Uneingeschränkter Zugang

Numerical Modeling of Compound Channels for Determining Kinetic Energy and Momentum Correction Coefficients Using the OpenFOAM Software


Zitieren

Al-Khatib I. A., Abu-Hassan H. M. Abaza K. A. (2013) Development of empirical regression-based models for predicting mean velocities in asymmetric compound channels, Flow Measurement and Instrumentation, 33, 77–87.10.1016/j.flowmeasinst.2013.04.013 Search in Google Scholar

An K., Fung J. C. H. (2018) An improved SST kω model for pollutant dispersion simulations within an isothermal boundary layer, Journal of Wind Engineering and Industrial Aerodynamics, 179, 369–384.10.1016/j.jweia.2018.06.010 Search in Google Scholar

Boussinesq J. (1877) On the theory of flowing waters, Paris. Search in Google Scholar

Chow V. T. (1951) Open-Channel Hydraulics, McGrawHill, New York. Search in Google Scholar

Coriolis G. (1836) On the Backwater-curve equation and the corrections to bBe introduced to account for the difference of the velocities at different points on the same cross section, Annales des Ponts et Chaussées, 11 (1), 314–335. Search in Google Scholar

Fernandes J. N. (2013) Compound channel uniform and non-uniform flows with and without vegetation in the floodplain, Doctoral dissertation. Search in Google Scholar

French R. H. (1987) Open-Channel Hydraulics, McGrawHill, Singapore, 2nd edition. Search in Google Scholar

Ghanbari-Adivi E. (2020) Compound Channel’s Cross-section Shape Effects on the Kinetic Energy and Momentum Correction Coefficients, Archives of Hydro-Engineering and Environmental Mechanics, 67 (1–4), 55–71, https://doi.org/10.1515/heem-2020-0004.10.1515/heem-2020-0004 Search in Google Scholar

Hellsten A. (1998) Some improvements in Menter’s k-omega SST turbulence model, 29th AIAA, Fluid Dynamics Conference, p. 2554. Search in Google Scholar

Knight D. W., Demetriou J. D., Hamed M. E. (1984) Stage discharge relationships for compound channels, [In:] Smith KVH (ed) Channels and channel control structures, Springer, Berlin, pp. 445–459. Search in Google Scholar

Manokaran K., Ramakrishna M., Jayachandran T. (2020) Application of flux vector splitting methods with SST turbulence model to wall-bounded flows, Computers & Fluids, 208, p. 104611, https://doi.org/10.1016/j.compfluid.2020.104611.10.1016/j.compfluid.2020.104611 Search in Google Scholar

Menter F. R. (1992) Influence of freestream values on kω turbulence model predictions, AIAA Journal, 30 (6), 1657–1659.10.2514/3.11115 Search in Google Scholar

Menter F. R. (1993) Zonal two-equation kω turbulence model for aerodynamic flows, AIAA Paper 1993-2906.10.2514/6.1993-2906 Search in Google Scholar

Menter F. R. (2009) Review of the shear-stress transport turbulence model experience from an industrial perspective, International Journal of Computational Fluid Dynamics, 23(4), 305–316.10.1080/10618560902773387 Search in Google Scholar

Menter F. R., Kuntz M., Langtry R. (2003) Ten years of industrial experience with the SST turbulence model, Turbulence, heat and mass transfer, 4 (1), 625–632. Search in Google Scholar

Mohanty P. K., Khatua K. K. (2014) Estimation of discharge and its distribution in compound channels, Journal of Hydrodynamics, 26 (1), 144–154.10.1016/S1001-6058(14)60017-2 Search in Google Scholar

Penttinen O., Yasari E., Nilsson H. (2011) A pimplefoam tutorial for channel flow, with respect to different LES models, Practice Periodical on Structural Design and Construction, 23 (2), 1–23. Search in Google Scholar

Piomelli U. (1993) High Reynolds number calculations using the dynamic subgrid-scale stress model, Physics of Fluids A: Fluid Dynamics, 5 (6), 1484–1490.10.1063/1.858586 Search in Google Scholar

Rusche H. (2002) Computational Fluid Dynamics of Dispersed Two-Phase Flows at High Phase Fractions, Ph.D. thesis, Imperial College, University of London. Search in Google Scholar

Sagaut P. (2006) Large Eddy Simulation for Incompressible Flows: An Introduction, Second Edition, Verlag Berlin Heidelberg New York: Springer Science & Business Media. Search in Google Scholar

Shiono K., Rameshwaran P. (2015) Mathematical modeling of Bed shear stress and depth averaged velocity for emergent vegetation on floodplain in compound channel, E-Proceedings of the 36th IAHR World Congress 28 June –3 July, 2015, The Hague, the Netherlands. Search in Google Scholar

Versteeg H., Malalasekera W. (2007) An Introduction to Computional Fluid Dynamics: The Finite Volume Method, Second Edition, England: Pearson Education Limited. Search in Google Scholar

Warner J. C., Sherwood C. R., Arango H. G., Signell R. P. (2005) Performance of four turbulence closure models implemented using a generic length scale method, Ocean Modelling, 8 (1–2), 81–113.10.1016/j.ocemod.2003.12.003 Search in Google Scholar

White F. M. (1979) Fluid mechanics, Google Scholar, 367–375. Search in Google Scholar

Zahiri A. P., Roohi E. (2019) Anisotropic minimum-dissipation (AMD) subgrid-scale model implemented in OpenFOAM: verification and assessment in single-phase and multi-phase flows, Computers & Fluids, 180, 190–205, https://doi.org/10.1016/j.compfluid.2018.12.011.10.1016/j.compfluid.2018.12.011 Search in Google Scholar

eISSN:
2300-8687
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
2 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Technik, Einführungen und Gesamtdarstellungen, andere