Uneingeschränkter Zugang

Multistrain versus single-strain plant growth promoting microbial inoculants - The compatibility issue


Zitieren

Abeysinghe, S. 2009. Effect of combined use of Bacillus subtilis CA32 and Trichoderma harzianum RUOI on biological control of Rhizoctonia solani on Solanum melongena and Capsicum annuum. Plant Pathology Journal, 8: 9-16.10.3923/ppj.2009.9.16Search in Google Scholar

Abhilash, P.C., Dubey, R. K., Tripathi, V., Gupta, V. K. and Singh, H.B. 2016. Plant growth-promoting microorganisms for environmental sustainability. Trends in Biotechnology, 34(11): 847-850.10.1016/j.tibtech.2016.05.00527265889Search in Google Scholar

Adesemoye, A.O. and Kloepper, J.W. 2009. Plant–microbes interactions in enhanced fertilizer-use efficiency. Applied Microbiology and Biotechnology, 85(1): 1-12.10.1007/s00253-009-2196-019707753Search in Google Scholar

Agusti, L., Bonaterra, A., Moragrega, C., Camps, J. and Montesinos, E. 2011. Biocontrol of root rot of strawberry caused by Phytophthora cactorum with a combination of two Pseudomonas fluorescens strains. Journal of Plant Pathology, 93(2): 363-372.Search in Google Scholar

Ahkami, A.H., White III, R.A., Handakumbura, P.P. and Jansson, C. 2017. Rhizosphere engineering: Enhancing sustainable plant ecosystem productivity. Rhizosphere, 3: 233-243.10.1016/j.rhisph.2017.04.012Search in Google Scholar

Alamri, S.A., Hashem, M., Mostafa, Y. S., Nafady, N. A. and Abo-Elyousr, K. A. 2019. Biological control of root rot in lettuce caused by Exserohilum rostratum and Fusarium oxysporum via induction of the defense mechanism. Biological Control, 128: 76-84.10.1016/j.biocontrol.2018.09.014Search in Google Scholar

Ali, A.Α., ABD El-Kader, A.E.S. and Ghoneem K.H.M. 2018. Two Trichoderma species and Bacillus subtilis as biocontrol agents against rhizoctonia disease and their influence on potato productivity. Egyptian Journal Agricultural Research, 95: 527-540.10.21608/ejar.2017.147354Search in Google Scholar

Alizadeh, H., Behboudi, K., Ahmadzadeh, M., Javan-Nikkhah, M., Zamioudis, C., Pieterse, C.M. and Bakker, P.A. 2013. Induced systemic resistance in cucumber and Arabidopsis thaliana by the combination of Trichoderma harzianum Tr6 and Pseudomonas sp. Ps14. Biological Control, 65(1): 14-23.10.1016/j.biocontrol.2013.01.009Search in Google Scholar

Aloo, B.N., Makumba, B.A. and Mbega, E.R. 2019. The potential of bacilli rhizobacteria for sustainable crop production and environmental sustainability. Microbiological Research, 219: 26-39.10.1016/j.micres.2018.10.011Search in Google Scholar

Anith, K.N., Faseela, K.M., Archana, P.A. and Prathapan, K.D. 2011. Compatibility of Piriformospora indica and Trichoderma harzianum as dual inoculants in black pepper (Piper nigrum L.). Symbiosis, 55(1): 11-17.10.1007/s13199-011-0143-1Search in Google Scholar

Anith, K.N., Sreekumar, A. and Sreekumar, J. 2015. The growth of tomato seedlings inoculated with co-cultivated Piriformospora indica and Bacillus pumilus. Symbiosis, 65(1): 9-16.10.1007/s13199-015-0313-7Search in Google Scholar

Ansari, F.A. and Ahmad, I. 2019. Fluorescent Pseudomonas-FAP2 and Bacillus licheniformis interact positively in biofilm mode enhancing plant growth and photosynthetic attributes. Scientific Reports, 9(1): 4547.10.1038/s41598-019-40864-4641812330872708Search in Google Scholar

Arnold, A.E., Mejía, L.C., Kyllo, D., Rojas, E.I., Maynard, Z., Robbins, N. and Herre, E.A. 2003. Fungal endophytes limit pathogen damage in a tropical tree. Proceedings of the National Academy of Sciences, 100(26), 15649-15654.10.1073/pnas.2533483100Search in Google Scholar

Bashan, Y., de-Bashan, L. E., Prabhu, S. R. and Hernandez, J.P. 2014. Advances in plant growth-promoting bacterial inoculant technology: formulations and practical perspectives (1998–2013). Plant and Soil, 378(1-2): 1-33.10.1007/s11104-013-1956-xSearch in Google Scholar

Becker, J., Eisenhauer, N., Scheu, S. and Jousset, A. 2012. Increasing antagonistic interactions cause bacterial communities to collapse at high diversity. Ecology Letters, 15(5): 468-474.10.1111/j.1461-0248.2012.01759.x22394557Search in Google Scholar

Berg, G. 2009. Plant–microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Applied Microbiology and Biotechnology, 84(1): 11-18.10.1007/s00253-009-2092-719568745Search in Google Scholar

Berlec, A. 2012. Novel techniques and findings in the study of plant microbiota: search for plant probiotics. Plant Science, 193: 96-102.10.1016/j.plantsci.2012.05.01022794922Search in Google Scholar

Berta, G., Copetta, A., Gamalero, E., Bona, E., Cesaro, P., Scarafoni, A. and D’Agostino, G. 2014. Maize development and grain quality are differentially affected by mycorrhizal fungi and a growth-promoting pseudomonad in the field. Mycorrhiza, 24(3): 161-170.10.1007/s00572-013-0523-x23995918Search in Google Scholar

Brewer, M.T. and Larkin, R.P. 2005. Efficacy of several potential biocontrol organisms against Rhizoctonia solani on potato. Crop Protection, 24(11): 939-950.10.1016/j.cropro.2005.01.012Search in Google Scholar

