Uneingeschränkter Zugang

A novel approach for the numerical solution of nonlinear Fredholm integral equations using the Hosoya polynomial method

 und   
19. Sept. 2024

Zitieren
COVER HERUNTERLADEN

Fig. 1

P4,P3,P2.
P4,P3,P2.

Fig. 2

Numerical solution of present method (HPM) with exact solution at n = 6 of application 2.
Numerical solution of present method (HPM) with exact solution at n = 6 of application 2.

Fig. 3

Error analysis of HPM at n = 6 with existing method [7] of application 2.
Error analysis of HPM at n = 6 with existing method [7] of application 2.

Fig. 4

Numerical solution of present method (HPM) with exact solution at n = 6 of application 3.
Numerical solution of present method (HPM) with exact solution at n = 6 of application 3.

Fig. 5

Error analysis of HPM at n = 6 with existing method [6, 37] of application 3.
Error analysis of HPM at n = 6 with existing method [6, 37] of application 3.

Fig. 6

Numerical solution of present method (HPM) with exact solution at n = 6 of application 4.
Numerical solution of present method (HPM) with exact solution at n = 6 of application 4.

Fig. 7

Error analysis of HPM at n = 6 with existing method [36] of application 4.
Error analysis of HPM at n = 6 with existing method [36] of application 4.

Fig. 8

Numerical solution of present method (HPM) with exact solution at n = 6 of application 5.
Numerical solution of present method (HPM) with exact solution at n = 6 of application 5.

Fig. 9

Error analysis of HPM at n = 3 and n = 6 with existing method [7, 39] of application 5.
Error analysis of HPM at n = 3 and n = 6 with existing method [7, 39] of application 5.

Comparison of exact, method [7] and HPM with Abs_ Error of application 2_

x Exact solution Method [7] Abs. Error of Method [7] HPM at n = 6 Abs. Error of HPM at n = 6

0.1 0.1652988882 0.1625177090 2.78E-03 0.1608554812 4.44E-03
0.2 0.2018965180 0.1921647474 9.73E-03 0.1942241951 7.67E-03
0.3 0.2465969639 0.2290236855 1.76E-02 0.2531871269 6.59E-03
0.4 0.3011942119 0.2744773506 2.67E-02 0.3047983984 3.60E-03
0.5 0.3678794412 0.3240321944 4.38E-02 0.3658308083 2.04E-03
0.6 0.2578794412 0.2134699868 4.44E-02 0.2619872746 4.11E-03
0.7 0.1278794412 0.0853296542 4.25E-02 0.1371122768 9.23E-03
0.8 −0.0221205588 −0.0603813505 3.83E-02 −0.0375967015 1.55E-02
0.9 −0.1921205588 −0.2236779332 3.16E-02 −0.2043777302 1.23E-02

Comparison with exact, method [36] and HPM with Abs_ Error of application 4_

x Exact solution Method [36] Abs. Error of Method [36] HPM at n = 6 Abs. Error of HPM at n = 6

0 0.07542668890494 0.02559478612236 4.98E-02 0.07975849286936 4.33E-03
0.1 0.38075203836056 0.33335908249980 4.74E-02 0.38049498956402 2.57E-04
0.2 0.64880672544600 0.60849186923286 4.03E-02 0.64856295681349 2.44E-04
0.3 0.85335168974252 0.82406123219325 2.93E-02 0.85347811951489 1.26E-04
0.4 0.97436464499621 0.95896574017436 1.54E-02 0.97439793249943 3.33E-05
0.5 1.00000000000000 1.00000000000000 0.00E+00 0.99990360585242 9.64E-05
0.6 0.92774838759410 0.94314729241595 1.54E-02 0.92778213023346 3.37E-05
0.7 0.76468229900737 0.79397275655664 2.93E-02 0.76480830219652 1.26E-04
0.8 0.52676377913895 0.56707863535209 4.03E-02 0.52652674951005 2.37E-04
0.9 0.23728195038934 0.28467490625009 4.74E-02 0.23703395647723 2.48E-04
1 -0.07542668890494 -0.02559478612236 4.98E-02 -0.07123971074411 4.19E-03

