} - 1}}{(1 + t)^{{\vartheta _1} - {\vartheta _3}}}{(1 + t(1 - z))^{ - {\vartheta _1}}} K\left( {{t \over {1 + t}},{\bf{X}}} \right)dt,\] KF^ϑ1,ϑ2;ϑ3;z=(ba)1ϑ3B(ϑ2,ϑ3ϑ2)ab(ta)ϑ21(bt)ϑ3ϑ211z(ta)baϑ1Ktaba,Xdt. \[^K\widehat F\left( {{\vartheta _1},{\vartheta _2};{\vartheta _3};z} \right) = {{{{(b - a)}^{1 - {\vartheta _3}}}} \over {B({\vartheta _2},{\vartheta _3} - {\vartheta _2})}}\int\limits_a^b {(t - a)^{{\vartheta _2} - 1}}{(b - t)^{{\vartheta _3} - {\vartheta _2} - 1}}{\left( {1 - {{z(t - a)} \over {b - a}}} \right)^{ - {\vartheta _1}}}K\left( {{{t - a} \over {b - a}},{\bf{X}}} \right)dt.\]

Proof

Rewriting Eq. (15), we have KF^ϑ1,ϑ2;ϑ3;z=k=0(ϑ1)kKB^(ϑ2+k,ϑ3ϑ2)B(ϑ2,ϑ3ϑ2)zkk!. \[^K\widehat F\left( {{\vartheta _1},{\vartheta _2};{\vartheta _3};z} \right) = \sum\limits_{k = 0}^\infty {({\vartheta _1})_k}{{^K\widehat B({\vartheta _2} + k,{\vartheta _3} - {\vartheta _2})} \over {B({\vartheta _2},{\vartheta _3} - {\vartheta _2})}}{{{z^k}} \over {k!}}.\]

Using Eqs. (14) and (29) in Eq. (34), we have KF^ϑ1,ϑ2;ϑ3;z=1B(ϑ2,ϑ3ϑ2)01ωϑ21(1ω)ϑ3ϑ21(1zω)ϑ1 Kω,Xdω, \[^K\widehat F\left( {{\vartheta _1},{\vartheta _2};{\vartheta _3};z} \right) = {1 \over {B({\vartheta _2},{\vartheta _3} - {\vartheta _2})}}\int\limits_0^1 {\omega ^{{\vartheta _2} - 1}}{(1 - \omega )^{{\vartheta _3} - {\vartheta _2} - 1}}{(1 - z\omega )^{ - {\vartheta _1}}} K\left( {\omega ,{\bf{X}}} \right)d\omega ,\] which is Eq. (30). Then we take ω = sin2(θ), ω=t1+t \[\omega = {t \over {1 + t}}\] , and ω=taba \[\omega = {{t - a} \over {b - a}}\] in Eq. (35), we obtain Eqs. (31), (32) and (33) respectively.

Theorem 4.6

We have the following integral representations KΦ^ϑ2;ϑ3;z=1B(ϑ2,ϑ3ϑ2)01ωϑ21(1ω)ϑ3ϑ21exp(zω) Kω,Xdω, \[^K\widehat \Phi \left( {{\vartheta _2};{\vartheta _3};z} \right) = {1 \over {B({\vartheta _2},{\vartheta _3} - {\vartheta _2})}}\int\limits_0^1 {\omega ^{{\vartheta _2} - 1}}{(1 - \omega )^{{\vartheta _3} - {\vartheta _2} - 1}}\exp (z\omega ) K\left( {\omega ,{\bf{X}}} \right)d\omega ,\] KΦ^ϑ2;ϑ3;z=1B(ϑ2,ϑ3ϑ2)01tϑ3ϑ21(1t)ϑ21exp(z(1t)) K1t,Xdt, \[^K\widehat \Phi \left( {{\vartheta _2};{\vartheta _3};z} \right) = {1 \over {B({\vartheta _2},{\vartheta _3} - {\vartheta _2})}}\int\limits_0^1 {t^{{\vartheta _3} - {\vartheta _2} - 1}}{(1 - t)^{{\vartheta _2} - 1}}\exp (z(1 - t)) K\left( {1 - t,{\bf{X}}} \right)dt,\] KΦ^ϑ2;ϑ3;z=2B(ϑ2,ϑ3ϑ2)0π2sin2ϑ21(θ)cos2ϑ32ϑ21(θ)expzsin2(θ) Ksin2(θ),Xdθ, \[^K\widehat \Phi \left( {{\vartheta _2};{\vartheta _3};z} \right) = {2 \over {B({\vartheta _2},{\vartheta _3} - {\vartheta _2})}}\int\limits_0^{{\pi \over 2}} \mathop {\sin }\nolimits^{2{\vartheta _2} - 1} (\theta )\mathop {\cos }\nolimits^{2{\vartheta _3} - 2{\vartheta _2} - 1} (\theta )\exp \left( {z\mathop {\sin }\nolimits^2 (\theta )} \right) K\left( {\mathop {\sin }\nolimits^2 (\theta ),{\bf{X}}} \right)d\theta ,\] KΦ^ϑ2;ϑ3;z=1B(ϑ2,ϑ3ϑ2)0tϑ21(1+t)ϑ3expzt1+t Kt1+t,Xdt, \[^K\widehat \Phi \left( {{\vartheta _2};{\vartheta _3};z} \right) = {1 \over {B({\vartheta _2},{\vartheta _3} - {\vartheta _2})}}\int\limits_0^\infty {t^{{\vartheta _2} - 1}}{(1 + t)^{ - {\vartheta _3}}}\exp \left( {{{zt} \over {1 + t}}} \right) K\left( {{t \over {1 + t}},{\bf{X}}} \right)dt,\] KΦ^ϑ2;ϑ3;z=(ba)1ϑ3B(ϑ2,ϑ3ϑ2)ab(ta)ϑ21(bt)ϑ3ϑ21expz(ta)ba Ktaba,Xdt. \[^K\widehat \Phi \left( {{\vartheta _2};{\vartheta _3};z} \right) = {{{{(b - a)}^{1 - {\vartheta _3}}}} \over {B({\vartheta _2},{\vartheta _3} - {\vartheta _2})}}\int\limits_a^b {(t - a)^{{\vartheta _2} - 1}}{(b - t)^{{\vartheta _3} - {\vartheta _2} - 1}}\exp \left( {{{z(t - a)} \over {b - a}}} \right) K\left( {{{t - a} \over {b - a}},{\bf{X}}} \right)dt.\]

Proof

Rewriting Eq. (16), we have KΦ^ϑ2;ϑ3;z=k=0KB^(ϑ2+k,ϑ3ϑ2)B(ϑ2,ϑ3ϑ2)zkk!. \[^K\widehat \Phi \left( {{\vartheta _2};{\vartheta _3};z} \right) = \sum\limits_{k = 0}^\infty {{^K\widehat B({\vartheta _2} + k,{\vartheta _3} - {\vartheta _2})} \over {B({\vartheta _2},{\vartheta _3} - {\vartheta _2})}}{{{z^k}} \over {k!}}.\]

Using Eqs. (14) and (29) in Eq. (41), we have KΦ^ϑ2;ϑ3;z=1B(ϑ2,ϑ3ϑ2)01ωϑ21(1ω)ϑ3ϑ21exp(zω) Kω,Xdω, \[^K\widehat \Phi \left( {{\vartheta _2};{\vartheta _3};z} \right) = {1 \over {B({\vartheta _2},{\vartheta _3} - {\vartheta _2})}}\int\limits_0^1 {\omega ^{{\vartheta _2} - 1}}{(1 - \omega )^{{\vartheta _3} - {\vartheta _2} - 1}}\exp (z\omega ) K\left( {\omega ,{\bf{X}}} \right)d\omega ,\] which is Eq. (36). Then we take ω = 1 − t, ω = sin2(θ), ω=t1+t \[\omega = {t \over {1 + t}}\] , and ω=taba \[\omega = {{t - a} \over {b - a}}\] in Eq. (42), we obtain Eqs. (37), (38), (39) and (40) respectively.