Castanheira, N.L., Dourado, A.C., Pais, I., Semedo, J., Scotti-Campos, P., Borges, N., Carvalho G, Barreto Crespo M.T. and Fareleira, P. 2017. Colonization and beneficial effects on annual ryegrass by mixed inoculation with plant growth promoting bacteria. Microbiological Research, 198: 47-55.10.1016/j.micres.2017.01.009Search in Google Scholar

Chemeltorit, P.P., Mutaqin, K.H. and Widodo, W. 2017. Combining Trichoderma hamatum THSW13 and Pseudomonas aeruginosa BJ10–86: a synergistic chili pepper seed treatment for Phytophthora capsici infested soil. European Journal of Plant Pathology, 147(1): 157-166.10.1007/s10658-016-0988-5Search in Google Scholar

Chirino-Valle, I., Kandula, D., Littlejohn, C., Hill, R., Walker, M., Shields, M., Cummings, N., Hettiarachchi, D.. and Wratten, S. 2016. Potential of the beneficial fungus Trichoderma to enhance ecosystem-service provision in the biofuel grass Miscanthus x giganteus in agriculture. Scientific Reports, 6: 25109.10.1038/srep25109484687327117716Search in Google Scholar

Cota, L.V., Maffia, L.A., Mizubuti, E.S., Macedo, P.E. and Antunes, R. F. 2008. Biological control of strawberry gray mold by Clonostachys rosea under field conditions. Biological Control, 46(3): 515-522.10.1016/j.biocontrol.2008.04.023Search in Google Scholar

Couillerot, O., Combes-Meynet, E., Pothier, J. F., Bellvert, F., Challita, E., Poirier, M. A., Rohr, R., Comte, G., Moënne-Loccoz, Y. and Prigent-Combaret, C. 2011. The role of the antimicrobial compound 2, 4-diacetylphloroglucinol in the impact of biocontrol Pseudomonas fluorescens F113 on Azospirillum brasilense phytostimulators. Micro-biology, 157(6): 1694-1705.10.1099/mic.0.043943-021273247Search in Google Scholar

da Silva, J.A.T., de Medeiros, E.V., da Silva, J.M., Tenório, D.D.A., Moreira, K.A., Nascimento, T.C. E.D.S. and Souza-Motta, C. 2016. Trichoderma aureoviride URM 5158 and Trichoderma hamatum URM 6656 are biocontrol agents that act against cassava root rot through diff erent mechanisms. Journal of Phytopathology, 164(11-12): 1003-1011.10.1111/jph.12521Search in Google Scholar

De Boer, M., van der Sluis, I., van Loon, L.C. and Bakker, P.A. 1999. Combining fluorescent Pseudomonas spp. strains to enhance suppression of fusarium wilt of radish. European Journal of Plant Pathology, 105(2): 201-210.10.1023/A:1008761729073Search in Google Scholar

De Vrieze, M., Germanier, F., Vuille, N. and Weisskopf, L. 2018. Combining different potato-associated Pseudomonas strains for improved biocontrol of Phytophthora infestans. Frontiers in Microbiology, 9: 2573.10.3389/fmicb.2018.02573Search in Google Scholar

Deveau, A., Gross, H., Palin, B., Mehnaz, S., Schnepf, M., Leblond, P., Dorrestein, P.C. and Aigle, B. 2016. Role of secondary metabolites in the interaction between Pseudomonas fluorescens and soil microorganisms under iron-limited conditions. FEMS Microbiology Ecology, 92(8): fiw107.10.1093/femsec/fiw107Search in Google Scholar

Domenech, J., Reddy, M.S., Kloepper, J.W., Ramos, B., and Gutierrez-Manero, J. 2006. Combined application of the biological product LS213 with Bacillus, Pseudomonas or Chryseobacterium for growth promotion and biological control of soil-borne diseases in pepper and tomato. Bio-Control, 51(2): 245.10.1007/s10526-005-2940-zSearch in Google Scholar

Emami, S., Alikhani, H. A., Pourbabaei, A. A., Etesami, H., Motashare Zadeh, B. and Sarmadian, F. 2018. Improved growth and nutrient acquisition of wheat genotypes in phosphorus deficient soils by plant growth-promoting rhizospheric and endophytic bacteria. Soil Science and Plant Nutrition, 64(6): 719-727.10.1080/00380768.2018.1510284Search in Google Scholar

Emami, S., Alikhani, H.A., Pourbabaei, A.A., Etesami, H., Sarmadian, F. and Motessharezadeh, B. 2019. Effect of rhizospheric and endophytic bacteria with multiple plant growth promoting traits on wheat growth. Environmental Science and Pollution Research, 1-10.10.1007/s11356-019-05284-xSearch in Google Scholar

Foster, K.R. and Bell, T. 2012. Competition, not cooperation, dominates interactions among culturable microbial species. Current Biology, 22(19): 1845-1850.10.1016/j.cub.2012.08.005Search in Google Scholar

Friedman, J., Higgins, L.M. and Gore, J. 2017. Community structure follows simple assembly rules in microbial microcosms. Nature Ecology and Evolution, 1(5): 0109.10.1038/s41559-017-0109Search in Google Scholar

Fuga, C.A.G., Lopes, E.A., Vieira, B.S. and da Cunha, W.V. 2016. Efficiency and compatibility of Trichoderma spp. and Bacillus spp. isolates on the inhibition of Sclerotium cepivorum. Científica, 44(4): 526-531.10.15361/1984-5529.2016v44n4p526-531Search in Google Scholar

García, R.A.M., Ten Hoopen, G.M., Kass, D.C., Garita, V.A.S. and Krauss, U. 2003. Evaluation of myco-parasites as biocontrol agents of Rosellinia root rot in cocoa. Biological Control, 27(2): 210-227.10.1016/S1049-9644(03)00014-8Search in Google Scholar

