This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.
Straume T, Slaba TC, Bhattacharya S, Braby LA. Cosmic-ray interaction data for designing biological experiments in space. Life Sci Space Res. 2017;13:51–59. doi:10.1016/j.lssr.2017.04.002StraumeTSlabaTCBhattacharyaSBrabyLACosmic-ray interaction data for designing biological experiments in spaceLife Sci Space Res201713515910.1016/j.lssr.2017.04.002Open DOISearch in Google Scholar
Horneck G, Klaus DM, Mancinelli RL. Space Microbiology. Microbiol Mol Biol Rev. 2010;74:121–156. doi:10.1128/MMBR.00016-09HorneckGKlausDMMancinelliRLSpace MicrobiologyMicrobiol Mol Biol Rev20107412115610.1128/MMBR.00016-09Open DOISearch in Google Scholar
Afshinnekoo E, Scott RT, MacKay MJ, Pariset E, Cekanaviciute E, Barker R, Gilroy S, Hassane D, Smith SM, Zwart SR, Nelman-Gonzalez M, Crucian BE, Ponomarev SA, Orlov OI, Shiba D, Muratani M, Yamamoto M, Richards SE, Vaishampayan PA, Meydan C, Foox J, Myrrhe J, Istasse E, Singh N, Venkateswaran K, Keune JA, Ray HE, Basner M, Miller J, Vitaterna MH, Taylor DM, Wallace D, Rubins K, Bailey SM, Grabham P, Costes SV, Mason CE, Beheshti A. Fundamental biological features of spaceflight: Advancing the field to enable deep-space exploration. Cell. 2020;183:1162–1184. doi:10.1016/j.cell.2020.10.050AfshinnekooEScottRTMacKayMJParisetECekanaviciuteEBarkerRGilroySHassaneDSmithSMZwartSRNelman-GonzalezMCrucianBEPonomarevSAOrlovOIShibaDMurataniMYamamotoMRichardsSEVaishampayanPAMeydanCFooxJMyrrheJIstasseESinghNVenkateswaranKKeuneJARayHEBasnerMMillerJVitaternaMHTaylorDMWallaceDRubinsKBaileySMGrabhamPCostesSVMasonCEBeheshtiAFundamental biological features of spaceflight: Advancing the field to enable deep-space explorationCell20201831162118410.1016/j.cell.2020.10.050Open DOISearch in Google Scholar
Furukawa S, Nagamatsu A, Nenoi M, Fujimori A, Kakinuma S, Katsube T, Wang B, Tsuruoka C, Shirai T, Nakamura AJ, Sakaue-Sawano A, Miyawaki A, Harada H, Kobayashi M, Kobayashi J, Kunieda T, Funayama T, Suzuki M, Miyamoto T, Hidema J, Yoshida Y, Takahashi A. Space radiation biology for “Living in Space.” BioMed Res Int. 2020:e4703286. doi:10.1155/2020/4703286FurukawaSNagamatsuANenoiMFujimoriAKakinumaSKatsubeTWangBTsuruokaCShiraiTNakamuraAJSakaue-SawanoAMiyawakiAHaradaHKobayashiMKobayashiJKuniedaTFunayamaTSuzukiMMiyamotoTHidemaJYoshidaYTakahashiASpace radiation biology for “Living in Space.”BioMed Res Int2020e470328610.1155/2020/4703286Open DOISearch in Google Scholar
Montesinos CA, Khalid R, Cristea O, Greenberger JS, Epperly MW, Lemon JA, Boreham DR, Popov D, Gorthi G, Ramkumar N, Jones JA. Space radiation protection countermeasures in microgravity and planetary exploration. Life. 2021;11:829. doi:10.3390/life11080829MontesinosCAKhalidRCristeaOGreenbergerJSEpperlyMWLemonJABorehamDRPopovDGorthiGRamkumarNJonesJASpace radiation protection countermeasures in microgravity and planetary explorationLife20211182910.3390/life11080829Open DOISearch in Google Scholar
NASA LBLEO Science Working Group. 2018. Life Beyond Low Earth Orbit. Report of a science working group to the NASA Human Exploration and Operations Mission Directorate and Space Life and Physical Sciences Division.NASA LBLEO Science Working Group2018Life Beyond Low Earth Orbit. Report of a science working group to the NASA Human Exploration and Operations Mission Directorate and Space Life and Physical Sciences DivisionSearch in Google Scholar
Blaber E, Boothby T, Carr CE, Everroad RC, Foster J, Galazka J, Lee JA, Lera M, Ricco A, Sanders L, Szewczyk N, Tahimic C, Todd P, Vaishampayan P, Vanapalli S, Zhang Y, Zitnik M, Harrison L. NASA Space Biology Beyond LEO Instrumentation & Science Series Science Working Group 2022 Annual Report. 2023 (No. ntrs. nasa.gov/citations/20230008417).BlaberEBoothbyTCarrCEEverroadRCFosterJGalazkaJLeeJALeraMRiccoASandersLSzewczykNTahimicCToddPVaishampayanPVanapalliSZhangYZitnikMHarrisonLNASA Space Biology Beyond LEO Instrumentation & Science Series Science Working Group 2022 Annual Report2023(No. ntrs. nasa.gov/citations/20230008417).Search in Google Scholar
Chancellor J, Nowadly C, Williams J, Aunon-Chancellor S, Chesal M, Looper J, Newhauser W. Everything you wanted to know about space radiation but were afraid to ask. J Environ Sci Health Part C Toxicol Carcinog. 2021;39:113–128. doi:10.1080/26896583.2021.1897273ChancellorJNowadlyCWilliamsJAunon-ChancellorSChesalMLooperJNewhauserWEverything you wanted to know about space radiation but were afraid to askJ Environ Sci Health Part C Toxicol Carcinog20213911312810.1080/26896583.2021.1897273Open DOISearch in Google Scholar