Theorem 4.7

We have the following derivative formulas drdzrKF^ϑ1,ϑ2;ϑ3;z=(ϑ1)r(ϑ2)r(ϑ3)r KF^ϑ1+r,ϑ2+r;ϑ3+r;z, \[{{{d^r}} \over {d{z^r}}}\left\{ {^K\widehat F\left( {{\vartheta _1},{\vartheta _2};{\vartheta _3};z} \right)} \right\} = {{{{({\vartheta _1})}_r}{{({\vartheta _2})}_r}} \over {{{({\vartheta _3})}_r}}}{ ^K}\widehat F\left( {{\vartheta _1} + r,{\vartheta _2} + r;{\vartheta _3} + r;z} \right),\] drdzrKΦ^ϑ2;ϑ3;z=(ϑ2)r(ϑ3)r KΦ^ϑ2+r;ϑ3+r;z. \[{{{d^r}} \over {d{z^r}}}\left\{ {^K\widehat \Phi \left( {{\vartheta _2};{\vartheta _3};z} \right)} \right\} = {{{{({\vartheta _2})}_r}} \over {{{({\vartheta _3})}_r}}}{ ^K}\widehat \Phi \left( {{\vartheta _2} + r;{\vartheta _3} + r;z} \right).\]

Proof

Differentiating Eq. (15), we have ddzKF^ϑ1,ϑ2;ϑ3;z=ddzk=0 (ϑ1)kKB^(ϑ2+k,ϑ3ϑ2)B(ϑ2,ϑ3ϑ2)zkk!=k=1 (ϑ1)kKB^(ϑ2+k,ϑ3ϑ2)B(ϑ2,ϑ3ϑ2)zk1(k1)!. \[\matrix{ {{d \over {dz}}\left\{ {^K\widehat F\left( {{\vartheta _1},{\vartheta _2};{\vartheta _3};z} \right)} \right\}} \hfill & = \hfill & {{d \over {dz}}\left\{ {\sum\limits_{k = 0}^\infty {{({\vartheta _1})}_k}{{^K\widehat B({\vartheta _2} + k,{\vartheta _3} - {\vartheta _2})} \over {B({\vartheta _2},{\vartheta _3} - {\vartheta _2})}}{{{z^k}} \over {k!}}} \right\}} \hfill \cr {} \hfill & = \hfill & {\sum\limits_{k = 1}^\infty {{({\vartheta _1})}_k}{{^K\widehat B({\vartheta _2} + k,{\vartheta _3} - {\vartheta _2})} \over {B({\vartheta _2},{\vartheta _3} - {\vartheta _2})}}{{{z^{k - 1}}} \over {(k - 1)!}}.} \hfill \cr } \]

Writing k → k + 1 and then using formulas B(ϑ2,ϑ3ϑ2)=ϑ3ϑ2B(ϑ2+1,ϑ3ϑ2) \[B({\vartheta _2},{\vartheta _3} - {\vartheta _2}) = {{{\vartheta _3}} \over {{\vartheta _2}}}B({\vartheta _2} + 1,{\vartheta _3} - {\vartheta _2})\] for ℜ(ϑ3) > ℜ(ϑ2) > 0 and (ϑ1)n+1 = ϑ11 + 1)n, we get ddzKF^ϑ1,ϑ2;ϑ3;z=(ϑ1)(ϑ2)(ϑ3)k=0 (ϑ1+1)kKB^(ϑ2+1+k,ϑ3ϑ2)B(ϑ2+1,ϑ3ϑ2)zkk!=(ϑ1)(ϑ2)(ϑ3) KF^ϑ1+1,ϑ2+1;ϑ3+1;z. \[\matrix{ {{d \over {dz}}\left\{ {^K\widehat F\left( {{\vartheta _1},{\vartheta _2};{\vartheta _3};z} \right)} \right\}} \hfill & = \hfill & {{{({\vartheta _1})({\vartheta _2})} \over {({\vartheta _3})}}\sum\limits_{k = 0}^\infty {{({\vartheta _1} + 1)}_k}{{^K\widehat B({\vartheta _2} + 1 + k,{\vartheta _3} - {\vartheta _2})} \over {B({\vartheta _2} + 1,{\vartheta _3} - {\vartheta _2})}}{{{z^k}} \over {k!}}} \hfill \cr {} \hfill & = \hfill & {{{({\vartheta _1})({\vartheta _2})} \over {({\vartheta _3})}}{ ^K}\widehat F\left( {{\vartheta _1} + 1,{\vartheta _2} + 1;{\vartheta _3} + 1;z} \right).} \hfill \cr } \]

Using the method of induction, we obtain the more general form as follows drdzrKF^ϑ1,ϑ2;ϑ3;z=(ϑ1)r(ϑ2)r(ϑ3)r KF^ϑ1+r,ϑ2+r;ϑ3+r;z, \[{{{d^r}} \over {d{z^r}}}\left\{ {^K\widehat F\left( {{\vartheta _1},{\vartheta _2};{\vartheta _3};z} \right)} \right\} = {{{{({\vartheta _1})}_r}{{({\vartheta _2})}_r}} \over {{{({\vartheta _3})}_r}}}{ ^K}\widehat F\left( {{\vartheta _1} + r,{\vartheta _2} + r;{\vartheta _3} + r;z} \right),\] which is Eq. (43). Then we perform similar calculations for Eq. (16) and obtain Eq. (44).