Georgakopoulos, D.G., Fiddaman, P., Leifert, C. and Malathrakis, N.E. 2002. Biological control of cucumber and sugar beet damping-off caused by Pythium ultimum with bacterial and fungal antagonists. Journal of Applied Microbiology, 92(6): 1078-1086.10.1046/j.1365-2672.2002.01658.x12010548Search in Google Scholar

Großkopf, T. and Soyer, O.S. 2014. Synthetic microbial communities. Current Opinion in Microbiology, 18: 72-77.10.1016/j.mib.2014.02.002Search in Google Scholar

Guetsky, R., Elad, Y., Shtienberg, D. and Dinoor, A. 2002. Improved biocontrol of Botrytis cinerea on detached strawberry leaves by adding nutritional supplements to a mixture of Pichia guilermondii and Bacillus mycoides. Biocontrol Science and Technology, 12(5): 625-630.10.1080/0958315021000016289Search in Google Scholar

Guijarro, B., Larena, I., Casals, C., Teixidó, N., Melgarejo, P. and De Cal, A. 2019. Compatibility interactions between the biocontrol agent Penicillium frequentans Pf909 and other existing strategies to brown rot control. Biological Control, 129: 45-54.10.1016/j.biocontrol.2018.11.011Search in Google Scholar

Haas, D. and Défago, G. 2005. Biological control of soil-borne pathogens by fluorescent pseudomonads. Nature Reviews Microbiology, 3(4): 307.10.1038/nrmicro112915759041Search in Google Scholar

Hassani, M.A., Durán, P. and Hacquard, S. 2018. Microbial interactions within the plant holobiont. Microbiome, 6(1): 58.10.1186/s40168-018-0445-0587068129587885Search in Google Scholar

Hidalgo, E., Bateman, R., Krauss, U., Ten Hoopen, M., and Martínez, A. 2003. A field investigation into delivery systems for agents to control Moniliophthora roreri. European Journal of Plant Pathology, 109(9): 953-961.10.1023/B:EJPP.0000003746.16934.e2Search in Google Scholar

Hol, W. H., Bezemer, T. M. and Biere, A. 2013. Getting the ecology into interactions between plants and the plant growth-promoting bacterium Pseudomonas fluorescens. Frontiers in Plant Science, 4, 81.10.3389/fpls.2013.00081Search in Google Scholar

Hu, J., Wei, Z., Friman, V.P., Gu, S.H., Wang, X.F., Eisenhauer, N., Yang, T.J., Ma, J., Shen, Q.R., Xu Y.C. and Jousset, A. 2016. Probiotic diversity enhances rhizosphere microbiome function and plant disease suppression. MBio, 7(6): e01790-16.10.1128/mBio.01790-16Search in Google Scholar

Hussein, A., Abbasi, S., Sharifi, R. and Jamali, S. 2018. The effect of biocontrol agents consortia against Rhizoctonia root rot of common bean Phaseolus vulgaris. Journal of Crop Protection, 7(1): 73-85.Search in Google Scholar

Jain, A., Singh, A., Chaudhary, A., Singh, S. and Singh, H.B. 2014. Modulation of nutritional and anti-oxidant potential of seeds and pericarp of pea pods treated with microbial consortium. Food Research International, 64: 275-282.10.1016/j.foodres.2014.06.033Search in Google Scholar

Jain, A., Singh, A., Singh, S. and Singh, H.B. 2013. Microbial consortium-induced changes in oxidative stress markers in pea plants challenged with Sclerotinia sclerotiorum. Journal of Plant Growth Regulation, 32(2): 388-398.10.1007/s00344-012-9307-3Search in Google Scholar

Jain, A., Singh, A., Singh, S. and Singh, H.B. 2015. Biological management of Sclerotinia sclerotiorum in pea using plant growth promoting microbial consortium. Journal of Basic Microbiology, 55(8): 961-972.10.1002/jobm.201400628Search in Google Scholar

Jain, A., Singh, S., Kumar Sarma, B. and Bahadur Singh, H. 2012. Microbial consortium–mediated reprogramming of defence network in pea to enhance tolerance against Sclerotinia sclerotiorum. Journal of Applied Microbiology, 112(3): 537-550.10.1111/j.1365-2672.2011.05220.xSearch in Google Scholar

Jambhulkar, P.P., Sharma, P., Manokaran, R., Lakshman, D.K., Rokadia, P. and Jambhulkar, N. 2018. Assessing synergism of combined applications of Trichoderma harzianum and Pseudomonas fluorescens to control blast and bacterial leaf blight of rice. European Journal of Plant Pathology, 152(3): 747-757.10.1007/s10658-018-1519-3Search in Google Scholar

Jetiyanon, K., Fowler, W.D. and Kloepper, J.W. 2003. Broad-spectrum protection against several pathogens by PGPR mixtures under field conditions in Thailand. Plant Disease, 87(11): 1390-1394.10.1094/PDIS.2003.87.11.1390Search in Google Scholar

Jiang, Z.Q., Guo, Y.H., Li, S.M., Qi, H.Y. and Guo, J.H. 2006. Evaluation of biocontrol efficiency of different Bacillus preparations and field application methods against Phytophthora blight of bell pepper. Biological Control, 36(2): 216-223.10.1016/j.biocontrol.2005.10.012Search in Google Scholar

Jisha, M.S. and Alagawadi, A.R. 1996. Nutrient up-take and yield of sorghum (Sorghum bicolor L. Moench) inoculated with phosphate solubilizing bacteria and cellulolytic fungus in a cotton stalk amended vertisol. Microbiological Research, 151(2): 213-217.10.1016/S0944-5013(96)80046-2Search in Google Scholar

Jousset, A., Becker, J., Chatterjee, S., Karlovsky, P., Scheu, S. and Eisenhauer, N. 2014. Biodiversity and species identity shape the antifungal activity of bacterial communities. Ecology, 95(5): 1184-1190.10.1890/13-1215.125000750Search in Google Scholar

