This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.
Abdul-Baki AA, Anderson JO (1973) Vigour determination of soybean seed by multiple criteria. Crop Science13:630–633. doi:10.2135/cropsci1973.0011183X001300060013.Abdul-BakiAAAndersonJO1973Vigour determination of soybean seed by multiple criteriaCrop Science1363063310.2135/cropsci1973.0011183X001300060013Open DOISearch in Google Scholar
Ahmadvand G, Soleimani F, Saadatian B, Pouya M (2012) Effect of seed priming with potassium nitrate on germination and emergence traits of two soybean cultivars under salinity stress conditions. American Eurasian Journal of Agricultural & Environmental Sciences12:769–774. doi:10.5829/idosi.aejaes.2012.12.06.1755.AhmadvandGSoleimaniFSaadatianBPouyaM2012Effect of seed priming with potassium nitrate on germination and emergence traits of two soybean cultivars under salinity stress conditionsAmerican Eurasian Journal of Agricultural & Environmental Sciences1276977410.5829/idosi.aejaes.2012.12.06.1755Open DOISearch in Google Scholar
Barnes JD, Balaguer L, Manrique E, Elvira S, Davison AW (1992) A reappraisal of the use of DMSO for the extraction and determination of chlorophylls a and b in lichens and higher plants. Environmental and Experimental Botany32(2):85–100. doi: 10.1016/0098-8472(92)90034.BarnesJDBalaguerLManriqueEElviraSDavisonAW1992A reappraisal of the use of DMSO for the extraction and determination of chlorophylls a and b in lichens and higher plantsEnvironmental and Experimental Botany3228510010.1016/0098-8472(92)90034Open DOISearch in Google Scholar
Brown AH (1991) From gravity and the organism to gravity and the cell. ASGSB Bulletin: Publication of the American Society for Gravitational and Space Biology4(2):7–18. pmid: 11537184.BrownAH1991From gravity and the organism to gravity and the cellASGSB Bulletin: Publication of the American Society for Gravitational and Space Biology4271811537184Search in Google Scholar
Bruns HA, Croy LI (1985) Root volume and root dry weight measuring system for wheat cultivars. Cereal Research Communication13(2/3):177–183177-183. doi: jstor.org/stable/23782998.BrunsHACroyLI1985Root volume and root dry weight measuring system for wheat cultivarsCereal Research Communication132/3177183177-183. doi: jstor.org/stable/23782998.Search in Google Scholar
Davies R, Di Sacco A, Newton R (2015) Germination testing: procedures and evaluation. Technical Information Sheet_13a. Royal Botanic Gardens, Kew. doi: 10.13140/RG.2.2.29338.85440.DaviesRDi SaccoANewtonR2015Germination testing: procedures and evaluationTechnical Information Sheet_13aRoyal Botanic GardensKew10.13140/RG.2.2.29338.85440Open DOISearch in Google Scholar
Dhindsa RS, Plumb-Dhindsa PA, Thorpe TA (1981) Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. Journal of Experimental Botany32(1):93–101. doi: 10.1093/jxb/32.1.93.DhindsaRSPlumb-DhindsaPAThorpeTA1981Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalaseJournal of Experimental Botany3219310110.1093/jxb/32.1.93Open DOISearch in Google Scholar
Dixit JP, Jagtap SS, Kamble SM, Vidyasagar PB (2017) Effects of short-term hypergravity exposure are reversible in Triticum aestivum L. caryopses. Microgravity Science and Technology29:343–350. doi: 10.1007/s12217-017-9553.DixitJPJagtapSSKambleSMVidyasagarPB2017Effects of short-term hypergravity exposure are reversible in Triticum aestivum L. caryopsesMicrogravity Science and Technology2934335010.1007/s12217-017-9553Open DOISearch in Google Scholar