Theorem 4.8

We have the following transformation formulas KF^ϑ1,ϑ2;ϑ3;z=(1z)ϑ1 KF^ϑ1,ϑ3ϑ2;ϑ3;zz1, \[^K\widehat F\left( {{\vartheta _1},{\vartheta _2};{\vartheta _3};z} \right) = (1 - z{)^{ - {\vartheta _1}}}{ ^K}\widehat F\left( {{\vartheta _1},{\vartheta _3} - {\vartheta _2};{\vartheta _3};{z \over {z - 1}}} \right),\] KΦ^ϑ2;ϑ3;z=exp(z) KΦ^ϑ3ϑ2;ϑ3;z. \[^K\widehat \Phi \left( {{\vartheta _2};{\vartheta _3};z} \right) = \exp (z{) ^K}\widehat \Phi \left( {{\vartheta _3} - {\vartheta _2};{\vartheta _3}; - z} \right).\]

Proof

Using equation (1z(1ω))ϑ1 = (1z)ϑ1 1+zω1zϑ1, \[{(1 - z(1 - \omega ))^{ - {\vartheta _1}}} = (1 - z{)^{ - {\vartheta _1}}}{\left( {1 + {{z\omega } \over {1 - z}}} \right)^{ - {\vartheta _1}}},\] and writing ω 1 − ω in Eq. (30), we obtain KF^ϑ1,ϑ2;ϑ3;z=(1z)ϑ1B(ϑ2,ϑ3ϑ2)01 ωϑ3ϑ21(1ω)ϑ211zωz1ϑ1 K1ω,Xdω=(1z)ϑ1 KF^ϑ1,ϑ3ϑ2;ϑ3;zz1, \[\matrix{ {^K\widehat F\left( {{\vartheta _1},{\vartheta _2};{\vartheta _3};z} \right)} \hfill & = \hfill & {{{{{(1 - z)}^{ - {\vartheta _1}}}} \over {B({\vartheta _2},{\vartheta _3} - {\vartheta _2})}}\int\limits_0^1 {\omega ^{{\vartheta _3} - {\vartheta _2} - 1}}{{(1 - \omega )}^{{\vartheta _2} - 1}}{{\left( {1 - {{z\omega } \over {z - 1}}} \right)}^{ - {\vartheta _1}}} K\left( {1 - \omega ,{\bf{X}}} \right)d\omega } \hfill \cr {} \hfill & = \hfill & {{{(1 - z)}^{ - {\vartheta _1}}}{ ^K}\widehat F\left( {{\vartheta _1},{\vartheta _3} - {\vartheta _2};{\vartheta _3};{z \over {z - 1}}} \right),} \hfill \cr } \] which is Eq. (45). Then we obtain Eq. (46) from Eq. (37).

Theorem 4.9

We have the following double Laplace transforms LqLpKΓ^(σ)(s1,s2)=0ωσ1 T1ω,X^dω, \[\mathfrak{L}_{q}\mathfrak{L}_{p}\left[ {}^{K}\widehat{\Gamma}(\sigma)\right](s_{1},s_{2}) =\int\limits_{0}^{\infty}\omega^{\sigma-1}~T_{1}\left(\omega, \widehat{\textbf{X}} \right)d\omega, \] LqLpKB^(σ,τ)(s1,s2)=01ωσ1(1ω)τ1 T1ω,X^dω, \[\mathfrak{L}_{q}\mathfrak{L}_{p}\left[ {}^{K}\widehat{B}(\sigma,\tau)\right](s_{1},s_{2})=\int\limits_{0}^{1}\omega^{\sigma-1}(1-\omega)^{\tau-1}~T_{1}\left(\omega, \widehat{\textbf{X}} \right)d\omega, \] LqLpKF^(ϑ1,ϑ2;ϑ3;z)(s1,s2)=1B(ϑ2,ϑ3ϑ2)01ωϑ21(1ω)ϑ3ϑ21(1zω)ϑ1 T1ω,X^dω, \[\mathfrak{L}_{q}\mathfrak{L}_{p}\left[ {}^{K}\widehat{F}(\vartheta_{1},\vartheta_{2};\vartheta_{3};z)\right](s_{1},s_{2})=\frac{1}{B(\vartheta_{2},\vartheta_{3}-\vartheta_{2})}\int\limits_{0}^{1}\omega^{\vartheta_{2}-1}(1-\omega)^{\vartheta_{3}-\vartheta_{2}-1}(1-z\omega)^{-\vartheta_{1}} ~T_{1}\left(\omega, \widehat{\textbf{X}} \right)d\omega, \] LqLpKΦ^(ϑ2;ϑ3;z)(s1,s2)=1B(ϑ2,ϑ3ϑ2)01ωϑ21(1ω)ϑ3ϑ21exp(zω) T1ω,X^dω, \[ \mathfrak{L}_{q}\mathfrak{L}_{p}\left[ {}^{K}\widehat{\Phi}(\vartheta_{2};\vartheta_{3};z)\right](s_{1},s_{2})=\frac{1}{B(\vartheta_{2},\vartheta_{3}-\vartheta_{2})}\int\limits_{0}^{1}\omega^{\vartheta_{2}-1}(1-\omega)^{\vartheta_{3}-\vartheta_{2}-1}\exp(z\omega)~T_{1}\left(\omega, \widehat{\textbf{X}} \right)d\omega,\] where T1ω,X^:=LqLp[Kω,X](s1,s2)andX^=X^(s1,s2,κ,μ). \[T_{1}\left(\omega, \widehat{\textbf{X}} \right):=\mathfrak{L}_{q}\mathfrak{L}_{p}\Big[K\left(\omega, \textbf{X}\right) \Big](s_{1},s_{2})\quad \rm {and} \quad \widehat{\textbf{X}}=\widehat{\textbf{X}}(s_{1},s_{2},\kappa,\mu).\]

Proof

Using Eq. (10), we get LqLpKΓ^(σ)(s1,s2)=0ωσ1 LqLp[Kω,X](s1,s2)dω. \[\mathfrak{L}_{q}\mathfrak{L}_{p}\left[ {}^{K}\widehat{\Gamma}(\sigma)\right](s_{1},s_{2}) =\int\limits_{0}^{\infty}\omega^{\sigma-1}~\mathfrak{L}_{q}\mathfrak{L}_{p}\Big[ K\left(\omega, \textbf{X}\right) \Big](s_{1},s_{2})d\omega.\]

Let the following equation be LqLp[Kω,X](s1,s2)=T1ω,X^. \[\mathfrak{L}_{q}\mathfrak{L}_{p}\Big[ K\left(\omega, \textbf{X}\right) \Big](s_{1},s_{2})=T_{1}\left(\omega, \widehat{\textbf{X}} \right).\]

Then, we have LqLpKΓ^(σ)(s1,s2)=0ωσ1 T1ω,X^dω, \[\mathfrak{L}_{q}\mathfrak{L}_{p}\left[ {}^{K}\widehat{\Gamma}(\sigma)\right](s_{1},s_{2})=\int\limits_{0}^{\infty}\omega^{\sigma-1}~T_{1}\left(\omega, \widehat{\textbf{X}} \right)d\omega,\] which is Eq. (47). Also we apply Eq. (10) to Eqs. (14), (15) and (16), we obtain Eqs. (48), (49) and (50).

Applications to fractional partial differential equations

In this section, we obtain the solutions of fractional partial differential equations involving special functions with general kernels via the double Laplace transform and present graphs for some specific values.