Kamou, N.N., Dubey, M., Tzelepis, G., Menexes, G., Papadakis, E.N., Karlsson, M., Lagopodi, A.L. and Jensen, D.F. 2016. Investigating the compatibility of the biocontrol agent Clonostachys rosea IK726 with prodigiosin-producing Serratia rubidaea S55 and phenazine-producing Pseudomonas chlororaphis ToZa7. Archives of Microbiology, 198(4): 369-377.10.1007/s00203-016-1198-426860841Search in Google Scholar

Kapongo, J.P., Shipp, L., Kevan, P. and Sutton, J.C. 2008. Co-vectoring of Beauveria bassiana and Clonostachys rosea by bumble bees (Bombus impatiens) for control of insect pests and suppression of grey mould in greenhouse tomato and sweet pepper. Biological Control, 46(3): 508-514.10.1016/j.biocontrol.2008.05.008Search in Google Scholar

Kashyap, P.L., Rai, P., Srivastava, A.K. and Kumar, S. 2017. Trichoderma for climate resilient agriculture. World Journal of Microbiology and Biotechnology, 33(8): 155.10.1007/s11274-017-2319-128695465Search in Google Scholar

Karlsson, M., Durling, M. B., Choi, J., Kosawang, C., Lackner, G., Tzelepis, G.D., Nygren K., Dubey, M.K., Kamou, N., Levasseur, A., Zapparata, A., Wang, J., Amby, D.B., Jensen, B., Sarrocco, S., Panteris, E., Lagopodi, A.L., Pöggeler, S., Vannacci, G., Collinge, D.B., Hoffmeister, D., Henrissat, B., Lee, Y.H. and Jensen, D.F. 2015. Insights on the evolution of mycoparasitism from the genome of Clonostachys rosea. Genome Biology and Evolution, 7(2): 465-480.10.1093/gbe/evu292435017125575496Search in Google Scholar

Karthiba, L., Saveetha, K., Suresh, S., Raguchander, T., Saravanakumar, D. and Samiyappan, R. 2010. PGPR and entomopathogenic fungus bioformulation for the synchronous management of leaffolder pest and sheath blight disease of rice. Pest Management Science: formerly Pesticide Science, 66(5): 555-564.10.1002/ps.190720069626Search in Google Scholar

Kelsic, E. D., Zhao, J., Vetsigian, K. and Kishony, R. 2015. Counteraction of antibiotic production and degradation stabilizes microbial communities. Nature, 521(7553): 516.10.1038/nature14485455141025992546Search in Google Scholar

Keyser, C.A., Jensen, B. and Meyling, N.V. 2016. Dual effects of Metarhizium spp. and Clonostachys rosea against an insect and a seed-borne pathogen in wheat. Pest Management Science, 72(3): 517-526.10.1002/ps.401525827357Search in Google Scholar

Kim, W.G., Weon, H.Y., Seok, S.J. and Lee, K.H. 2008. In vitro antagonistic characteristics of bacilli isolates against Trichoderma spp. and three species of mushrooms. Mycobiology, 36(4): 266-269.10.4489/MYCO.2008.36.4.266375520723997638Search in Google Scholar

Kloepper, J.W., Leong, J., Teintze, M. and Schroth, M.N. 1980. Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria. Nature, 286(5776): 885.10.1038/286885a0Search in Google Scholar

Kloepper, J.W., Ryu, C.M. and Zhang, S. 2004. Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology, 94(11): 1259-1266.10.1094/PHYTO.2004.94.11.125918944464Search in Google Scholar

Kokalis-Burelle, N., Kloepper, J.W. and Reddy, M.S. 2006. Plant growth-promoting rhizobacteria as transplant amendments and their effects on indigenous rhizosphere microorganisms. Applied Soil Ecology, 31(1-2): 91-100.10.1016/j.apsoil.2005.03.007Search in Google Scholar

Korada, S.K., Yarla, N.S., Mishra, V., Daim, M. A., Sharma, B., Ashraf, G.M., Reggi, R., Palmery, M., Peluso, I. and Kamal, M.A. 2018. Single Probiotic versus Multiple Probiotics-A Debate On Current Scenario for Alleviating Health Benefits. Current Pharmaceutical Design, 24(35): 4150-4153.10.2174/138161282466618101212413630317991Search in Google Scholar

Krauss, U. and Soberanis, W. 2001. Biocontrol of cocoa pod diseases with mycoparasite mixtures. Biological control, 22(2): 149-158.10.1006/bcon.2001.0956Search in Google Scholar

Krauss, U., Hidalgo, E., Arroyo, C. and Piper, S.R. 2004. Interaction between the entomopathogens Beauveria bassiana, Metarhizium anisopliae and Paecilomyces fumosoroseus and the mycopara-sites Clonostachys spp., Trichoderma harzianum and Lecanicillium lecanii. Biocontrol Science and Technology, 14(4): 331-346.10.1080/09583150410001665196Search in Google Scholar

Krauss, U., Ten Hoopen, M., Rees, R., Stirrup, T., Argyle, T., George, A., Arroyo, C., Corrales, E. and Casanoves, F. 2013. Mycoparasitism by Clonostachys byssicola and Clonostachys rosea on Trichoderma spp. from cocoa (Theobroma cacao) and implication for the design of mixed biocontrol agents. Biological Control, 67(3): 317-327.10.1016/j.biocontrol.2013.09.011Search in Google Scholar

Kumar, M., Mishra, S., Dixit, V., Kumar, M., Agarwal, L., Chauhan, P. S., and Nautiyal, C.S. 2016. Synergistic effect of Pseudomonas putida and Bacillus amyloliquefaciens ameliorates drought stress in chickpea (Cicer arietinum L.). Plant Signaling and Behavior, 11(1): e1071004.10.1080/15592324.2015.1071004Search in Google Scholar

Liu, H.X., Li, S.M., Luo, Y.M., Luo, L.X., Li, J.Q. and Guo, J. H. 2014. Biological control of Ralstonia wilt, Phytophthora blight, Meloidogyne root-knot on bell pepper by the combination of Bacillus subtilis AR12, Bacillus subtilis SM21 and Chryseobacterium sp. R89. European Journal of Plant Pathology, 139(1): 107-116.10.1007/s10658-013-0369-2Search in Google Scholar