Coulombe JV, Harrisson G, Lewis BJ, El-Jaby S. Evolving radiological protection guidelines for exploration-class missions. Life Sci Space Res. 2022;doi:10.1016/j.lssr.2022.08.004CoulombeJVHarrissonGLewisBJEl-JabySEvolving radiological protection guidelines for exploration-class missionsLife Sci Space Res202210.1016/j.lssr.2022.08.004Open DOISearch in Google Scholar
Everroad RC, Foster J, Galazka JM, Jansson J, Lee JA, Lera MP, Perera I, Ricco A, Szewczyk N, Todd P, Zhang Y, Harrison L. NASA Space Biology Beyond LEO Instrumentation & Science Series - Science Working Group 2021 Annual Report. 2021. (No. ntrs. nasa.gov/citations/20210023324).EverroadRCFosterJGalazkaJMJanssonJLeeJALeraMPPereraIRiccoASzewczykNToddPZhangYHarrisonLNASA Space Biology Beyond LEO Instrumentation & Science Series - Science Working Group 2021 Annual Report2021(No. ntrs. nasa.gov/citations/20210023324).Search in Google Scholar
Restier-Verlet J, El-Nachef L, Ferlazzo ML, Al-Choboq J, Granzotto A, Bouchet A, Foray N. Radiation on Earth or in space: what does it change? Int J Mol Sci. 2021;22. doi:10.3390/ijms22073739Restier-VerletJEl-NachefLFerlazzoMLAl-ChoboqJGranzottoABouchetAForayNRadiation on Earth or in space: what does it change?Int J Mol Sci20212210.3390/ijms22073739Open DOISearch in Google Scholar
Mars K. 5 Hazards of Human Spaceflight. NASA. 2018; http://www.nasa.gov/hrp/5-hazards-of-human-spaceflightMarsK5 Hazards of Human SpaceflightNASA2018http://www.nasa.gov/hrp/5-hazards-of-human-spaceflightSearch in Google Scholar
Ball N, Kagawa H, Hindupur A, Kostakis A, Hogan J, Villanueva A, Sharif S, Donovan F, Settles M, Sims K, Gresser A. 2021. BioNutrients-2: Improvements to the BioNutrients-1 nutrient production system. 50th International Conference on Environmental Systems. ICES-2021-331.BallNKagawaHHindupurAKostakisAHoganJVillanuevaASharifSDonovanFSettlesMSimsKGresserA2021BioNutrients-2: Improvements to the BioNutrients-1 nutrient production system50th International Conference on Environmental Systems. ICES-2021-331Search in Google Scholar
Ball N, Kagawa H, Hindupur A, Sims K. 2020. BioNutrients-1: Development of an on-demand nutrient production system for long-duration missions.49th International Conference on Environmental Systems. ICES-2020-119. Presented at the 49th International Conference on Environmental Systems.BallNKagawaHHindupurASimsK2020BioNutrients-1: Development of an on-demand nutrient production system for long-duration missions49th International Conference on Environmental Systems. ICES-2020-119. Presented at the 49th International Conference on Environmental SystemsSearch in Google Scholar
Bijlani S, Stephens E, Singh NK, Venkateswaran K, Wang CCC. Advances in space microbiology. iScience. 2021;24:102395. doi:10.1016/j.isci.2021.102395BijlaniSStephensESinghNKVenkateswaranKWangCCCAdvances in space microbiologyiScience20212410239510.1016/j.isci.2021.102395Open DOISearch in Google Scholar
Santomartino R, Zea L, Cockell CS. The smallest space miners: principles of space biomining. Extremophiles. 2022;26:7. doi:10.1007/s00792-021-01253-SantomartinoRZeaLCockellCSThe smallest space miners: principles of space biominingExtremophiles202226710.1007/s00792-021-01253-Open DOISearch in Google Scholar
Massaro Tieze S, Liddell LC, Santa Maria SR, Bhattacharya S. BioSentinel: A biological CubeSat for deep space exploration. Astrobiology. 2020. doi:10.1089/ast.2019.2068Massaro TiezeSLiddellLCSanta MariaSRBhattacharyaSBioSentinel: A biological CubeSat for deep space explorationAstrobiology202010.1089/ast.2019.2068Open DOISearch in Google Scholar
Ricco AJ, Maria SRS, Hanel RP, Bhattacharya S. BioSentinel: A 6U nanosatellite for deep-space biological science. IEEE Aerosp Electron Syst Mag. 2020;35:6–18. doi:10.1109/MAES.2019.2953760RiccoAJMariaSRSHanelRPBhattacharyaSBioSentinel: A 6U nanosatellite for deep-space biological scienceIEEE Aerosp Electron Syst Mag20203561810.1109/MAES.2019.2953760Open DOISearch in Google Scholar
Santa Maria SR, Marina DB, Massaro Tieze S, Liddell LC, Bhattacharya S. BioSentinel: Long-term Saccharomyces cerevisiae preservation for a deep space biosensor mission. Astrobiology. 2020;20:1–14. doi:10.1089/ast.2019.2073Santa MariaSRMarinaDBMassaro TiezeSLiddellLCBhattacharyaSBioSentinel: Long-term Saccharomyces cerevisiae preservation for a deep space biosensor missionAstrobiology20202011410.1089/ast.2019.2073Open DOISearch in Google Scholar