Application 5.1

Let 1 < ℜ(ɛ1),ℜ(ɛ2) ≤ 2. We consider the fractional partial differential equation qcD0+ε2 pcD0+ε1y(p,q)=KΓ^(ε1ε2σ), \[{{}_q^cD_{{0^ + }}^{{\varepsilon _2}}}{{} _p^cD_{{0^ + }}^{{\varepsilon _1}}}y(p,q{) = ^K}\widehat \Gamma ({\varepsilon _1}{\varepsilon _2}\sigma ),\] with the initial conditions y(0,0)= y(0,0) p= y(0,0) q= 2y(0,0) qp=0 \[y(0,0) = {{\partial y(0,0)} \over {\partial p}} = {{\partial y(0,0)} \over {\partial q}} = {{{\partial ^2}y(0,0)} \over {\partial q\partial p}} = 0\] and y(p,0)= y(p,0) q=0,y(0,q)= y(0,q) p=0. \[y(p,0) = {{\partial y(p,0)} \over {\partial q}} = 0,\quad y(0,q) = {{\partial y(0,q)} \over {\partial p}} = 0.\]

Application of Eq. (10) and considering Eqs. (12) and (47) gives LqLp[qcD 0+ ε2 pcD 0+ ε1y(p,q)](s1,s2)=LqLp KΓ^(ε1ε2σ)(s1,s2), \[\mathfrak{L}_{q}\mathfrak{L}_{p}\Big[{}^{c}_{q}D_{0^{+}}^{\varepsilon_{2}}~{}^{c}_{p}D_{0^{+}}^{\varepsilon_{1}} y(p,q)\Big](s_{1},s_{2})=\mathfrak{L}_{q}\mathfrak{L}_{p}\left[{}^{K}\widehat{\Gamma}(\varepsilon_{1}\varepsilon_{2}\sigma)\right] (s_{1},s_{2}),\] then s1 ε1s2 ε2(LqLp[y(p,q)](s1,s2)s1 1Lq[y( 0,q)](s2)s1 2Lq y(0,q) p(s2)s2 1Lp[y(p,0)](s1) s2 2Lp y(p,0) q(s1)+s1 1s2 1y(0,0)+s1 2s2 1 y(0,0) p+s1 1s2 2 y(0,0) q+s1 2s2 2 2y(0,0) qp) = 0 ω ε1ε2σ1 T1 ω,X^dω. \[\begin{align*} & s_{1}^{\varepsilon_{1}}s_{2}^{\varepsilon_{2}}\Bigg(\mathfrak{L}_{q}\mathfrak{L}_{p}\Big[y(p,q)\Big](s_{1},s_{2})-s_{1}^{-1}\mathfrak{L}_{q}\Big[y(0,q) \Big](s_{2}) -s_{1}^{-2}\mathfrak{L}_{q}\left[\frac{\partial y(0,q)}{\partial p} \right](s_{2}) -s_{2}^{-1}\mathfrak{L}_{p}\Big[y(p,0) \Big](s_{1}) \\ &-s_{2}^{-2}\mathfrak{L}_{p}\left[\frac{\partial y(p,0)}{\partial q} \right](s_{1})+s_{1}^{-1}s_{2}^{-1}y(0,0) +s_{1}^{-2}s_{2}^{-1}\frac{\partial y(0,0)}{\partial p}+s_{1}^{-1}s_{2}^{-2}\frac{\partial y(0,0)}{\partial q}+s_{1}^{-2}s_{2}^{-2}\frac{\partial^{2}y(0,0)}{\partial q\partial p} \Bigg) \\ &=\int\limits_{0}^{\infty}\omega^{\varepsilon_{1}\varepsilon_{2}\sigma-1}~T_{1}\left(\omega, \widehat{\textbf{X}} \right)d\omega. \end{align*}\]

Using the initial conditions, we get LqLp[y(p,q)](s1,s2)= 0ω ε1ε2σ1 s1 ε1s2 ε2 T1 ω,X^dω. \[\mathfrak{L}_{q}\mathfrak{L}_{p}\Big[y(p,q)\Big](s_{1},s_{2}) =\int\limits_{0}^{\infty}\omega^{\varepsilon_{1}\varepsilon_{2}\sigma-1}~s_{1}^{-\varepsilon_{1}}s_{2}^{-\varepsilon_{2}}~T_{1}\left(\omega, \widehat{\textbf{X}} \right)d\omega.\]

Application of Eq. (11) gives y(p,q)= 0ω ε1ε2σ1 T2 ω,Xdω, \[y(p,q) = \int\limits_0^\infty {\omega ^{{\varepsilon _1}{\varepsilon _2}\sigma - 1}} {T_2}\left( {\omega ,{\bf{X}}} \right)d\omega ,\] where T2 ω,X:=Lq 1Lp 1[s1 ε1s2 ε2 T1 ω,X^](p,q)andX^=X^(s1,s2,κ,μ). \[T_{2}\left(\omega, \textbf{X} \right):=\mathfrak{L}_{q}^{-1}\mathfrak{L}_{p}^{-1}\Big[s_{1}^{-\varepsilon_{1}}s_{2}^{-\varepsilon_{2}}~ T_{1}\left(\omega, \widehat{\textbf{X}} \right) \Big](p,q)\quad\rm{and} \quad \widehat{\textbf{X}}=\widehat{\textbf{X}}(s_{1},s_{2},\kappa,\mu).\]

Application 5.2

Let 1 < ℜ(ɛ1),ℜ(ɛ2) ≤ 2. We consider the fractional partial differential equation qcD 0+ ε2 pcD 0+ ε1y(p,q )=KB^(ε1σ,ε2τ), \[{{}_q^cD_{{0^ + }}^{{\varepsilon _2}}}{{} _p^cD_{{0^ + }}^{{\varepsilon _1}}}y(p,q{) = ^K}\widehat B({\varepsilon _1}\sigma ,{\varepsilon _2}\tau ),\] with the initial conditions y(0,0)= y(0,0) p= y(0,0) q= 2y(0,0) qp=0 \[y(0,0) = {{\partial y(0,0)} \over {\partial p}} = {{\partial y(0,0)} \over {\partial q}} = {{{\partial ^2}y(0,0)} \over {\partial q\partial p}} = 0\] and y(p,0)= y(p,0) q=0,y(0,q)= y(0,q) p=0. \[y(p,0) = {{\partial y(p,0)} \over {\partial q}} = 0,\quad y(0,q) = {{\partial y(0,q)} \over {\partial p}} = 0.\]