Liu, K., Garrett, C., Fadamiro, H. and Kloepper, J.W. 2016a. Induction of systemic resistance in Chinese cabbage against black rot by plant growth-promoting rhizobacteria. Biological Control, 99: 8-13.10.1016/j.biocontrol.2016.04.007Search in Google Scholar

Liu, K., Garrett, C., Fadamiro, H. and Kloepper, J.W. 2016b. Antagonism of black rot in cabbage by mixtures of plant growth-promoting rhizobacteria (PGPR). BioControl, 61(5): 605-613.10.1007/s10526-016-9742-3Search in Google Scholar

Liu, K., McInroy, J. A., Hu, C.H., and Kloepper, J.W. 2018. Mixtures of plant-growth-promoting rhizobacteria enhance biological control of multiple plant diseases and plant-growth promotion in the presence of pathogens. Plant Disease, 102(1): 67-72.10.1094/PDIS-04-17-0478-RE30673446Search in Google Scholar

Liu, K., Newman, M., McInroy, J.A., Hu, C. H. and Kloepper, J.W. 2017. Selection and assessment of plant growth-promoting rhizobacteria for biological control of multiple plant diseases. Phytopathology, 107(8): 928-936.10.1094/PHYTO-02-17-0051-R28440700Search in Google Scholar

Lugtenberg, B.J., Caradus, J.R. and Johnson, L.J. 2016. Fungal endophytes for sustainable crop production. FEMS Microbiology Ecology, 92(12).10.1093/femsec/fiw19427624083Search in Google Scholar

Lyons, N.A. and Kolter, R. 2017. Bacillus subtilis protects public goods by extending kin discrimination to closely related species. MBio, 8(4): e00723-17.10.1128/mBio.00723-17Search in Google Scholar

Maketon, M., Apisitsantikul, J. and Siriraweekul, C. 2008. Greenhouse evaluation of Bacillus subtilis AP-01 and Trichoderma harzianum AP-001 in controlling tobacco diseases. Brazilian Journal of Microbiology, 39(2): 296-300.10.1590/S1517-83822008000200018Search in Google Scholar

Markowiak, P. and Śliżewska, K. 2018. The role of probiotics, prebiotics and synbiotics in animal nutrition. Gut pathogens, 10(1): 21.10.1186/s13099-018-0250-0598947329930711Search in Google Scholar

Maroniche, G.A., Diaz, P.R., Borrajo, M.P., Valverde, C.F. and Creus, C. 2018. Friends or foes in the rhizosphere: traits of fluorescent Pseudomonas that hinder Azospirillum brasilense growth and root colonization. FEMS microbiology ecology, 94(12): fiy202.10.1093/femsec/fiy202Search in Google Scholar

Mehrabi, Z., McMillan, V.E., Clark, I.M., Canning, G., Hammond-Kosack, K.E., Preston, G., P.R. Hirsch, and Mauchline, T.H. 2016. Pseudomonas spp. diversity is negatively associated with suppression of the wheat take-all pathogen. Scientific Reports, 6: 29905.10.1038/srep29905Search in Google Scholar

Mendoza, A.R. and Sikora, R.A. 2009. Biological control of Radopholus similis in banana by combined application of the mutualistic endophyte Fusarium oxysporum strain 162, the egg pathogen Paecilomyces lilacinus strain 251 and the antagonistic bacteria Bacillus firmus. Biocontrol, 54(2): 263-272.10.1007/s10526-008-9181-xSearch in Google Scholar

Mishra, D.S., Kumar, A., Prajapati, C.R., Singh, A.K., and Sharma, S. D. 2013. Identification of compatible bacterial and fungal isolate and their effectiveness against plant disease. Journal of Environmental Biology, 34(2): 183.Search in Google Scholar

Molina-Romero, D., Baez, A., Quintero-Hernández, V., Castañeda-Lucio, M., Fuentes-Ramírez, L.E., del Rocío Bustillos-Cristales, M., Rodríguez-Andrade, O., Morales-García, Y.E., Munive, A. and Muñoz-Rojas, J. 2017. Compatible bacterial mixture, tolerant to desiccation, improves maize plant growth. PloS ONE, 12(11): e0187913.10.1371/journal.pone.0187913Search in Google Scholar

Müller, D.B., Vogel, C., Bai, Y. and Vorholt, J.A. 2016. The plant microbiota: systems-level insights and perspectives. Annual Review of Genetics, 50: 211-234.10.1146/annurev-genet-120215-034952Search in Google Scholar

Murphy, B.R., Doohan, F.M. and Hodkinson, T.R. 2015. Persistent fungal root endophytes isolated from a wild barley species suppress seed-borne infections in a barley cultivar. Biocontrol, 60(2): 281-292.10.1007/s10526-014-9642-3Search in Google Scholar

Murphy, B.R., Hodkinson, T.R. and Doohan, F.M. 2017. A fungal endophyte consortium counterbalances the negative effects of reduced nitrogen input on the yield of field-grown spring barley. The Journal of Agricultural Science, 155(8): 1324-1331.10.1017/S0021859617000417Search in Google Scholar

Myresiotis, C.K., Karaoglanidis, G.S., Vryzas, Z. and Papadopoulou-Mourkidou, E. 2012. Evaluation of plant growth-promoting rhizobacteria, acibenzolar-S-methyl and hymexazol for integrated control of Fusarium crown and root rot on tomato. Pest Management Science, 68(3): 404-411.10.1002/ps.227722307860Search in Google Scholar

Ndiaye, M., Termorshuizen, A. J. and Van Bruggen, A.H.C. 2010. Effects of compost amendment and the biocontrol agent Clonostachys rosea on the development of charcoal rot (Macrophomina phaseolina) on cowpea. Journal of Plant Pathology, 173-180.Search in Google Scholar