Bücker H. 1975. Biostack: a study of the biological effects on HZE galactic cosmic radiation. Biomedical Results of Apollo, NASA SP-368. National Aeronautics and Space Administration.BückerH1975Biostack: a study of the biological effects on HZE galactic cosmic radiationBiomedical Results of Apollo, NASA SP-368. National Aeronautics and Space AdministrationSearch in Google Scholar
Cucinotta FA, Wilson JW, Katz R, Atwell W, Badhwar GD, Shavers MR. Track structure and radiation transport model for space radiobiology studies. Adv Space Res. Proceedings of the F3.1, F3.4, F2.4 and F3.8 Symposia of COSPAR Scientific Commission F. 1996;18:183–194. doi:10.1016/0273-1177(96)00039-7CucinottaFAWilsonJWKatzRAtwellWBadhwarGDShaversMRTrack structure and radiation transport model for space radiobiology studiesAdv Space Res. Proceedings of the F3.1, F3.4, F2.4 and F3.8 Symposia of COSPAR Scientific Commission F.19961818319410.1016/0273-1177(96)00039-7Open DOISearch in Google Scholar
Mileikowsky C, Cucinotta FA, Wilson JW, Gladman B, Horneck G, Lindegren L, Melosh J, Rickman H, Valtonen M, Zheng JQ. Natural transfer of viable microbes in space. Icarus. 2000;145:391–427. doi:10.1006/icar.1999.6317MileikowskyCCucinottaFAWilsonJWGladmanBHorneckGLindegrenLMeloshJRickmanHValtonenMZhengJQNatural transfer of viable microbes in spaceIcarus200014539142710.1006/icar.1999.6317Open DOISearch in Google Scholar
Zea L, Santa Maria SR, Ricco AJ. 7 - CubeSats for microbiology and astrobiology research In: Cappelletti C, Battistini S, Malphrus BK, editors. Cubesat Handbook. Academic Press; 2021. pp. 147–162. doi:10.1016/B978-0-12-817884-3.00007-2ZeaLSanta MariaSRRiccoAJ7 - CubeSats for microbiology and astrobiology researchIn:CappellettiCBattistiniSMalphrusBKeditors.Cubesat HandbookAcademic Press202114716210.1016/B978-0-12-817884-3.00007-2Open DOISearch in Google Scholar
Kitts C, Ronzano K, Rasay R, Mas I, Williams P, Mahacek P, Minelli G, Hines J, Agasid E, Friedericks C, Piccini M, Parra M, Timucin L, Beasley C, Henschke M, Luzzi E, Mai N, McIntyre M, Ricks R, Squires D, Storment C, Tucker J, Yost B, Defouw G, Ricco A. Flight results from the GeneSat-1 biological microsatellite mission. Small Satell Conf. 2007.KittsCRonzanoKRasayRMasIWilliamsPMahacekPMinelliGHinesJAgasidEFriedericksCPicciniMParraMTimucinLBeasleyCHenschkeMLuzziEMaiNMcIntyreMRicksRSquiresDStormentCTuckerJYostBDefouwGRiccoAFlight results from the GeneSat-1 biological microsatellite missionSmall Satell Conf.2007Search in Google Scholar
Minelli G, Kitts C, Ronzano K, Beasley C, Rasay R, Mas I, Williams P, Mahacek P, Shepard J, Acain J, Hines J, Agasid E, Friedericks C, Piccini M, Parra M, Timucin L, Henschke M, Luzzi E, Mai N, McIntyre M, Ricks R, Squires D, Storment C, Tucker J, Yost B, Defouw G, Ricco A. 2008. Extended life flight results from the GeneSat-1 biological microsatellite mission. Small Satellite Conference.MinelliGKittsCRonzanoKBeasleyCRasayRMasIWilliamsPMahacekPShepardJAcainJHinesJAgasidEFriedericksCPicciniMParraMTimucinLHenschkeMLuzziEMaiNMcIntyreMRicksRSquiresDStormentCTuckerJYostBDefouwGRiccoA2008Extended life flight results from the GeneSat-1 biological microsatellite missionSmall Satellite ConferenceSearch in Google Scholar
Padgen MR, Liddell LC, Bhardwaj SR, Gentry D, Marina D, Parra M, Boone T, Tan M, Ellingson L, Rademacher A, Benton J, Schooley A, Mousavi A, Friedericks C, Hanel RP, Ricco AJ, Bhattacharya S, Maria SRS. BioSentinel: A biofluidic nanosatellite monitoring microbial growth and activity in deep space. Astrobiology. 2021;23. doi:10.1089/ast.2020.2305PadgenMRLiddellLCBhardwajSRGentryDMarinaDParraMBooneTTanMEllingsonLRademacherABentonJSchooleyAMousaviAFriedericksCHanelRPRiccoAJBhattacharyaSMariaSRSBioSentinel: A biofluidic nanosatellite monitoring microbial growth and activity in deep spaceAstrobiology20212310.1089/ast.2020.2305Open DOISearch in Google Scholar
