A novel approach for the numerical solution of nonlinear Fredholm integral equations using the Hosoya polynomial method
und
19. Sept. 2024
Über diesen Artikel
Artikel-Kategorie: Original Study
Online veröffentlicht: 19. Sept. 2024
Seitenbereich: 137 - 152
Eingereicht: 13. Nov. 2023
Akzeptiert: 08. März 2024
DOI: https://doi.org/10.2478/ijmce-2025-0012
Schlüsselwörter
© 2025 Ravikiran Ashok Mundewadi et al., published by Sciendo
This work is licensed under the Creative Commons Attribution 4.0 International License.
Fig. 1

Fig. 2

Fig. 3
![Error analysis of HPM at n = 6 with existing method [7] of application 2.](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/6471f878215d2f6c89db71c3/j_ijmce-2025-0012_fig_003.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20250910%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20250910T174637Z&X-Amz-Expires=3600&X-Amz-Signature=de1b5f2ca481e9caa890ae49d053170c69b6eeb52d4095860045d98740a68942&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Fig. 4

Fig. 5
![Error analysis of HPM at n = 6 with existing method [6, 37] of application 3.](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/6471f878215d2f6c89db71c3/j_ijmce-2025-0012_fig_005.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20250910%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20250910T174637Z&X-Amz-Expires=3600&X-Amz-Signature=2b794699787227877ffea62de3e5ba7b455236df130d43b0e3cbf281e22dda32&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Fig. 6

Fig. 7
![Error analysis of HPM at n = 6 with existing method [36] of application 4.](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/6471f878215d2f6c89db71c3/j_ijmce-2025-0012_fig_007.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20250910%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20250910T174637Z&X-Amz-Expires=3600&X-Amz-Signature=b1a808f084b299721406f3092e5f62b9824c41eabb3e8622fe550b70bef56a18&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Fig. 8