O’Callaghan, M. 2016. Microbial inoculation of seed for improved crop performance: issues and opportunities. Applied Microbiology and Biotechnology, 100(13): 5729-5746.10.1007/s00253-016-7590-9490979527188775Search in Google Scholar

Ouwehand, A.C., Invernici, M.M., Furlaneto, F.A. and Messora, M.R. 2018. Effectiveness of multistrain versus single-strain probiotics: current status and recommendations for the future. Journal of Clinical Gastroenterology, 52: S35-S40.10.1097/MCG.0000000000001052Search in Google Scholar

Pangesti, N., Vandenbrande, S., Pineda, A., Dicke, M., Raaijmakers, J.M. and Van Loon, J.J. 2017. Antagonism between two root-associated beneficial Pseudomonas strains does not affect plant growth promotion and induced resistance against a leaf-chewing herbivore. FEMS Microbiology Ecology, 93(4): fix038.10.1093/femsec/fix03828334335Search in Google Scholar

Parnell, J.J., Berka, R., Young, H. A., Sturino, J. M., Kang, Y., Barnhart, D.M. and DiLeo, M.V. 2016. From the lab to the farm: an industrial perspective of plant beneficial microorganisms. Frontiers in Plant Science, 7: 1110.10.3389/fpls.2016.01110Search in Google Scholar

Patel, J.S., Kharwar, R.N., Singh, H.B., Upadhyay, R. S. and Sarma, B.K. 2017. Trichoderma asperellum (T42) and Pseudomonas fluorescens (OKC)-enhances resistance of pea against Erysiphe pisi through enhanced ROS generation and lignifications. Frontiers in Microbiology, 8: 306.10.3389/fmicb.2017.00306533239628303123Search in Google Scholar

Pierson, E.A. and Weller, D.M. 1994. Use of mixtures of fluorescent pseudomonads to Suppress Take-all and Improve the Growth of Wheat. Phytopathology, 84: 940-947.10.1094/Phyto-84-940Search in Google Scholar

Prabhukarthikeyan, R., Saravanakumar, D. and Raguchander, T. 2014. Combination of endophytic Bacillus and Beauveria for the management of Fusarium wilt and fruit borer in tomato. Pest Management Science, 70(11): 1742-1750.10.1002/ps.371924376014Search in Google Scholar

Prasad, A.A. and Babu, S. 2017. Compatibility of Azospirillum brasilense and Pseudomonas fluorescens in growth promotion of groundnut (Arachis hypogea L.). Anais da Academia Brasileira de Ciências, 89(2): 1027-1040.10.1590/0001-376520172016061728489199Search in Google Scholar

Rathi, N., Singh, S., Osbone, J. and Babu, S. 2015. Co-aggregation of Pseudomonas fluorescens and Bacillus subtilis in culture and co-colonization in black gram (Vigna mungo L.) roots. Biocatalysis and Agricultural Biotechnology, 4(3): 304-308.10.1016/j.bcab.2015.05.003Search in Google Scholar

Raupach, G.S. and Kloepper, J.W. 1998. Mixtures of plant growth-promoting rhizobacteria enhance biological control of multiple cucumber pathogens. Phytopathology, 88(11): 1158-1164.10.1094/PHYTO.1998.88.11.115818944848Search in Google Scholar

Ren, Q., Chen, Z., Luo, J., Liu, G., Guan, G., Liu, Z., Liu, A., Li, Y., Niu, Q., Liu, J., Yang, J., Han, X., Yin, H. and Yang, J. 2016. Laboratory evaluation of Beauveria bassiana and Metarhizium anisopliae in the control of Haemaphysalis qinghaiensis in China. Experimental and Applied Acarology, 69(2): 233-238.10.1007/s10493-016-0033-627071674Search in Google Scholar

Reaves, J.L. 1994. In vitro colony interactions among species of Trichoderma with inference toward biological control. Res. Pap. PNW-RP-474. Portland, OR: US Department of Agriculture, Forest Service, Pacific Northwest Research Station. 8 p., 474.10.2737/PNW-RP-474Search in Google Scholar

Ruano-Rosa, D. and Herrera, C.L. 2009. Evaluation of Trichoderma spp. as biocontrol agents against avocado white root rot. Biological Control, 51(1): 66-71.10.1016/j.biocontrol.2009.05.005Search in Google Scholar

Ruano-Rosa, D., Cazorla, F. M., Bonilla, N., Martín-Pérez, R., De Vicente, A. and López-Herrera, C.J. 2014. Biological control of avocado white root rot with combined applications of Trichoderma spp. and rhizobacteria. European Journal of Plant Pathology, 138(4): 751-762.10.1007/s10658-013-0347-8Search in Google Scholar

Ryu, C., Murphy, J.F., Reddy, M.S. and Kloepper, J.W. 2007. A two-strain mixture of rhizobacteria elicits induction of systemic resistance against Pseudomonas syringae and Cucumber mosaic virus coupled to promotion of plant growth on Arabidopsis thaliana. Journal of Microbiology and Biotechnology, 17(2): 280.Search in Google Scholar

Samaddar, S., Chatterjee, P., Choudhur y, A. R., Ahmed, S. and Sa, T. 2019. Interactions between Pseudomonas spp. and their role in improving the red pepper plant growth under salinity stress. Microbiological Research, 219: 66-73.10.1016/j.micres.2018.11.005Search in Google Scholar

Sangeetha, G., Usharani, S. and Muthukumar, A. 2009. Biocontrol with Trichoderma species for the management of postharvest crown rot of banana. Phytopathologia Mediterranea, 48(2): 214-225.Search in Google Scholar

Santiago, C.D., Yagi, S., Ijima, M., Nashimoto, T., Sawada, M., Ikeda, S., Asano, K, Orikasa, Y. and Ohwada, T. 2017. Bacterial compatibility in combined inoculations enhances the growth of potato seedlings. Microbes and Environments, 32(1): 14-23.10.1264/jsme2.ME16127537107028163278Search in Google Scholar