Ricco AJ, Parra M, Niesel D, Piccini M, Ly D, McGinnis M, Kudlicki A, Hines JW, Timucin L, Beasley C, Ricks R, McIntyre M, Friedericks C, Henschke M, Leung R, Diaz-Aguado M, Kitts C, Mas I, Rasay M, Agasid E, Luzzi E, Ronzano K, Squires D, Yost B. 2011. PharmaSat: drug dose response in microgravity from a free-flying integrated biofluidic/optical culture-and-analysis satellite. Presented at the Microfluidics, BioMEMS, and Medical Microsystems IX. International Society for Optics and Photonics. p. 79290T. doi:10.1117/12.881082RiccoAJParraMNieselDPicciniMLyDMcGinnisMKudlickiAHinesJWTimucinLBeasleyCRicksRMcIntyreMFriedericksCHenschkeMLeungRDiaz-AguadoMKittsCMasIRasayMAgasidELuzziERonzanoKSquiresDYostB2011PharmaSat: drug dose response in microgravity from a free-flying integrated biofluidic/optical culture-and-analysis satellitePresented at the Microfluidics, BioMEMS, and Medical Microsystems IXInternational Society for Optics and Photonics79290T10.1117/12.881082Open DOISearch in Google Scholar
Liddell LC, Gentry DM, Gilbert R, Marina D, Massaro Tieze S, Padgen MR, Akiyama K, Keenan K, Bhattacharya S, Santa Maria SR. BioSentinel: validating sensitivity of yeast biosensors to deep space relevant radiation. Astrobiology. 2023;23:648–656. doi:10.1089/ast.2022.0124LiddellLCGentryDMGilbertRMarinaDMassaro TiezeSPadgenMRAkiyamaKKeenanKBhattacharyaSSanta MariaSRBioSentinel: validating sensitivity of yeast biosensors to deep space relevant radiationAstrobiology20232364865610.1089/ast.2022.0124Open DOISearch in Google Scholar
Figliozzi G. 2023. What is the lunar explorer instrument for space biology applications? NASA. http://www.nasa.gov/ames/leiaFigliozziG2023What is the lunar explorer instrument for space biology applications?NASAhttp://www.nasa.gov/ames/leiaSearch in Google Scholar
Kiefer J. The physical basis for the biological action of heavy ions. New J Phys. 2008;10:075004. doi:10.1088/1367-2630/10/7/075004KieferJThe physical basis for the biological action of heavy ionsNew J Phys20081007500410.1088/1367-2630/10/7/075004Open DOISearch in Google Scholar
Hellweger FL, Bucci V. 2009. A bunch of tiny individuals—individual-based modeling for microbes. Ecol Model. 2009;220:8–22. doi:10.1016/j.ecolmodel.2008.09.004HellwegerFLBucciV2009A bunch of tiny individuals—individual-based modeling for microbesEcol Model200922082210.1016/j.ecolmodel.2008.09.004Open DOISearch in Google Scholar
Hellweger FL, Kianirad E. 2007. Individual-based modeling of phytoplankton: Evaluating approaches for applying the cell quota model. J Theor Biol. 2007;249:554–565 doi:10.1016/j.jtbi.2007.08.020HellwegerFLKianiradE2007Individual-based modeling of phytoplankton: Evaluating approaches for applying the cell quota modelJ Theor Biol200724955456510.1016/j.jtbi.2007.08.020Open DOISearch in Google Scholar
Plante I, Wu H. 2014. RITRACKS: A software for simulation of stochastic radiation track structure, micro and nanodosimetry, radiation chemistry and DNA damage for heavy ions. Presented at the COSPAR Scientific Assembly. Moscow.PlanteIWuH2014RITRACKS: A software for simulation of stochastic radiation track structure, micro and nanodosimetry, radiation chemistry and DNA damage for heavy ionsPresented at the COSPAR Scientific AssemblyMoscowSearch in Google Scholar
Blyth BJ, Sykes PJ. Radiation-induced bystander effects: What are they, and how relevant are they to human radiation exposures? Radiat Res. 2011;176:139–157. doi:10.1667/RR2548.1BlythBJSykesPJRadiation-induced bystander effects: What are they, and how relevant are they to human radiation exposures?Radiat Res201117613915710.1667/RR2548.1Open DOISearch in Google Scholar
Heeran AB, Berrigan HP, O’Sullivan J. The radiation-induced bystander effect (RIBE) and its connections with the hallmarks of cancer. Radiat Res. 2019;192:668–679. doi:10.1667/RR15489.1HeeranABBerriganHPO’SullivanJThe radiation-induced bystander effect (RIBE) and its connections with the hallmarks of cancerRadiat Res201919266867910.1667/RR15489.1Open DOISearch in Google Scholar
Hei TK, Zhou H, Ivanov VN, Hong M, Lieberman HB, Brenner DJ, Amundson SA, Geard CR. Mechanism of radiation-induced bystander effects: a unifying model. J Pharm Pharmacol. 2005;60:943–950. doi:10.1211/jpp.60.8.0001HeiTKZhouHIvanovVNHongMLiebermanHBBrennerDJAmundsonSAGeardCRMechanism of radiation-induced bystander effects: a unifying modelJ Pharm Pharmacol20056094395010.1211/jpp.60.8.0001Open DOISearch in Google Scholar
Singh A. 2023. AMMPER. Available at https://github.com/nasa/AMMPER.SinghA2023AMMPERAvailable at https://github.com/nasa/AMMPER.Search in Google Scholar
Jorgensen P, Edgington NP, Schneider BL, Rupeš I, Tyers M, Futcher B. The size of the nucleus increases as yeast cells grow. Mol Biol Cell. 2007;18:3523–3532. doi:10.1091/mbc.e06-10-0973JorgensenPEdgingtonNPSchneiderBLRupešITyersMFutcherBThe size of the nucleus increases as yeast cells growMol Biol Cell2007183523353210.1091/mbc.e06-10-0973Open DOISearch in Google Scholar