Application of Eq. (10) and considering Eqs. (12) and (48) gives LqLp[qcD 0+ ε2 pcD 0+ ε1y(p,q)](s1,s2)=LqLp KB^(ε1σ,ε2τ)(s1,s2), \[ \mathfrak{L}_{q}\mathfrak{L}_{p}\Big[{}^{c}_{q}D_{0^{+}}^{\varepsilon_{2}}~{}^{c}_{p}D_{0^{+}}^{\varepsilon_{1}} y(p,q)\Big](s_{1},s_{2})=\mathfrak{L}_{q}\mathfrak{L}_{p}\left[{}^{K}\widehat{B}(\varepsilon_{1}\sigma,\varepsilon_{2}\tau)\right] (s_{1},s_{2}),\] then s 1 ε 1 s 2 ε 2 ( L q L p [ y ( p , q ) ] ( s 1 , s 2 ) s 1 1 L q [ y ( 0 , q ) ] ( s 2 ) s 1 2 L q y ( 0 , q ) p ( s 2 ) s 2 1 L p [ y ( p , 0 ) ] ( s 1 ) s 2 2 L p y ( p , 0 ) q ( s 1 ) + s 1 1 s 2 1 y ( 0 , 0 ) + s 1 2 s 2 1 y ( 0 , 0 ) p + s 1 1 s 2 2 y ( 0 , 0 ) q + s 1 2 s 2 2 2 y ( 0 , 0 ) q p ) = 0 1 ω ε 1 σ 1 ( 1 ω ) ε 2 τ 1 T 1 ω , X ^ d ω . \[\begin{align*} &s_{1}^{\varepsilon_{1}}s_{2}^{\varepsilon_{2}}\Bigg(\mathfrak{L}_{q}\mathfrak{L}_{p}\Big[y(p,q)\Big](s_{1},s_{2})-s_{1}^{-1}\mathfrak{L}_{q}\Big[y(0,q) \Big](s_{2}) -s_{1}^{-2}\mathfrak{L}_{q}\left[\frac{\partial y(0,q)}{\partial p} \right](s_{2}) -s_{2}^{-1}\mathfrak{L}_{p}\Big[y(p,0) \Big](s_{1}) \\ &-s_{2}^{-2}\mathfrak{L}_{p}\left[\frac{\partial y(p,0)}{\partial q} \right](s_{1})+s_{1}^{-1}s_{2}^{-1}y(0,0) +s_{1}^{-2}s_{2}^{-1}\frac{\partial y(0,0)}{\partial p}+s_{1}^{-1}s_{2}^{-2}\frac{\partial y(0,0)}{\partial q}+s_{1}^{-2}s_{2}^{-2}\frac{\partial^{2}y(0,0)}{\partial q\partial p} \Bigg) \\ &=\int\limits_{0}^{1}\omega^{\varepsilon_{1}\sigma-1}(1-\omega)^{\varepsilon_{2}\tau-1}~T_{1}\left(\omega, \widehat{\textbf{X}} \right)d\omega.\end{align*}\]

Using the initial conditions, we get LqLp[y(p,q)](s1,s2)= 01ω ε1σ1 (1ω) ε2τ1 s1 ε1s2 ε2 T1 ω,X^dω. \[\mathfrak{L}_{q}\mathfrak{L}_{p}\Big[y(p,q)\Big](s_{1},s_{2}) =\int\limits_{0}^{1}\omega^{\varepsilon_{1}\sigma-1}(1-\omega)^{\varepsilon_{2}\tau-1}~s_{1}^{-\varepsilon_{1}}s_{2}^{-\varepsilon_{2}}~T_{1}\left(\omega, \widehat{\textbf{X}} \right)d\omega.\]

Application of Eq. (11) gives y(p,q)= 01ω ε1σ1 (1ω) ε2τ1 T2 ω,Xdω, \[y(p,q) = \int\limits_0^1 {\omega ^{{\varepsilon _1}\sigma - 1}}{(1 - \omega )^{{\varepsilon _2}\tau - 1}} {T_2}\left( {\omega ,{\bf{X}}} \right)d\omega ,\] where T2 ω,X:=Lq 1Lp 1[s1 ε1s2 ε2 T1 ω,X^](p,q)andX^=X^(s1,s2,κ,μ). \[T_{2}\left(\omega, \textbf{X} \right):=\mathfrak{L}_{q}^{-1}\mathfrak{L}_{p}^{-1}\Big[s_{1}^{-\varepsilon_{1}}s_{2}^{-\varepsilon_{2}}~ T_{1}\left(\omega, \widehat{\textbf{X}} \right) \Big](p,q)\quad\rm{and} \quad \widehat{\textbf{X}}=\widehat{\textbf{X}}(s_{1},s_{2},\kappa,\mu).\]

Application 5.3

Let 1 < ℜ(ɛ1),ℜ(ɛ2) ≤ 2. We consider the fractional partial differential equation qcD 0+ ε2 pcD 0+ ε1y(p,q )=KF^(ϑ1,ε1ϑ2;ε2ϑ3;z), \[{{}_q^cD_{{0^ + }}^{{\varepsilon _2}}}{{} _p^cD_{{0^ + }}^{{\varepsilon _1}}}y(p,q{) = ^K}\widehat F({\vartheta _1},{\varepsilon _1}{\vartheta _2};{\varepsilon _2}{\vartheta _3};z),\] with the initial conditions y(0,0)= y(0,0) p= y(0,0) q= 2y(0,0) qp=0 \[y(0,0) = {{\partial y(0,0)} \over {\partial p}} = {{\partial y(0,0)} \over {\partial q}} = {{{\partial ^2}y(0,0)} \over {\partial q\partial p}} = 0\] and y(p,0)= y(p,0) q=0,y(0,q)= y(0,q) p=0. \[y(p,0) = {{\partial y(p,0)} \over {\partial q}} = 0,\quad y(0,q) = {{\partial y(0,q)} \over {\partial p}} = 0.\]

Application of Eq. (10) and considering Eqs. (12) and (49) gives LqLp[qcD 0+ ε2 pcD 0+ ε1y(p,q)](s1,s2)=LqLp KF^(ϑ1,ε1ϑ2;ε2ϑ3;z)(s1,s2), \[ \mathfrak{L}_{q}\mathfrak{L}_{p}\Big[{}^{c}_{q}D_{0^{+}}^{\varepsilon_{2}}~{}^{c}_{p}D_{0^{+}}^{\varepsilon_{1}} y(p,q)\Big](s_{1},s_{2})=\mathfrak{L}_{q}\mathfrak{L}_{p}\left[{}^{K}\widehat{F}(\vartheta_{1},\varepsilon_{1}\vartheta_{2};\varepsilon_{2}\vartheta_{3};z)\right] (s_{1},s_{2}), \] then s1 ε1s2 ε2(LqLp[y(p,q)](s1,s2)s1 1Lq[y(0,q)](s2)s1 2Lq y(0,q) p(s2)s2 1Lp[y(p,0)](s1)s2 2Lp y(p,0) q(s1)+s1 1s2 1y(0,0)+s1 2s2 1 y(0,0) p+s1 1s2 2 y(0,0) q+s1 2s2 2 2y(0,0) qp)=1 B(ε1ϑ2,ε2ϑ3ε1ϑ2) 01 ω ε1ϑ21 (1ω) ε2ϑ3ε1ϑ21 (1zω) ϑ1 T1 ω,X^dω. \[\begin{align*} &s_{1}^{\varepsilon_{1}}s_{2}^{\varepsilon_{2}}\Bigg(\mathfrak{L}_{q}\mathfrak{L}_{p}\Big[y(p,q)\Big](s_{1},s_{2})-s_{1}^{-1}\mathfrak{L}_{q}\Big[y(0,q) \Big](s_{2}) -s_{1}^{-2}\mathfrak{L}_{q}\left[\frac{\partial y(0,q)}{\partial p} \right](s_{2}) -s_{2}^{-1}\mathfrak{L}_{p}\Big[y(p,0) \Big](s_{1}) \\ &-s_{2}^{-2}\mathfrak{L}_{p}\left[\frac{\partial y(p,0)}{\partial q} \right](s_{1})+s_{1}^{-1}s_{2}^{-1}y(0,0) +s_{1}^{-2}s_{2}^{-1}\frac{\partial y(0,0)}{\partial p}+s_{1}^{-1}s_{2}^{-2}\frac{\partial y(0,0)}{\partial q}+s_{1}^{-2}s_{2}^{-2}\frac{\partial^{2}y(0,0)}{\partial q\partial p} \Bigg) \\ &=\frac{1}{B(\varepsilon_{1}\vartheta_{2},\varepsilon_{2}\vartheta_{3}-\varepsilon_{1}\vartheta_{2})}\int\limits_{0}^{1}\omega^{\varepsilon_{1}\vartheta_{2}-1}(1-\omega)^{\varepsilon_{2}\vartheta_{3}-\varepsilon_{1}\vartheta_{2}-1}(1-z\omega)^{-\vartheta_{1}} ~T_{1}\left(\omega, \widehat{\textbf{X}} \right)d\omega. \end{align*}\]