Dixit JP, Jagtap SS, Vidyasagar PB (2022) Short-term hypergravity-induced changes in growth, photo synthetic parameters, and assessment of threshold values in heat (Triticum aestivum L.). Gravitational and Space Research10(1):10–17. doi: 10.2478/gsr-2022-0002.DixitJPJagtapSSVidyasagarPB2022Short-term hypergravity-induced changes in growth, photo synthetic parameters, and assessment of threshold values in heat (Triticum aestivum L.)Gravitational and Space Research101101710.2478/gsr-2022-0002Open DOISearch in Google Scholar
dos Santos MA, Fachel FN, Nava MJ, Astarita LV, Collin P, Russomano T (2012) Effect of hypergravity simulation on carrot germination and growth. Aviation, Space, and Environmental Medicine83(10):1011–1012. doi: 10.3357/asem.3476.2012.dos SantosMAFachelFNNavaMJAstaritaLVCollinPRussomanoT2012Effect of hypergravity simulation on carrot germination and growthAviation, Space, and Environmental Medicine83101011101210.3357/asem.3476.2012Open DOISearch in Google Scholar
Frick EM, Strader LC (2018) Roles for IBA-derived auxin in plant development. Journal of Experimental Botany69(2):169–177. doi: 10.1093/jxb/erx298.FrickEMStraderLC2018Roles for IBA-derived auxin in plant developmentJournal of Experimental Botany69216917710.1093/jxb/erx298Open DOISearch in Google Scholar
Gajdošová S, Spíchal L, Kamínek M, Hoyerová K, Novák O, Dobrev PI, Motyka V (2011) Distribution, biological activities, metabolism, and the conceivable function of cis-zeatin-type cytokinins in plants. Journal of Experimental Botany62(8):2827–2840. doi: 10.1093/jxb/erq457.GajdošováSSpíchalLKamínekMHoyerováKNovákODobrevPIMotykaV2011Distribution, biological activities, metabolism, and the conceivable function of cis-zeatin-type cytokinins in plantsJournal of Experimental Botany6282827284010.1093/jxb/erq457Open DOISearch in Google Scholar
Hansen H, Dörffling K (2003) Root-derived trans-zeatin riboside and abscisic acid in drought-stressed and rewatered sunflower plants: interaction in the control of leaf diffusive resistance? Functional Plant Biology30(4):365–375. doi:10.1071/FP02223.HansenHDörfflingK2003Root-derived trans-zeatin riboside and abscisic acid in drought-stressed and rewatered sunflower plants: interaction in the control of leaf diffusive resistance?Functional Plant Biology30436537510.1071/FP02223Open DOISearch in Google Scholar
Hosamani R, Swamy BK, Dsouza A, Sathasivam M (2023) Plant responses to hypergravity: a comprehensive review. Planta257(1):17. doi: 10.1007/s00425-022-04051-6.HosamaniRSwamyBKDsouzaASathasivamM2023Plant responses to hypergravity: a comprehensive reviewPlanta25711710.1007/s00425-022-04051-6Open DOISearch in Google Scholar
Hoson T, Nishitani K, Miyamoto K, Ueda J, Kamisaka S, Yamamoto R, Masuda Y (1996) Effects of hypergravity on growth and cell wall properties of cress hypocotyls. Journal of Experimental Botany47(297):513–517. doi: 10.1016/j.phytochem.2014.08.022.HosonTNishitaniKMiyamotoKUedaJKamisakaSYamamotoRMasudaY1996Effects of hypergravity on growth and cell wall properties of cress hypocotylsJournal of Experimental Botany4729751351710.1016/j.phytochem.2014.08.022Open DOISearch in Google Scholar
Hugo A, Lester P (1984) Catalase in vitro. Methods in Enzymology105:121–126. doi: 10.1016/s0076-6879(84)05016-3.HugoALesterP1984Catalase in vitroMethods in Enzymology10512112610.1016/s0076-6879(84)05016-3Open DOISearch in Google Scholar
International Seed Testing Association (1999) International rules for seed testing. Rules 1999 (No. Suppl).International Seed Testing Association1999International rules for seed testingRules 1999 (No. Suppl).Search in Google Scholar
International Seed Testing Association (2015) International rules for seed testing, Vol. 215, Introduction, i-1-6 (10), Bassersdorf.International Seed Testing Association2015International rules for seed testing215Introduction, i-1-6 (10), Bassersdorf.Search in Google Scholar