Comparison with exact, method [6] and HPM with Abs_ Error of application 3_

x Exact solution Method [6] at M = 4,k = 2 Abs. Error of Method [6] HPM at n = 6 Abs. Error of HPM at n = 6

0 1 0.999956 4.40E-05 1.000000 7.47E-06
0.2 1.221403 1.221391 1.18E-05 1.221403 6.57E-07
0.4 1.491825 1.491845 2.00E-05 1.491825 4.13E-07
0.6 1.822119 1.822157 3.80E-05 1.822119 6.47E-07
0.8 2.225541 2.225517 2.39E-05 2.225542 1.40E-06
1 2.718282 2.718217 6.48E-05 2.718274 7.44E-06

Comparison with exact, HPM and existing method with error analysis of application 5_

x Exact solution Method [7] Abs. Error of Method [7] Abs. Error of Method [39] HPM at n = 6 Abs. Error of HPM at n = 6

0.1 1.105170918 1.107217811 2.05E-03 2.00E-04 1.105195722 2.48E-05
0.2 1.221402757 1.218102916 3.30E-03 9.00E-03 1.221455388 5.26E-05
0.3 1.349858806 1.341165462 8.69E-03 1.00E-03 1.349857068 1.74E-06
0.4 1.491824696 1.474918603 1.69E-02 1.00E-03 1.491797307 2.74E-05
0.5 1.648721268 1.667402633 1.87E-02 1.00E-03 1.648712515 8.76E-06
0.6 1.822118797 1.833861053 1.17E-02 1.00E-03 1.822138610 1.98E-05
0.7 2.013752703 2.016679830 2.93E-03 1.00E-03 2.013770656 1.79E-05
0.8 2.225540923 2.217456630 8.08E-03 1.00E-03 2.225522500 1.84E-05
0.9 2.459603104 2.437978177 2.16E-02 1.00E-03 2.459586419 1.67E-05

Comparison with exact, method [37] and HPM with Abs_ Error of application 3_

x Exact solution Method at k=8 [37] Abs. Error of Method [37] HPM at n = 6 Abs. Error of HPM at n = 6

0.1 1.105171 1.0658 3.94E-02 1.105171 5.60E-07
0.2 1.221403 1.2091 1.23E-02 1.221403 6.57E-07
0.3 1.349859 1.3712 2.13E-02 1.349859 1.32E-07
0.4 1.491825 1.5547 6.29E-02 1.491825 4.13E-07
0.5 1.648721 1.7225 7.38E-02 1.648722 7.63E-07
0.6 1.822119 1.7625 5.96E-02 1.822119 6.47E-07
0.7 2.013753 1.9978 1.60E-02 2.013753 5.91E-07
0.8 2.225541 2.2641 3.86E-02 2.225542 1.40E-06
0.9 2.459603 2.5258 6.62E-02 2.459605 1.56E-06

Numerical solution of present method(HPM) with Abs_ Error of application 5_

x Exact solution HPM at n = 3 Abs. Error at n = 3 HPM at n = 6 Abs. Error at n = 6

0.1 1.105170918 1.110184967 5.01E-03 1.105195722 2.48E-05
0.2 1.221402758 1.219896572 1.51E-03 1.221455388 5.26E-05
0.3 1.349858808 1.346250257 3.61E-03 1.349857068 1.74E-06
0.4 1.491824698 1.489246022 2.58E-03 1.491797307 2.74E-05
0.5 1.648721271 1.648883866 1.63E-04 1.648712515 8.76E-06
0.6 1.822118800 1.825163790 3.04E-03 1.822138610 1.98E-05
0.7 2.013752707 2.018085793 4.33E-03 2.013770656 1.79E-05
0.8 2.225540928 2.227649877 2.11E-03 2.225522500 1.84E-05
0.9 2.459603111 2.453856039 5.75E-03 2.459586419 1.67E-05
Sprache:
Englisch