Using the initial conditions, we get LqLp[y(p,q)](s1,s2) =1 B(ε1ϑ2,ε2ϑ3ε1ϑ2) 01 ω ε1ϑ21 (1ω) ε2ϑ3ε1ϑ21 (1zω) ϑ1 ×s1 ε1s2 ε2 T1 ω,X^dω. \[\begin{align*} \mathfrak{L}_{q}\mathfrak{L}_{p}\Big[y(p,q)\Big](s_{1},s_{2}) &=\frac{1}{B(\varepsilon_{1}\vartheta_{2},\varepsilon_{2}\vartheta_{3}-\varepsilon_{1}\vartheta_{2})}\int\limits_{0}^{1}\omega^{\varepsilon_{1}\vartheta_{2}-1}(1-\omega)^{\varepsilon_{2}\vartheta_{3}-\varepsilon_{1}\vartheta_{2}-1}(1-z\omega)^{-\vartheta_{1}} \\ &\quad\times s_{1}^{-\varepsilon_{1}}s_{2}^{-\varepsilon_{2}}~ T_{1}\left(\omega, \widehat{\textbf{X}} \right)d\omega. \end{align*}\]

Application of Eq. (11) gives y(p,q)=1 B(ε1ϑ2,ε2ϑ3ε1ϑ2) 01ω ε1ϑ21 (1ω) ε2ϑ3ε1ϑ21 (1zω) ϑ1 T2 ω,Xdω, \[ y(p,q) = {1 \over {B({\varepsilon _1}{\vartheta _2},{\varepsilon _2}{\vartheta _3} - {\varepsilon _1}{\vartheta _2})}}\int\limits_0^1 {\omega ^{{\varepsilon _1}{\vartheta _2} - 1}}{(1 - \omega )^{{\varepsilon _2}{\vartheta _3} - {\varepsilon _1}{\vartheta _2} - 1}}{(1 - z\omega )^{ - {\vartheta _1}}} {T_2}\left( {\omega ,{\bf{X}}} \right)d\omega ,\] where T2 ω,X:=Lq 1Lp 1[s1 ε1s2 ε2 T1 ω,X^](p,q)andX^=X^(s1,s2,κ,μ). \[T_{2}\left(\omega \, \textbf{X} \right):=\mathfrak{L}_{q}^{-1}\mathfrak{L}_{p}^{-1}\Big[s_{1}^{-\varepsilon_{1}}s_{2}^{-\varepsilon_{2}}~ T_{1}\left(\omega, \widehat{\textbf{X}} \right) \Big](p,q)\quad\rm{and} \quad \widehat{\textbf{X}}=\widehat{\textbf{X}}(s_{1},s_{2},\kappa,\mu).\]

Application 5.4

Let 1 < ℜ(ɛ1),ℜ(ɛ2) ≤ 2. We consider the fractional partial differential equation qcD 0+ ε2 pcD 0+ ε1y(p,q )=KΦ^(ε1ϑ2;ε2ϑ3;z), \[{{}_q^cD_{{0^ + }}^{{\varepsilon _2}}}{{} _p^cD_{{0^ + }}^{{\varepsilon _1}}}y(p,q{) = ^K}\widehat \Phi ({\varepsilon _1}{\vartheta _2};{\varepsilon _2}{\vartheta _3};z),\] with the initial conditions y(0,0)= y(0,0) p= y(0,0) q= 2y(0,0) qp=0 \[y(0,0) = {{\partial y(0,0)} \over {\partial p}} = {{\partial y(0,0)} \over {\partial q}} = {{{\partial ^2}y(0,0)} \over {\partial q\partial p}} = 0\] and y(p,0)= y(p,0) q=0,y(0,q)= y(0,q) p=0. \[y(p,0) = {{\partial y(p,0)} \over {\partial q}} = 0,\quad y(0,q) = {{\partial y(0,q)} \over {\partial p}} = 0.\]

Application of Eq. (10) and considering Eqs. (12) and (50) gives LqLp[qcD 0+ ε2 pcD 0+ ε1y(p,q)](s1,s2)=LqLp KΦ^(ε1ϑ2;ε2ϑ3;z)(s1,s2), \[\mathfrak{L}_{q}\mathfrak{L}_{p}\Big[{}^{c}_{q}D_{0^{+}}^{\varepsilon_{2}}~{}^{c}_{p}D_{0^{+}}^{\varepsilon_{1}} y(p,q)\Big](s_{1},s_{2})=\mathfrak{L}_{q}\mathfrak{L}_{p}\left[ {}^{K}\widehat{\Phi}(\varepsilon_{1}\vartheta_{2};\varepsilon_{2}\vartheta_{3};z)\right] (s_{1},s_{2}),\] then s1 ε1s2 ε2(LqLp[y(p,q)](s1,s2)s1 1Lq[y(0,q)](s2)s1 2Lq y(0,q) p(s2)s2 1Lp[y(p,0)](s1)s2 2Lp y(p,0) q(s1)+s1 1s2 1y(0,0)+s1 2s2 1 y(0,0) p+s1 1s2 2 y(0,0) q+s1 2s2 2 2y(0,0) qp)=1 B(ε1ϑ2,ε2ϑ3ε1ϑ2) 01 ω ε1ϑ21(1ω) ε2ϑ3ε1ϑ21exp(zω) T1 ω,X^dω. \[\begin{align*} &s_{1}^{\varepsilon_{1}}s_{2}^{\varepsilon_{2}}\Bigg(\mathfrak{L}_{q}\mathfrak{L}_{p}\Big[y(p,q)\Big](s_{1},s_{2})-s_{1}^{-1}\mathfrak{L}_{q}\Big[y(0,q) \Big](s_{2}) -s_{1}^{-2}\mathfrak{L}_{q}\left[\frac{\partial y(0,q)}{\partial p} \right](s_{2}) -s_{2}^{-1}\mathfrak{L}_{p}\Big[y(p,0) \Big](s_{1}) \\ &-s_{2}^{-2}\mathfrak{L}_{p}\left[\frac{\partial y(p,0)}{\partial q} \right](s_{1}) +s_{1}^{-1}s_{2}^{-1}y(0,0) +s_{1}^{-2}s_{2}^{-1}\frac{\partial y(0,0)}{\partial p}+s_{1}^{-1}s_{2}^{-2}\frac{\partial y(0,0)}{\partial q}+s_{1}^{-2}s_{2}^{-2}\frac{\partial^{2}y(0,0)}{\partial q\partial p} \Bigg) \\ &=\frac{1}{B(\varepsilon_{1}\vartheta_{2},\varepsilon_{2}\vartheta_{3}-\varepsilon_{1}\vartheta_{2})}\int\limits_{0}^{1}\omega^{\varepsilon_{1}\vartheta_{2}-1}(1-\omega)^{\varepsilon_{2}\vartheta_{3}-\varepsilon_{1}\vartheta_{2}-1}\exp(z\omega)~ T_{1}\left(\omega, \widehat{\textbf{X}} \right)d\omega. \end{align*}\]