Jagtap SS, Vidyasagar PB (2010) Effects of high gravity (g) values on growth and chlorophyll content in wheat. International Journal of Integrative Biology9(3):128–130.JagtapSSVidyasagarPB2010Effects of high gravity (g) values on growth and chlorophyll content in wheatInternational Journal of Integrative Biology93128130Search in Google Scholar
Kasahara H, Shiwa M, Takeuchi Y, Yamada M (1995) Effects of hypergravity on the elongation growth in radish and cucumber hypocotyls. Journal of Plant Research108:59–64. doi: 10.1007/BF02344306.KasaharaHShiwaMTakeuchiYYamadaM1995Effects of hypergravity on the elongation growth in radish and cucumber hypocotylsJournal of Plant Research108596410.1007/BF02344306Open DOISearch in Google Scholar
Kiss JZ (2015) Conducting plant experiments in space. Plant Gravitropism: Methods and Protocols:255–283. doi: 10.1007/978-1-4939-2697-8_19.KissJZ2015Conducting plant experiments in spacePlant Gravitropism: Methods and Protocols25528310.1007/978-1-4939-2697-8_19Open DOISearch in Google Scholar
Kittock DL, Law AG (1968) Relationship of seedling vigor to respiration and tetrazolium chloride reduction by germinating wheat seeds. Agronomy Journal60(3):286–288. doi: 10.2134/agronj1968.00021962006000030012.KittockDLLawAG1968Relationship of seedling vigor to respiration and tetrazolium chloride reduction by germinating wheat seedsAgronomy Journal60328628810.2134/agronj1968.00021962006000030012Open DOISearch in Google Scholar
Mega R, Meguro-Maoka A, Endo A, Shimosaka E, Murayama S, Nambara E, Sato Y (2015) Sustained low abscisic acid levels increase seedling vigor under cold stress in rice (Oryza sativa L.). Scientific reports5(1):13819. doi: 10.1038/srep13819.MegaRMeguro-MaokaAEndoAShimosakaEMurayamaSNambaraESatoY2015Sustained low abscisic acid levels increase seedling vigor under cold stress in rice (Oryza sativa L.)Scientific reports511381910.1038/srep13819Open DOISearch in Google Scholar
Meihong Y, Chunrong G, Kuanhu D, Xiang Z (2005) Effects of hypergravity on salt tolerance of alfalfa seedlings. Zhongguo Nong xue Tong bao. Chinese Agricultural Science Bulletin21(11):16–18.MeihongYChunrongGKuanhuDXiangZ2005Effects of hypergravity on salt tolerance of alfalfa seedlings. Zhongguo Nong xue Tong baoChinese Agricultural Science Bulletin21111618Search in Google Scholar
Merkys A, Laurinavičius R (1991) Development of higher plants under altered gravitational con dltlons. Advances in space biology and medicine1:155–181. doi: 10.1016/s1569-2574(08)60124-0.MerkysALaurinavičiusR1991Development of higher plants under altered gravitational con dltlonsAdvances in space biology and medicine115518110.1016/s1569-2574(08)60124-0Open DOISearch in Google Scholar
Mshelmbula B, Akomolafe G (2019) Preliminary effect of centrifugal force on germination and early growth of Maize (Zea mays L.). Transactions on Science and Technology6(4):328–333.MshelmbulaBAkomolafeG2019Preliminary effect of centrifugal force on germination and early growth of Maize (Zea mays L.)Transactions on Science and Technology64328333Search in Google Scholar
Nakabayashi I, Karahara I, Tamaoki D, Masuda K, Wakasugi T, Yamada K, Kamisaka S (2006) Hypergravity stimulus enhances primary xylem development and decreases mechanical properties of secondary cell walls in inflorescence stems of Arabidopsis thaliana. Annals of Botany97(6):1083–1090. doi: org/10.1093/aob/mcl055.NakabayashiIKaraharaITamaokiDMasudaKWakasugiTYamadaKKamisakaS2006Hypergravity stimulus enhances primary xylem development and decreases mechanical properties of secondary cell walls in inflorescence stems of Arabidopsis thalianaAnnals of Botany97610831090doi: org/10.1093/aob/mcl055.Search in Google Scholar