Saravanakumar, D., Lavanya, N., Muthumeena, K., Raguchander, T. and Samiyappan, R. 2009. Fluorescent pseudomonad mixtures mediate disease resistance in rice plants against sheath rot (Sarocladium oryzae) disease. Biocontrol, 54(2): 273.10.1007/s10526-008-9166-9Search in Google Scholar

Sarma, B.K., Yadav, S.K., Singh, S. and Singh, H. B. 2015. Microbial consortium-mediated plant defense against phytopathogens: readdressing for enhancing efficacy. Soil Biology and Biochemistry, 87: 25-33.10.1016/j.soilbio.2015.04.001Search in Google Scholar

Seenivasan, N., David, P.M.M., Vivekanandan, P. and Samiyappan, R. 2012. Biological control of rice root-knot nematode, Meloidogyne graminicola through mixture of Pseudomonas fluorescens strains. Biocontrol Science and Technology, 22(6): 611-632.10.1080/09583157.2012.675052Search in Google Scholar

Senthilraja, G., Anand, T., Kennedy, J.S., Raguchander, T. and Samiyappan, R. 2013. Plant growth promoting rhizobacteria (PGPR) and entomopathogenic fungus bioformulation enhance the expression of defense enzymes and pathogenesis-related proteins in groundnut plants against leafminer insect and collar rot pathogen. Physiological and Molecular Plant Pathology, 82: 10-19.10.1016/j.pmpp.2012.12.002Search in Google Scholar

Sharma, C.K., Vishnoi, V.K., Dubey, R.C. and Maheshwari, D.K. 2018. A twin rhizospheric bacterial consortium induces systemic resistance to a phytopathogen Macrophomina phaseolina in mung bean. Rhizosphere, 5: 71-75.10.1016/j.rhisph.2018.01.001Search in Google Scholar

Siddiqui, I.A. and Shaukat, S.S. 2003. Combination of Pseudomonas aeruginosa and Pochonia chlamydosporia for Control of Root-Infecting Fungi in Tomato. Journal of Phytopathology, 151(4): 215-222.10.1046/j.1439-0434.2003.00708.xSearch in Google Scholar

Sikora, R.A., Zum Felde, A., Mendoza, A., Menjivar, R. and Pocasangre, L. 2010. In Planta Suppressiveness to Nematodes and Long Term Root Health Stability through Biological Enhancement-Do We Need a Cocktail? Acta Horticulturae, 879: 553-56010.17660/ActaHortic.2010.879.60Search in Google Scholar

Simões, M., Simões, L. C., Pereira, M. O. and Vieira, M.J. 2008. Antagonism between Bacillus cereus and Pseudomonas fluorescens in planktonic systems and in biofilms. Biofouling, 24(5): 339-349.10.1080/0892701080223915418576180Search in Google Scholar

Singh, A., Jain, A., Sarma, B. K., Upadhyay, R.S. and Singh, H.B. 2014. Beneficial compatible microbes enhance antioxidants in chickpea edible parts through synergistic interactions. LWT-Food Science and Technology, 56(2): 390-397.10.1016/j.lwt.2013.11.030Search in Google Scholar

Singh, A., Sarma, B.K., Upadhyay, R.S. and Singh, H.B. 2013a. Compatible rhizosphere microbes mediated alleviation of biotic stress in chick-pea through enhanced antioxidant and phenylpropanoid activities. Microbiological Research, 168(1): 33-40.10.1016/j.micres.2012.07.001Search in Google Scholar

Singh, A., Jain, A., Sarma, B.K., Upadhyay, R.S. and Singh, H.B. 2013b. Rhizosphere microbes facilitate redox homeostasis in Cicer arietinum against biotic stress. Annals of Applied Biology, 163(1): 33-46.10.1111/aab.12030Search in Google Scholar

Sivasithamparam, K. and Parker, C.A. 1978. Effects of certain isolates of bacteria and actinomycetes on Gaeumannomyces graminis var. tritici and take-all of wheat. Australian Journal of Botany, 26(6): 773-782.10.1071/BT9780773Search in Google Scholar

Sniffen, J.C., McFarland, L.V., Evans, C.T. and Goldstein, E.J. 2018. Choosing an appropriate probiotic product for your patient: An evidence-based practical guide. PloS ONE, 13(12): e0209205.10.1371/journal.pone.0209205630624830586435Search in Google Scholar

Stefanic, P., Kraigher, B., Lyons, N. A., Kolter, R. and Mandic-Mulec, I. 2015. Kin discrimination between sympatric Bacillus subtilis isolates. Proceedings of the National Academy of Sciences, 112(45): 14042-14047.10.1073/pnas.1512671112465315726438858Search in Google Scholar

Stockwell, V. O., Johnson, K.B., Sugar, D. and Loper, J.E. 2011. Mechanistically compatible mixtures of bacterial antagonists improve biological control of fire blight of pear. Phytopathology, 101(1): 113-123.10.1094/PHYTO-03-10-009820839962Search in Google Scholar

Subramanian, P., Kim, K., Krishnamoorthy, R., Sundaram, S. and Sa, T. 2015. Endophytic bacteria improve nodule function and plant nitrogen in soybean on co-inoculation with Bradyrhizobium japonicum MN110. Plant Growth Regulation, 76(3): 327-332.10.1007/s10725-014-9993-xSearch in Google Scholar

Sundaramoorthy, S. and Balabaskar, P. 2012. Consortial effect of endophytic and plant growth-promoting rhizobacteria for the management of early blight of tomato incited by Alternaria solani. Journal of Plant Pathology and Microbiology, 3: 7.10.4172/2157-7471.1000145Search in Google Scholar

Sundaramoorthy, S. and Balabaskar, P. 2013. Evaluation of Combined Efficacy of Pseudomonas fluorescens and Bacillus subtilis in Managing Tomato Wilt Caused by Fusarium oxysporum f. sp. lycopersici (Fol). Plant Pathology Journal, 12(4): 154-161.10.3923/ppj.2013.154.161Search in Google Scholar