Using the initial conditions, we get LqLp[y(p,q)](s1,s2)= 1 B(ε1ϑ2,ε2ϑ3ε1ϑ2) 01 ω ε1ϑ21 (1ω) ε2ϑ3ε1ϑ21exp(zω) ×s1 ε1s2 ε2 T1 ω,X^dω. \[\begin{align*} \mathfrak{L}_{q}\mathfrak{L}_{p}\Big[y(p,q)\Big](s_{1},s_{2}) &=\frac{1}{B(\varepsilon_{1}\vartheta_{2},\varepsilon_{2}\vartheta_{3}-\varepsilon_{1}\vartheta_{2})}\int\limits_{0}^{1}\omega^{\varepsilon_{1}\vartheta_{2}-1}(1-\omega)^{\varepsilon_{2}\vartheta_{3}-\varepsilon_{1}\vartheta_{2}-1}\exp(z\omega) \\ &\quad\times s_{1}^{-\varepsilon_{1}}s_{2}^{-\varepsilon_{2}}~ T_{1}\left(\omega, \widehat{\textbf{X}} \right)d\omega. \end{align*}\]

Application of Eq. (11) gives y(p,q)=1 B(ε1ϑ2,ε2ϑ3ε1ϑ2) 01ω ε1ϑ21 (1ω) ε2ϑ3ε1ϑ21exp(zω) T2 ω,Xdω, \[y(p,q) = {1 \over {B({\varepsilon _1}{\vartheta _2},{\varepsilon _2}{\vartheta _3} - {\varepsilon _1}{\vartheta _2})}}\int\limits_0^1 {\omega ^{{\varepsilon _1}{\vartheta _2} - 1}}{(1 - \omega )^{{\varepsilon _2}{\vartheta _3} - {\varepsilon _1}{\vartheta _2} - 1}}\exp (z\omega ) {T_2}\left( {\omega ,{\bf{X}}} \right)d\omega ,\] where T2 ω,X:=Lq 1Lp 1[s1 ε1s2 ε2 T1 ω,X^](p,q)andX^=X^(s1,s2,κ,μ). \[T_{2}\left(\omega, \textbf{X} \right):=\mathfrak{L}_{q}^{-1}\mathfrak{L}_{p}^{-1}\Big[s_{1}^{-\varepsilon_{1}}s_{2}^{-\varepsilon_{2}}~ T_{1}\left(\omega, \widehat{\textbf{X}} \right) \Big](p,q)\quad\rm{and} \quad \widehat{\textbf{X}}=\widehat{\textbf{X}}(s_{1},s_{2},\kappa,\mu).\]

Now, with the same initial conditions, we give an illustrative application for the fractional partial differential equations of Applications (5.2), (5.3) and (5.4) using Eqs. (5), (8) and (9) defined by Şahin et al. [14]. We also present graphs of the solution functions for some specific values in Figures 1, 2 and 3.

Fig. 1

The approximate graphs of Eq. (51) for the values u = v = 0,1,2,3, κ = μ = 1, σ = τ = 3, 0 < p < 1, 0 < q < 4, ɛ1 = ɛ2 = 1.6 (yellow), ɛ1 = ɛ2 = 1.8 (blue) and ɛ1 = ɛ2 = 2 (green).

Fig. 2

The approximate graphs of Eq. (52) for the values u = v = k = 0,1,2,3, κ = μ = ϑ1 = 1, ϑ2 = 2, ϑ3 = 5, z = 0.5, 0 < p < 1, 0 < q < 4, ɛ1 = ɛ2 = 1.6 (yellow), ɛ1 = ɛ2 = 1.8 (blue) and ɛ1 = ɛ2 = 2 (green).

Fig. 3

The approximate graphs of Eq. (53) for the values u = v = k = 0,1,2,3, κ = μ = 1, ϑ2 = 2, ϑ3 = 5, z = 0.5, 0 < p < 1, 0 < q < 4, ɛ1 = ɛ2 = 1.6 (yellow), ɛ1 = ɛ2 = 1.8 (blue) and ɛ1 = ɛ2 = 2 (green).

Application 5.5

We let the general kernel as follows K ω,X:=exp p ωκq (1ω)μ. \[K\left( {\omega ,{\bf{X}}} \right): = \exp \left( { - {p \over {{\omega ^\kappa }}} - {q \over {{{(1 - \omega )}^\mu }}}} \right).\]

So the fractional partial differential equation for Application (5.2) is qcD 0+ ε2 pcD 0+ ε1y(p,q)=B p,q (κ,μ)(ε1σ,ε2τ), \[{{}_q^cD_{{0^ + }}^{{\varepsilon _2}}}{{} _p^cD_{{0^ + }}^{{\varepsilon _1}}}y(p,q) = B_{p,q}^{(\kappa ,\mu )}({\varepsilon _1}\sigma ,{\varepsilon _2}\tau ),\] the fractional partial differential equation for Application (5.3) is qcD 0+ ε2 pcD 0+ ε1y(p,q)=F p,q (κ,μ)(ϑ1,ε1ϑ2;ε2ϑ3;z), \[{{}_q^cD_{{0^ + }}^{{\varepsilon _2}}}{{} _p^cD_{{0^ + }}^{{\varepsilon _1}}}y(p,q) = F_{p,q}^{(\kappa ,\mu )}({\vartheta _1},{\varepsilon _1}{\vartheta _2};{\varepsilon _2}{\vartheta _3};z),\] the fractional partial differential equation for Application (5.4) is qcD 0+ ε2 pcD 0+ ε1y(p,q)=Φ p,q (κ,μ)(ε1ϑ2;ε2ϑ3;z). \[{{}_q^cD_{{0^ + }}^{{\varepsilon _2}}}{{} _p^cD_{{0^ + }}^{{\varepsilon _1}}}y(p,q) = \Phi _{p,q}^{(\kappa ,\mu )}({\varepsilon _1}{\vartheta _2};{\varepsilon _2}{\vartheta _3};z).\]