Krawczyk K, Dzwinel W, Yuen DA. Nonlinear development of bacterial colony modeled with cellular automata and agent objects. Int J Mod Phys C. 2003;14:1385–1404. doi:10.1142/S0129183103006199KrawczykKDzwinelWYuenDANonlinear development of bacterial colony modeled with cellular automata and agent objectsInt J Mod Phys C.2003141385140410.1142/S0129183103006199Open DOISearch in Google Scholar
Horowitz J, Normand MD, Corradini MG, Peleg M. Probabilistic model of microbial cell growth, division, and mortality. Appl Environ Microbiol. 2010;76:230–242. doi:10.1128/AEM.01527-09HorowitzJNormandMDCorradiniMGPelegMProbabilistic model of microbial cell growth, division, and mortalityAppl Environ Microbiol20107623024210.1128/AEM.01527-09Open DOISearch in Google Scholar
Allen RJ, Waclaw B. Bacterial growth: a statistical physicist’s guide. Rep Prog Phys. 2029;82:016601. doi:10.1088/1361-6633/aae546AllenRJWaclawBBacterial growth: a statistical physicist’s guideRep Prog Phys20198201660110.1088/1361-6633/aae546Open DOISearch in Google Scholar
Simonsen LC, Slaba TC, Guida P, Rusek A. NASA’s first ground-based galactic cosmic ray simulator: Enabling a new era in space radiobiology research. PLOS Biol. 2020;18:e3000669. doi:10.1371/journal.pbio.3000669SimonsenLCSlabaTCGuidaPRusekANASA’s first ground-based galactic cosmic ray simulator: Enabling a new era in space radiobiology researchPLOS Biol202018e300066910.1371/journal.pbio.3000669Open DOISearch in Google Scholar
Curtis SB, Letaw JR. Galactic cosmic rays and cell-hit frequencies outside the magnetosphere. Adv Space Res. 1989;9:293–298. doi:10.1016/0273-1177(89)90452-3CurtisSBLetawJRGalactic cosmic rays and cell-hit frequencies outside the magnetosphereAdv Space Res1989929329810.1016/0273-1177(89)90452-3Open DOISearch in Google Scholar
Kim M-HY, Rusek A, Cucinotta FA. Issues for simulation of galactic cosmic ray exposures for radiobiological research at ground-based accelerators. Front Oncol. 2015;5.KimM-HYRusekACucinottaFAIssues for simulation of galactic cosmic ray exposures for radiobiological research at ground-based acceleratorsFront Oncol20155Search in Google Scholar
Stewart RD, Yu VK, Georgakilas AG, Koumenis C, Park JH, Carlson DJ. Effects of radiation quality and oxygen on clustered DNA lesions and cell death. Radiat Res. 2011;176:587–602. doi:10.1667/RR2663.1StewartRDYuVKGeorgakilasAGKoumenisCParkJHCarlsonDJEffects of radiation quality and oxygen on clustered DNA lesions and cell deathRadiat Res201117658760210.1667/RR2663.1Open DOISearch in Google Scholar
Wingate CL, Baum JW. Measured radial distributions of dose and LET for alpha and proton beams in hydrogen and tissue-equivalent gas. Radiat Res. 1976;65:1–19. doi:10.2307/3574282WingateCLBaumJWMeasured radial distributions of dose and LET for alpha and proton beams in hydrogen and tissue-equivalent gasRadiat Res19766511910.2307/3574282Open DOISearch in Google Scholar
Ferradini C, Jay-Gerin J-P. The effect of pH on water radiolysis: a still open question — a minireview. Res Chem Intermed. 2000;26:549–565. doi:10.1163/156856700X00525FerradiniCJay-GerinJ-PThe effect of pH on water radiolysis: a still open question — a minireviewRes Chem Intermed20002654956510.1163/156856700X00525Open DOISearch in Google Scholar
Attri P, Kim YH, Park DH, Park JH, Hong YJ, Uhm HS, Kim K-N, Fridman A, Choi EH. Generation mechanism of hydroxyl radical species and its lifetime prediction during the plasma-initiated ultraviolet (UV) photolysis. Sci Rep. 2015;5:9332. doi:10.1038/srep09332AttriPKimYHParkDHParkJHHongYJUhmHSKimK-NFridmanAChoiEHGeneration mechanism of hydroxyl radical species and its lifetime prediction during the plasma-initiated ultraviolet (UV) photolysisSci Rep20155933210.1038/srep09332Open DOISearch in Google Scholar
Krumova K, Cosa G. Overview of reactive oxygen species. Singlet Oxygen: Applications in Biosciences and Nanosciences, Comprehensive Series in Photochemical & Photobiological Sciences. London: Royal Society of Chemistry; 2016, 1–12.KrumovaKCosaGOverview of reactive oxygen species. Singlet Oxygen: Applications in Biosciences and Nanosciences, Comprehensive Series in Photochemical & Photobiological SciencesLondonRoyal Society of Chemistry2016112Search in Google Scholar
Plante I, Cucinotta F. Simulation of the radiolysis of water using Green’s functions of the diffusion equation. Radiat Prot Dosimetry. 2015;166. doi:10.1093/rpd/ncv179PlanteICucinottaFSimulation of the radiolysis of water using Green’s functions of the diffusion equationRadiat Prot Dosimetry201516610.1093/rpd/ncv179Open DOISearch in Google Scholar