Nunes ACP, Santos GAD, Santos MAD, Russomano T, Santos OPD, Valente BMDRT, Resende MDVD (2018) Application of hypergravity in Eucalyptus and Corymbia seeds. Ciência Rural48.NunesACPSantosGADSantosMADRussomanoTSantosOPDValenteBMDRTResendeMDVD2018Application of hypergravity in Eucalyptus and Corymbia seedsCiência Rural48Search in Google Scholar
Pan X, Welti R, Wang X (2008) Simultaneous quantification of major phytohormones and related compounds in crude plant extracts by liquid chromatography-electrospray tandem mass spectrometry. Phytochemistry69(8):1773–1781. doi: 10.1016/j.phytochem.2008.02.008.PanXWeltiRWangX2008Simultaneous quantification of major phytohormones and related compounds in crude plant extracts by liquid chromatography-electrospray tandem mass spectrometryPhytochemistry6981773178110.1016/j.phytochem.2008.02.008Open DOISearch in Google Scholar
Russomano T, Rizzatti MR, Coelho RP, Scolari D, De Souza D, Pra-Veleda P (2007) Effects of simulated hypergravity on biomedical experiments. Ieee Engineering in Medicine and Biology Magazine26(3):66–71. doi: 10.1109/memb.2007.364932.RussomanoTRizzattiMRCoelhoRPScolariDDe SouzaDPra-VeledaP2007Effects of simulated hypergravity on biomedical experimentsIeee Engineering in Medicine and Biology Magazine263667110.1109/memb.2007.364932Open DOISearch in Google Scholar
Sathasivam M, Hosamani R, Swamy BK (2021) Plant responses to real and simulated microgravity. Life Sciences in Space Research28:74–86. doi: 10.1016/j.lssr.2020.10.001.SathasivamMHosamaniRSwamyBK2021Plant responses to real and simulated microgravityLife Sciences in Space Research28748610.1016/j.lssr.2020.10.001Open DOISearch in Google Scholar
Sathasivam M, Swamy BK, Krishnan K, Sharma R, Nayak SN, Uppar DS, Hosamani R (2022). Insights into the molecular basis of hypergravity-induced root growth phenotype in bread wheat (Triticum aestivum L.). Genomics114(2):110307. doi: 10.1016/j.ygeno.2022.110307.SathasivamMSwamyBKKrishnanKSharmaRNayakSNUpparDSHosamaniR2022Insights into the molecular basis of hypergravity-induced root growth phenotype in bread wheat (Triticum aestivum L.)Genomics114211030710.1016/j.ygeno.2022.110307Open DOISearch in Google Scholar
Scherer GFE (2006) Halotolerance is enhanced in carrot callus by sensing hypergravity: influence of calcium modulators and cytochalasin D. Protoplasma229:149–154. doi: 10.1007/s00709-006-0201-3.SchererGFE2006Halotolerance is enhanced in carrot callus by sensing hypergravity: influence of calcium modulators and cytochalasin D.Protoplasma22914915410.1007/s00709-006-0201-3Open DOISearch in Google Scholar
Soga K, Wakabayashi K, Hoson T, Kamisaka S (1999) Hypergravity increases the molecular mass of xyloglucans by decreasing xyloglucan-degrading activity in azuki bean epicotyls. Plant & cell physiology40(6):581–585. doi: 10.1093/oxfordjournals.pcp.a029580.SogaKWakabayashiKHosonTKamisakaS1999Hypergravity increases the molecular mass of xyloglucans by decreasing xyloglucan-degrading activity in azuki bean epicotylsPlant & cell physiology40658158510.1093/oxfordjournals.pcp.a029580Open DOISearch in Google Scholar
Sundararaj N, Nagraju S, Ramu MV (1972) Design and analysis of field experiments, University of Agricultural Sciences.SundararajNNagrajuSRamuMV1972Design and analysis of field experimentsUniversity of Agricultural SciencesSearch in Google Scholar