Then the solution of the first fractional partial differential equation is y(p,q)=pε1qε2u=0v=0(p)uΓ(1+ε1+u)(q)vΓ(1+ε2+v)B(ε1σκu,ε2τμv), \[y(p,q) = {p^{{\varepsilon _1}}}{q^{{\varepsilon _2}}}\sum\limits_{u = 0}^\infty \sum\limits_{v = 0}^\infty {{{{( - p)}^u}} \over {\Gamma (1 + {\varepsilon _1} + u)}}{{{{( - q)}^v}} \over {\Gamma (1 + {\varepsilon _2} + v)}}B({\varepsilon _1}\sigma - \kappa u,{\varepsilon _2}\tau - \mu v),\] the solution of the second fractional partial differential equation is y(p,q)=pε1qε2B(ε1ϑ2,ε2ϑ3ε1ϑ2)u=0v=0k=0(p)uΓ(1+ε1+u)(q)vΓ(1+ε2+v)(ϑ1)k zkk!×B(ε1ϑ2+kκu,ε2ϑ3ε1ϑ2μv). \[\matrix{ {y(p,q) = } \hfill & {{{{p^{{\varepsilon _1}}}{q^{{\varepsilon _2}}}} \over {B({\varepsilon _1}{\vartheta _2},{\varepsilon _2}{\vartheta _3} - {\varepsilon _1}{\vartheta _2})}}\sum\limits_{u = 0}^\infty \sum\limits_{v = 0}^\infty \sum\limits_{k = 0}^\infty {{{{( - p)}^u}} \over {\Gamma (1 + {\varepsilon _1} + u)}}{{{{( - q)}^v}} \over {\Gamma (1 + {\varepsilon _2} + v)}}{{{{({\vartheta _1})}_k} {z^k}} \over {k!}}} \hfill \cr {} \hfill & { \times B({\varepsilon _1}{\vartheta _2} + k - \kappa u,{\varepsilon _2}{\vartheta _3} - {\varepsilon _1}{\vartheta _2} - \mu v).} \hfill \cr } \] the solution of the third fractional partial differential equation is y(p,q)=pε1qε2B(ε1ϑ2,ε2ϑ3ε1ϑ2)u=0v=0k=0(p)uΓ(1+ε1+u)(q)vΓ(1+ε2+v)zkk!×B(ε1ϑ2+kκu,ε2ϑ3ε1ϑ2μv). \[\matrix{ {y(p,q) = } \hfill & {{{{p^{{\varepsilon _1}}}{q^{{\varepsilon _2}}}} \over {B({\varepsilon _1}{\vartheta _2},{\varepsilon _2}{\vartheta _3} - {\varepsilon _1}{\vartheta _2})}}\sum\limits_{u = 0}^\infty \sum\limits_{v = 0}^\infty \sum\limits_{k = 0}^\infty {{{{( - p)}^u}} \over {\Gamma (1 + {\varepsilon _1} + u)}}{{{{( - q)}^v}} \over {\Gamma (1 + {\varepsilon _2} + v)}}{{{z^k}} \over {k!}}} \hfill \cr {} \hfill & { \times B({\varepsilon _1}{\vartheta _2} + k - \kappa u,{\varepsilon _2}{\vartheta _3} - {\varepsilon _1}{\vartheta _2} - \mu v).} \hfill \cr } \]

Beta distribution with general kernel

One of the application areas of various generalized beta functions is statistics. The beta distribution is a continuous probability distribution that is widely used in Bayesian statistics and in modelling ratios and proportions. The beta function with general kernel is a general function that encompasses various beta functions that find applications in various fields such as physics, engineering and finance. Now we give the beta distribution with general kernel and describe the incomplete beta function with general kernel.

Application 6.1

We give the beta distribution with general kernel by F(ω)= ω σ1 (1ω) τ1 K ω,X KB^(σ,τ) ,0<ω<10 ,otherwise. \[F(\omega ) = \left\{ {\matrix{ {{{{\omega ^{\sigma - 1}}{{(1 - \omega )}^{\tau - 1}} K\left( {\omega ,{\bf{X}}} \right)} \over {^K\widehat B(\sigma ,\tau )}}} \hfill & {,0< \omega< 1} \hfill \cr 0 \hfill & {,{\rm{otherwise}}.} \hfill \cr } } \right.\]

If λ ℝ, then for −∞ < σ< ∞, −∞ < τ< ∞ E Xλ= KB^(σ+λ,τ) KB^(σ,τ). \[E\left( {{X^\lambda }} \right) = {{^K\widehat B(\sigma + \lambda ,\tau )} \over {^K\widehat B(\sigma ,\tau )}}.\]

The variance of the distribution is E X2 E(X)2= KB^(σ,τ ) KB^(σ+2,τ) (KB^(σ+1,τ))2 (KB^(σ,τ))2. \[E\left( {{X^2}} \right) - {\left\{ {E(X)} \right\}^2} = {{^K\widehat B(\sigma ,\tau {{) }^K}\widehat B(\sigma + 2,\tau ) - {{{(^K}\widehat B(\sigma + 1,\tau ))}^2}} \over {{{{(^K}\widehat B(\sigma ,\tau ))}^2}}}.\]

The moment generation function of the distribution is M(ω)= k=0E Xk ωk k!= k=0 KB^(σ+k,τ) KB^(σ,τ) ωk k!. \[M(\omega ) = \sum\limits_{k = 0}^\infty E\left( {{X^k}} \right){{{\omega ^k}} \over {k!}} = \sum\limits_{k = 0}^\infty {{^K\widehat B(\sigma + k,\tau )} \over {^K\widehat B(\sigma ,\tau )}}{{{\omega ^k}} \over {k!}}.\]

The cummulative distribution of F(ω) can be written as F(X)= K B^X(σ,τ) KB^(σ,τ), \[F(X) = {{^K{{\widehat B}_X}(\sigma ,\tau )} \over {^K\widehat B(\sigma ,\tau )}},\] where K B^X(σ,τ)= 0Xω σ1 (1ω) τ1 K ω,Xdω \[^K{\widehat B_X}(\sigma ,\tau ) = \int\limits_0^X {\omega ^{\sigma - 1}}{(1 - \omega )^{\tau - 1}} K\left( {\omega ,{\bf{X}}} \right)d\omega \] is incomplete beta function with general kernel.

Conclusions and remarks

In this paper, we introduced the gamma, beta, Gauss hypergeometric and confluent hypergeometric functions with general kernel. We also examined that special functions with general kernel generate other special functions in literature. Furthermore, we gave fundamental properties and presented some applications of special functions with general kernel. Finally, we obtained the incomplete beta function with general kernel by defining the beta distribution with general kernel. We conclude this paper by stating that in future works we will introduce their new structures with general kernel of various special functions such as Horn, Appell, Lauricella, Srivastava and also their new structures with general kernel of various fractional operators such as Riemann-Liouville, Caputo, Kober-Erdelyi and give their various potential properties and applications.

Sprache:
Englisch