Thomas JK. Rates of reaction of the hydroxyl radical. Trans Faraday Soc. 1965;61:702. doi:10.1039/tf9656100702ThomasJKRates of reaction of the hydroxyl radicalTrans Faraday Soc19656170210.1039/tf9656100702Open DOISearch in Google Scholar
Le Caër S. 2011. Water radiolysis: influence of oxide surfaces on H2 production under ionizing radiation. Water. 2011;3:235–253. doi:10.3390/w3010235Le CaërS2011Water radiolysis: influence of oxide surfaces on H2 production under ionizing radiationWater2011323525310.3390/w3010235Open DOISearch in Google Scholar
Cucinotta FA, Wilson JW, Katz R, Atwell W, Badhwar GD, Shavers MR. Track structure and radiation transport model for space radiobiology studies. Adv Space Res. Proceedings of the F3.1, F3.4, F2.4 and F3.8 Symposia of COSPAR Scientific Commission F. 1996;18:183–194. doi:10.1016/0273-1177(96)00039-7CucinottaFAWilsonJWKatzRAtwellWBadhwarGDShaversMRTrack structure and radiation transport model for space radiobiology studiesAdv Space Res. Proceedings of the F3.1, F3.4, F2.4 and F3.8 Symposia of COSPAR Scientific Commission F.19961818319410.1016/0273-1177(96)00039-7Open DOISearch in Google Scholar
Nikjoo H, O’Neill P, Terrissol M, Goodhead DT. Quantitative modelling of DNA damage using Monte Carlo track structure method. Radiat Environ Biophys. 1999;38:31–38. doi:10.1007/s004110050135NikjooHO’NeillPTerrissolMGoodheadDTQuantitative modelling of DNA damage using Monte Carlo track structure methodRadiat Environ Biophys199938313810.1007/s004110050135Open DOISearch in Google Scholar
Erixon K, Cedervall B. Linear induction of DNA double-strand breakage with X-ray dose, as determined from DNA fragment size distribution. Radiat Res. 1995;142:153–162. doi:10.2307/3579023ErixonKCedervallBLinear induction of DNA double-strand breakage with X-ray dose, as determined from DNA fragment size distributionRadiat Res199514215316210.2307/3579023Open DOISearch in Google Scholar
Ponomarev AL, George K, Cucinotta FA. Computational model of chromosome aberration yield induced by high- and low-LET radiation exposures. Radiat Res. 2012;177:727–737. doi:10.1667/RR2659.1PonomarevALGeorgeKCucinottaFAComputational model of chromosome aberration yield induced by high- and low-LET radiation exposuresRadiat Res201217772773710.1667/RR2659.1Open DOISearch in Google Scholar
Madeo F, Fröhlich E, Ligr M, Grey M, Sigrist SJ, Wolf DH, Fröhlich K-U. Oxygen stress: a regulator of apoptosis in yeast. J Cell Biol. 1999;145:757–767. doi:10.1083/jcb.145.4.757MadeoFFröhlichELigrMGreyMSigristSJWolfDHFröhlichK-UOxygen stress: a regulator of apoptosis in yeastJ Cell Biol199914575776710.1083/jcb.145.4.757Open DOISearch in Google Scholar
Karschau J, de Almeida C, Richard MC, Miller S, Booth IR, Grebogi C, de Moura APS. A matter of life or death: modeling DNA damage and repair in bacteria. Biophys J. 2011;100:814–821. doi:10.1016/j.bpj.2010.12.3713KarschauJde AlmeidaCRichardMCMillerSBoothIRGrebogiCde MouraAPSA matter of life or death: modeling DNA damage and repair in bacteriaBiophys J.201110081482110.1016/j.bpj.2010.12.3713Open DOISearch in Google Scholar
Lisby M, Mortensen UH, Rothstein R. Colocalization of multiple DNA double-strand breaks at a single Rad52 repair centre. Nat Cell Biol. 2003;5:572–577. doi:10.1038/ncb997LisbyMMortensenUHRothsteinRColocalization of multiple DNA double-strand breaks at a single Rad52 repair centreNat Cell Biol2003557257710.1038/ncb997Open DOISearch in Google Scholar
Plante I, Slaba T, Shavers Z, Hada M. A bi-exponential repair algorithm for radiation-induced double-strand breaks: application to simulation of chromosome aberrations. Genes. 2019;10:936. doi:10.3390/genes10110936PlanteISlabaTShaversZHadaMA bi-exponential repair algorithm for radiation-induced double-strand breaks: application to simulation of chromosome aberrationsGenes20191093610.3390/genes10110936Open DOISearch in Google Scholar
Lettier G, Feng Q, Mayolo AA de, Erdeniz N, Reid RJD, Lisby M, Mortensen UH, Rothstein R. The role of DNA double-strand breaks in spontaneous homologous recombination in S. cerevisiae. PLOS Genet. 2006;2:e194. doi:10.1371/journal.pgen.0020194LettierGFengQMayoloAA deErdenizNReidRJDLisbyMMortensenUHRothsteinRThe role of DNA double-strand breaks in spontaneous homologous recombination in S. cerevisiaePLOS Genet20062e19410.1371/journal.pgen.0020194Open DOISearch in Google Scholar