Fig. 9
![Error analysis of HPM at n = 3 and n = 6 with existing method [7, 39] of application 5.](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/6471f878215d2f6c89db71c3/j_ijmce-2025-0012_fig_009.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20250910%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20250910T174637Z&X-Amz-Expires=3600&X-Amz-Signature=8c9e591322c94ede14953b67b8fd00d634c2f5cd2422c1024fb531db5d615288&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Comparison of exact, method [7] and HPM with Abs_ Error of application 2_
Exact solution | Method [ |
Abs. Error of Method [ |
HPM at |
Abs. Error of HPM at |
|
---|---|---|---|---|---|
0.1 | 0.1652988882 | 0.1625177090 | 2.78E-03 | 0.1608554812 | 4.44E-03 |
0.2 | 0.2018965180 | 0.1921647474 | 9.73E-03 | 0.1942241951 | 7.67E-03 |
0.3 | 0.2465969639 | 0.2290236855 | 1.76E-02 | 0.2531871269 | 6.59E-03 |
0.4 | 0.3011942119 | 0.2744773506 | 2.67E-02 | 0.3047983984 | 3.60E-03 |
0.5 | 0.3678794412 | 0.3240321944 | 4.38E-02 | 0.3658308083 | 2.04E-03 |
0.6 | 0.2578794412 | 0.2134699868 | 4.44E-02 | 0.2619872746 | 4.11E-03 |
0.7 | 0.1278794412 | 0.0853296542 | 4.25E-02 | 0.1371122768 | 9.23E-03 |
0.8 | −0.0221205588 | −0.0603813505 | 3.83E-02 | −0.0375967015 | 1.55E-02 |
0.9 | −0.1921205588 | −0.2236779332 | 3.16E-02 | −0.2043777302 | 1.23E-02 |
Comparison with exact, method [36] and HPM with Abs_ Error of application 4_
Exact solution | Method [ |
Abs. Error of Method [ |
HPM at |
Abs. Error of HPM at |
|
---|---|---|---|---|---|
0 | 0.07542668890494 | 0.02559478612236 | 4.98E-02 | 0.07975849286936 | 4.33E-03 |
0.1 | 0.38075203836056 | 0.33335908249980 | 4.74E-02 | 0.38049498956402 | 2.57E-04 |
0.2 | 0.64880672544600 | 0.60849186923286 | 4.03E-02 | 0.64856295681349 | 2.44E-04 |
0.3 | 0.85335168974252 | 0.82406123219325 | 2.93E-02 | 0.85347811951489 | 1.26E-04 |
0.4 | 0.97436464499621 | 0.95896574017436 | 1.54E-02 | 0.97439793249943 | 3.33E-05 |
0.5 | 1.00000000000000 | 1.00000000000000 | 0.00E+00 | 0.99990360585242 | 9.64E-05 |
0.6 | 0.92774838759410 | 0.94314729241595 | 1.54E-02 | 0.92778213023346 | 3.37E-05 |
0.7 | 0.76468229900737 | 0.79397275655664 | 2.93E-02 | 0.76480830219652 | 1.26E-04 |
0.8 | 0.52676377913895 | 0.56707863535209 | 4.03E-02 | 0.52652674951005 | 2.37E-04 |
0.9 | 0.23728195038934 | 0.28467490625009 | 4.74E-02 | 0.23703395647723 | 2.48E-04 |
1 | -0.07542668890494 | -0.02559478612236 | 4.98E-02 | -0.07123971074411 | 4.19E-03 |
Comparison with exact, method [6] and HPM with Abs_ Error of application 3_
Exact solution | Method [ |
Abs. Error of Method [ |
HPM at |
Abs. Error of HPM at |
|
---|---|---|---|---|---|
0 | 1 | 0.999956 | 4.40E-05 | 1.000000 | 7.47E-06 |
0.2 | 1.221403 | 1.221391 | 1.18E-05 | 1.221403 | 6.57E-07 |
0.4 | 1.491825 | 1.491845 | 2.00E-05 | 1.491825 | 4.13E-07 |
0.6 | 1.822119 | 1.822157 | 3.80E-05 | 1.822119 | 6.47E-07 |
0.8 | 2.225541 | 2.225517 | 2.39E-05 | 2.225542 | 1.40E-06 |
1 | 2.718282 | 2.718217 | 6.48E-05 | 2.718274 | 7.44E-06 |
Comparison with exact, HPM and existing method with error analysis of application 5_
Exact solution | Method [ |
Abs. Error of Method [ |
Abs. Error of Method [ |
HPM at |
Abs. Error of HPM at |
|
---|---|---|---|---|---|---|
0.1 | 1.105170918 | 1.107217811 | 2.05E-03 | 2.00E-04 | 1.105195722 | 2.48E-05 |
0.2 | 1.221402757 | 1.218102916 | 3.30E-03 | 9.00E-03 | 1.221455388 | 5.26E-05 |
0.3 | 1.349858806 | 1.341165462 | 8.69E-03 | 1.00E-03 | 1.349857068 | 1.74E-06 |
0.4 | 1.491824696 | 1.474918603 | 1.69E-02 | 1.00E-03 | 1.491797307 | 2.74E-05 |
0.5 | 1.648721268 | 1.667402633 | 1.87E-02 | 1.00E-03 | 1.648712515 | 8.76E-06 |
0.6 | 1.822118797 | 1.833861053 | 1.17E-02 | 1.00E-03 | 1.822138610 | 1.98E-05 |
0.7 | 2.013752703 | 2.016679830 | 2.93E-03 | 1.00E-03 | 2.013770656 | 1.79E-05 |
0.8 | 2.225540923 | 2.217456630 | 8.08E-03 | 1.00E-03 | 2.225522500 | 1.84E-05 |
0.9 | 2.459603104 | 2.437978177 | 2.16E-02 | 1.00E-03 | 2.459586419 | 1.67E-05 |
Comparison with exact, method [37] and HPM with Abs_ Error of application 3_
Exact solution | Method at k=8 [ |
Abs. Error of Method [ |
HPM at |
Abs. Error of HPM at |
|
---|---|---|---|---|---|
0.1 | 1.105171 | 1.0658 | 3.94E-02 | 1.105171 | 5.60E-07 |
0.2 | 1.221403 | 1.2091 | 1.23E-02 | 1.221403 | 6.57E-07 |
0.3 | 1.349859 | 1.3712 | 2.13E-02 | 1.349859 | 1.32E-07 |
0.4 | 1.491825 | 1.5547 | 6.29E-02 | 1.491825 | 4.13E-07 |
0.5 | 1.648721 | 1.7225 | 7.38E-02 | 1.648722 | 7.63E-07 |
0.6 | 1.822119 | 1.7625 | 5.96E-02 | 1.822119 | 6.47E-07 |
0.7 | 2.013753 | 1.9978 | 1.60E-02 | 2.013753 | 5.91E-07 |
0.8 | 2.225541 | 2.2641 | 3.86E-02 | 2.225542 | 1.40E-06 |
0.9 | 2.459603 | 2.5258 | 6.62E-02 | 2.459605 | 1.56E-06 |
Numerical solution of present method(HPM) with Abs_ Error of application 5_
Exact solution | HPM at |
Abs. Error at |
HPM at |
Abs. Error at |
|
---|---|---|---|---|---|
0.1 | 1.105170918 | 1.110184967 | 5.01E-03 | 1.105195722 | 2.48E-05 |
0.2 | 1.221402758 | 1.219896572 | 1.51E-03 | 1.221455388 | 5.26E-05 |
0.3 | 1.349858808 | 1.346250257 | 3.61E-03 | 1.349857068 | 1.74E-06 |
0.4 | 1.491824698 | 1.489246022 | 2.58E-03 | 1.491797307 | 2.74E-05 |
0.5 | 1.648721271 | 1.648883866 | 1.63E-04 | 1.648712515 | 8.76E-06 |
0.6 | 1.822118800 | 1.825163790 | 3.04E-03 | 1.822138610 | 1.98E-05 |
0.7 | 2.013752707 | 2.018085793 | 4.33E-03 | 2.013770656 | 1.79E-05 |
0.8 | 2.225540928 | 2.227649877 | 2.11E-03 | 2.225522500 | 1.84E-05 |
0.9 | 2.459603111 | 2.453856039 | 5.75E-03 | 2.459586419 | 1.67E-05 |