Sundaramoorthy, S., Raguchander, T., Ragupathi, N. and Samiyappan, R. 2012. Combinatorial effect of endophytic and plant growth promoting rhizobacteria against wilt disease of Capsicum annum L. caused by Fusarium solani. Biological Control, 60(1): 59-67.10.1016/j.biocontrol.2011.10.002Search in Google Scholar

ten Hoopen, G.M., George, A., Martinez, A., Stirrup, T., Flood, J. and Krauss, U. (2010). Compatibility between Clonostachys isolates with a view to mixed inocula for biocontrol. Mycologia, 102(5): 1204-1215.10.3852/08-095Search in Google Scholar

Thakkar, A. and Saraf, M. 2015. Development of microbial consortia as a biocontrol agent for effective management of fungal diseases in Glycine max L. Archives of Phytopathology and Plant Protection, 48(6): 459-474.10.1080/03235408.2014.893638Search in Google Scholar

Thilagavathi, R., Saravanakumar, D., Ragupathi, N. and Samiyappan, R. 2007. A combination of biocontrol agents improves the management of dry root rot (Macrophomina phaseolina) in greengram. Phytopathologia Mediterranea, 46(2): 157-167.Search in Google Scholar

Turner, T. R., James, E. K. and Poole, P.S. 2013. The plant microbiome. Genome biology, 14(6): 209.10.1186/gb-2013-14-6-209370680823805896Search in Google Scholar

Varkey, S., Anith, K.N., Narayana, R. and Aswini, S. 2018. A consortium of rhizobacteria and fungal endophyte suppress the root-knot nematode parasite in tomato. Rhizosphere, 5: 38-42.10.1016/j.rhisph.2017.11.005Search in Google Scholar

Vorholt, J. A., Vogel, C., Carlström, C. I. and Mueller, D.B. 2017. Establishing causality: opportunities of synthetic communities for plant microbiome research. Cell Host and Microbe, 22(2): 142-15510.1016/j.chom.2017.07.00428799900Search in Google Scholar

Wang, C., Wang, C., Gao, Y.L., Wang, Y.P. Guo, J.H. 2016. A consortium of three plant growth-promoting rhizobacterium strains acclimates Lycopersicon esculentum and confers a better tolerance to chilling stress. Journal of Plant Growth Regulation, 35(1): 54-64.10.1007/s00344-015-9506-9Search in Google Scholar

Wang, C.J., Yang, W., Wang, C., Gu, C., Niu, D. D., Liu, H. X., Wang Y-P and Guo, J.H. 2012. Induction of drought tolerance in cucumber plants by a consortium of three plant growth-promoting rhizobacterium strains. PLoS ONE, 7(12): e52565.10.1371/journal.pone.0052565Search in Google Scholar

Weller, D.M. and Cook, R.J. 1983. Suppression of take-all of wheat by seed treatments with fluorescent pseudomonads. Phytopathology, 73(3): 463-469.10.1094/Phyto-73-463Search in Google Scholar

Woo, S.L., & Pepe, O. 2018. Microbial consortia: promising probiotics as plant biostimulants for sustainable agriculture. Frontiers in Plant Science, 9: 1801.10.3389/fpls.2018.01801Search in Google Scholar

Woo, S. L., Ruocco, M., Vinale, F., Nigro, M., Marra, R., Lombardi, N., Pascale, A., Lanzuise, S., Manganiello, G. and Lorito, M. 2014. Trichoderma-based products and their widespread use in agriculture. The Open Mycology Journal, 8: 71-126.10.2174/1874437001408010071Search in Google Scholar

Xu, X., Robinson, J., Jeger, M. and Jeffries, P. 2010. Using combinations of biocontrol agents to control Botrytis cinerea on strawberry leaves under fluctuating temperatures. Biocontrol Science and Technology, 20(4): 359-373.10.1080/09583150903528114Search in Google Scholar

Yadav, S. K., Singh, S., Singh, H. B. and Sarma, B.K. 2017. Compatible rhizosphere-competent microbial consortium adds value to the nutritional quality in edible parts of chickpea. Journal of Agricultural and Food Chemistry, 65(30): 6122-6130.10.1021/acs.jafc.7b0132628700827Search in Google Scholar

Yang, P., Sun, Z.X., Liu, S.Y., Lu, H.X., Zhou, Y. and Sun, M. 2013. Combining antagonistic endophytic bacteria in different growth stages of cotton for control of Verticillium wilt. Crop Protection, 47: 17-23.10.1016/j.cropro.2012.12.020Search in Google Scholar

Yobo, K.S., Laing, M.D. and Hunter, C.H. 2011. Effects of single and combined inoculations of selected Trichoderma and Bacillus isolates on growth of dry bean and biological control of Rhizoctonia solani damping-off. African Journal of Biotechnology, 10(44): 8746-8756.10.5897/AJB10.2213Search in Google Scholar

Zaim, S., Bekkar, A.A. and Belabid, L. 2018. Efficacy of Bacillus subtilis and Trichoderma harzianum combination on chickpea Fusarium wilt caused by F. oxysporum f. sp. ciceris. Archives of Phytopathology and Plant Protection, 51(3-4): 217-226.10.1080/03235408.2018.1447896Search in Google Scholar

Zalila-Kolsi, I., Mahmoud, A.B., Ali, H., Sellami, S., Nasfi, Z., Tounsi, S. and Jamoussi, K. 2016. Antagonist effects of Bacillus spp. strains against Fusarium graminearum for protection of durum wheat (Triticum turgidum L. subsp. durum). Microbiological Research, 192: 148-158.10.1016/j.micres.2016.06.012Search in Google Scholar

Zhang, S., White, T.L., Martinez, M.C., McInroy, J.A., Kloepper, J.W. and Klassen, W. 2010. Evaluation of plant growth-promoting rhizobacteria for control of Phytophthora blight on squash under greenhouse conditions. Biological Control, 53(1): 129-135.10.1016/j.biocontrol.2009.10.015Search in Google Scholar

eISSN:
1791-3691
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
2 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Biologie, Botanik, Zoologie, andere