Kiefer J, Egenolf R, Ikpeme S. Heavy ion-induced DNA double-strand breaks in yeast. Radiat Res. 2002;157:141–148. doi:10.1667/0033-7587(2002)157[0141:HIIDDS]2.0.CO;2KieferJEgenolfRIkpemeSHeavy ion-induced DNA double-strand breaks in yeastRadiat Res200215714114810.1667/0033-7587(2002)157[0141:HIIDDS]2.0.CO;2Open DOISearch in Google Scholar
Kost M, Kiefer J. Biological action of heavy ion irradiation on individual yeast cells In: McCormack PD, Swenberg CE, Bücker H, editors. Terrestrial Space Radiation and Its Biological Effects, Nato ASI Series. Boston, MA: Springer US; 1988, 197–203. doi:10.1007/978-1-4613-1567-4_14KostMKieferJBiological action of heavy ion irradiation on individual yeast cellsIn:McCormackPDSwenbergCEBückerHeditors.Terrestrial Space Radiation and Its Biological Effects, Nato ASI SeriesBoston, MASpringer US198819720310.1007/978-1-4613-1567-4_14Open DOISearch in Google Scholar
Kiefer J, Müller J, Götzen J. 1988. Mitotic recombination in continuously γ-irradiated diploid yeast. Radiat Res. 1988;113:71–78. doi:10.2307/3577181KieferJMüllerJGötzenJ1988Mitotic recombination in continuously γ-irradiated diploid yeastRadiat Res1988113717810.2307/3577181Open DOISearch in Google Scholar
Kiefer J, Wagner E. Radiosensitivity of continuous cultures: experiments with diploid yeast. Radiat Res. 1975;63:336–345. doi:10.2307/3574158KieferJWagnerERadiosensitivity of continuous cultures: experiments with diploid yeastRadiat Res19756333634510.2307/3574158Open DOISearch in Google Scholar
Nicholson WL, Ricco AJ. Nanosatellites for biology in space: in situ measurement of Bacillus subtilis spore germination and growth after 6 months in low Earth orbit on the O/OREOS Mission. Life. 2020;10:1. doi:10.3390/life10010001NicholsonWLRiccoAJNanosatellites for biology in space: in situ measurement of Bacillus subtilis spore germination and growth after 6 months in low Earth orbit on the O/OREOS MissionLife202010110.3390/life10010001Open DOISearch in Google Scholar
Padgen MR, Lera MP, Parra MP, Ricco AJ, Chin M, Chinn TN, Cohen A, Friedericks CR, Henschke MB, Snyder TV, Spremo SM, Wang J-H, Matin AC. EcAMSat spaceflight measurements of the role of σs in antibiotic resistance of stationary phase Escherichia coli in microgravity. Life Sci Space Res. 2020;24:18–24. doi:10.1016/j.lssr.2019.10.007PadgenMRLeraMPParraMPRiccoAJChinMChinnTNCohenAFriedericksCRHenschkeMBSnyderTVSpremoSMWangJ-HMatinACEcAMSat spaceflight measurements of the role of σs in antibiotic resistance of stationary phase Escherichia coli in microgravityLife Sci Space Res202024182410.1016/j.lssr.2019.10.007Open DOISearch in Google Scholar
Pross HD, Casares A, Kiefer J. Induction and repair of DNA double-strand breaks under irradiation and microgravity. Radiat Res. 153:521–525. doi:10.1667/0033-7587(2000)153[0521:IARODD]2.0.CO;2ProssHDCasaresAKieferJInduction and repair of DNA double-strand breaks under irradiation and microgravityRadiat Res15352152510.1667/0033-7587(2000)153[0521:IARODD]2.0.CO;2Open DOISearch in Google Scholar
Pross HD, Kiefer J. Repair of cellular radiation damage in space under microgravity conditions. Radiat Environ Biophys. 1999;38:133–138. doi:10.1007/s004110050149ProssHDKieferJRepair of cellular radiation damage in space under microgravity conditionsRadiat Environ Biophys19993813313810.1007/s004110050149Open DOISearch in Google Scholar
Takahashi A, Ohnishi K, Takahashi S, Masukawa M, Sekikawa K, Amano T, Nakano T, Nagaoka S, Ohnishi T. The effects of microgravity on induced mutation in Escherichia coli and Saccharomyces cerevisiae. Adv Space Res. 2001;28:555–561. doi:10.1016/S0273-1177(01)00391-XTakahashiAOhnishiKTakahashiSMasukawaMSekikawaKAmanoTNakanoTNagaokaSOhnishiTThe effects of microgravity on induced mutation in Escherichia coli and Saccharomyces cerevisiaeAdv Space Res20012855556110.1016/S0273-1177(01)00391-XOpen DOISearch in Google Scholar
Ware JH, Sanzari J, Avery S, Sayers C, Krigsfeld G, Nuth M, Wan XS, Rusek A, Kennedy AR. Effects of proton radiation dose, dose rate and dose fractionation on hematopoietic cells in mice. Radiat Res. 2010;174:325–330. doi:10.1667/RR1979.1WareJHSanzariJAverySSayersCKrigsfeldGNuthMWanXSRusekAKennedyAREffects of proton radiation dose, dose rate and dose fractionation on hematopoietic cells in miceRadiat Res201017432533010.1667/RR1979.1Open DOISearch in Google Scholar