Swamy BK, Hosamani R, Sathasivam M, Chandrashekhar SS, Reddy UG, Moger N (2021) Novel hypergravity treatment enhances root phenotype and positively influences physio-biochemical parameters in bread wheat (Triticum aestivum L.). Scientific reports11(1):15303. doi: 10.1038/s41598-021-94771-8.SwamyBKHosamaniRSathasivamMChandrashekharSSReddyUGMogerN2021Novel hypergravity treatment enhances root phenotype and positively influences physio-biochemical parameters in bread wheat (Triticum aestivum L.)Scientific reports1111530310.1038/s41598-021-94771-8Open DOISearch in Google Scholar
Takemura K, Kamachi H, Kume A, Fujita T, Karahara I, Hanba YT (2017) A hypergravity environment increases chloroplast size, photosynthesis, and plant growth in the moss Physcomitrella patens. Journal of plant research130:181–192. doi: 10.1007/s10265-016-0879.TakemuraKKamachiHKumeAFujitaTKaraharaIHanbaYT2017A hypergravity environment increases chloroplast size, photosynthesis, and plant growth in the moss Physcomitrella patensJournal of plant research13018119210.1007/s10265-016-0879Open DOISearch in Google Scholar
Takemura K, Kamachi H, Kume A, Fujita T, Karahara I, Hanba YT (2017) A hypergravity environment increases chloroplast size, photosynthesis, and plant growth in the moss Physcomitrella patens. Journal of plant research130:181–192. doi: 10.1007/s10265-016-0879.TakemuraKKamachiHKumeAFujitaTKaraharaIHanbaYT2017A hypergravity environment increases chloroplast size, photosynthesis, and plant growth in the moss Physcomitrella patensJournal of plant research13018119210.1007/s10265-016-0879Open DOISearch in Google Scholar
Tamaoki D, Karahara I, Nishiuchi T, Wakasugi T, Yamada K, Kamisaka S (2011) Involvement of auxin dynamics in hypergravity-induced promotion of lignin-related gene expression in Arabidopsis inflorescence stems. Journal of experimental botany62(15):5463–5469. doi: 10.1093/jxb/err224.TamaokiDKaraharaINishiuchiTWakasugiTYamadaKKamisakaS2011Involvement of auxin dynamics in hypergravity-induced promotion of lignin-related gene expression in Arabidopsis inflorescence stemsJournal of experimental botany62155463546910.1093/jxb/err224Open DOISearch in Google Scholar
Tracy SR, Nagel AN, Postma JA, Fassbender H, Wasson A, Watt M (2020) Root system traits have ongoing value for global productivity pre-breeding and to their management using precision agriculture. Trend Plant Science25:105–11.TracySRNagelANPostmaJAFassbenderHWassonAWattM2020Root system traits have ongoing value for global productivity pre-breeding and to their management using precision agricultureTrend Plant Science2510511Search in Google Scholar
Ubeda-Tomás S, Federici F, Casimiro I, Beemster GT, Bhalerao R, Swarup R, Bennett MJ (2009) Gibberellin signaling in the endodermis controls Arabidopsis root meristem size. Current Biology19(14):1194–1199. doi: 10.1016/j.cub.2009.06.023.Ubeda-TomásSFedericiFCasimiroIBeemsterGTBhaleraoRSwarupRBennettMJ2009Gibberellin signaling in the endodermis controls Arabidopsis root meristem sizeCurrent Biology19141194119910.1016/j.cub.2009.06.023Open DOISearch in Google Scholar
Vidyasagar PB, Jagtap SS, Dixit JP, Kamble SM, Dhepe AP (2014) Effects of short-term hypergravity exposure on germination, growth and photosynthesis of Triticum aestivum L. Microgravity Science and Technology26:375–384. doi: 10.1007/s12217-014-9400-2.VidyasagarPBJagtapSSDixitJPKambleSMDhepeAP2014Effects of short-term hypergravity exposure on germination, growth and photosynthesis of Triticum aestivum L.Microgravity Science and Technology2637538410.1007/s12217-014-9400-2Open DOISearch in Google Scholar
Zaveri EB, Lobell D (2019) The role of irrigation in changing wheat yields and heat sensitivity in India. Nature communications10(1):4144. doi: 10.1038/s41467-019-12183-9.ZaveriEBLobellD2019The role of irrigation in changing wheat yields and heat sensitivity in IndiaNature communications101414410.1038/s41467-019-12183-9Open DOISearch in Google Scholar