Bujarrabal A, Schumacher B. 2016. Hormesis running hot and cold. Cell Cycle. 2016;15(24);3335–3336. doi: 10.1080/15384101.2016.1235859BujarrabalASchumacherB2016Hormesis running hot and coldCell Cycle201615243335333610.1080/15384101.2016.1235859Open DOISearch in Google Scholar
Calabrese E.J. Hormetic mechanisms. Crit Rev Toxicol. 2013;43:580–606. doi:10.3109/10408444.2013.808172CalabreseE.J.Hormetic mechanismsCrit Rev Toxicol20134358060610.3109/10408444.2013.808172Open DOISearch in Google Scholar
Kabilan U, Graber TE, Alain T, Klokov D. 2020. Ionizing radiation and translation control: a link to radiation hormesis? Int J Mol Sci. 2020;21:6650. doi:10.3390/ijms21186650KabilanUGraberTEAlainTKlokovD2020Ionizing radiation and translation control: a link to radiation hormesis?Int J Mol Sci202021665010.3390/ijms21186650Open DOISearch in Google Scholar
Mathieu A, Fleurier S, Frénoy A, Dairou J, Bredeche M-F, Sanchez-Vizuete P, Song X, Matic I. Discovery and function of a general core hormetic stress response in E. coli induced by sublethal concentrations of antibiotics. Cell Rep. 2016;17:46–57. doi:10.1016/j.celrep.2016.09.001MathieuAFleurierSFrénoyADairouJBredecheM-FSanchez-VizuetePSongXMaticIDiscovery and function of a general core hormetic stress response in E. coli induced by sublethal concentrations of antibioticsCell Rep201617465710.1016/j.celrep.2016.09.001Open DOISearch in Google Scholar
Vaiserman AM. Radiation hormesis: historical perspective and implications for low-dose cancer risk assessment. Dose-Response 2010;8. doi:10.2203/dose-response.09-037.VaisermanVaisermanAMRadiation hormesis: historical perspective and implications for low-dose cancer risk assessmentDose-Response2010810.2203/dose-response.09-037.VaisermanOpen DOISearch in Google Scholar
Keszenman DJ, Sutherland BM. Yields of clustered DNA damage induced by charged-particle radiations of similar kinetic energy per nucleon: LET dependence in different DNA microenvironments. Radiat Res. 2010;174:238–250. doi:10.1667/RR2093.1KeszenmanDJSutherlandBMYields of clustered DNA damage induced by charged-particle radiations of similar kinetic energy per nucleon: LET dependence in different DNA microenvironmentsRadiat Res201017423825010.1667/RR2093.1Open DOISearch in Google Scholar
Li Y, Reynolds P, O’Neill P, Cucinotta FA. Modeling damage complexity-dependent non-homologous end-joining repair pathway. PLOS ONE. 2014;9:e85816. doi:10.1371/journal.pone.0085816LiYReynoldsPO’NeillPCucinottaFAModeling damage complexity-dependent non-homologous end-joining repair pathwayPLOS ONE20149e8581610.1371/journal.pone.0085816Open DOISearch in Google Scholar
Lomax ME, Folkes LK, O’Neill P. Biological consequences of radiation-induced DNA damage: relevance to radiotherapy. Clin Oncol. Adv Clin Radiobiol. 2013;25:578–585. doi:10.1016/j.clon.2013.06.007LomaxMEFolkesLKO’NeillPBiological consequences of radiation-induced DNA damage: relevance to radiotherapyClin Oncol. Adv Clin Radiobiol.20132557858510.1016/j.clon.2013.06.007Open DOISearch in Google Scholar
Moscariello M, Sutherland B. Saccharomyces cerevisiae-based system for studying clustered DNA damages. Radiat Environ Biophys. 2010;49:447–456. doi:10.1007/s00411-010-0303-3MoscarielloMSutherlandBSaccharomyces cerevisiae-based system for studying clustered DNA damagesRadiat Environ Biophys20104944745610.1007/s00411-010-0303-3Open DOISearch in Google Scholar
Friedland W, Dingfelder M, Kundrát P, Jacob P. Track structures, DNA targets and radiation effects in the biophysical Monte Carlo simulation code PARTRAC. Mutat Res Mol Mech Mutagen 2911;711:28–40. doi:10.1016/j.mrfmmm.2011.01.003FriedlandWDingfelderMKundrátPJacobPTrack structures, DNA targets and radiation effects in the biophysical Monte Carlo simulation code PARTRACMutat Res Mol Mech Mutagen2011711284010.1016/j.mrfmmm.2011.01.003Open DOISearch in Google Scholar
Prise KM, Schettino G, Folkard M, Held KD. New insights on cell death from radiation exposure. Lancet Oncol. 2005;6:520–528. doi:10.1016/S1470-2045(05)70246-1PriseKMSchettinoGFolkardMHeldKDNew insights on cell death from radiation exposureLancet Oncol2005652052810.1016/S1470-2045(05)70246-1Open DOISearch in Google Scholar
Harper JV, Anderson JA, O’Neill P. Radiation induced DNA DSBs: contribution from stalled replication forks? DNA Repair. 2010;9:907–913. doi:10.1016/j.dnarep.2010.06.002HarperJVAndersonJAO’NeillPRadiation induced DNA DSBs: contribution from stalled replication forks?DNA Repair2010990791310.1016/j.dnarep.2010.06.002Open DOISearch in Google Scholar