Uneingeschränkter Zugang

Agent-based model for microbial populations exposed to radiation (AMMPER) simulates yeast growth for deep-space experiments

, , , ,  und   
23. Nov. 2024

Zitieren
COVER HERUNTERLADEN

Straume T, Slaba TC, Bhattacharya S, Braby LA. Cosmic-ray interaction data for designing biological experiments in space. Life Sci Space Res. 2017;13:51–59. doi:10.1016/j.lssr.2017.04.002 StraumeT SlabaTC BhattacharyaS BrabyLA Cosmic-ray interaction data for designing biological experiments in space Life Sci Space Res 2017 13 51 59 10.1016/j.lssr.2017.04.002 Open DOISearch in Google Scholar

Horneck G, Klaus DM, Mancinelli RL. Space Microbiology. Microbiol Mol Biol Rev. 2010;74:121–156. doi:10.1128/MMBR.00016-09 HorneckG KlausDM MancinelliRL Space Microbiology Microbiol Mol Biol Rev 2010 74 121 156 10.1128/MMBR.00016-09 Open DOISearch in Google Scholar

Afshinnekoo E, Scott RT, MacKay MJ, Pariset E, Cekanaviciute E, Barker R, Gilroy S, Hassane D, Smith SM, Zwart SR, Nelman-Gonzalez M, Crucian BE, Ponomarev SA, Orlov OI, Shiba D, Muratani M, Yamamoto M, Richards SE, Vaishampayan PA, Meydan C, Foox J, Myrrhe J, Istasse E, Singh N, Venkateswaran K, Keune JA, Ray HE, Basner M, Miller J, Vitaterna MH, Taylor DM, Wallace D, Rubins K, Bailey SM, Grabham P, Costes SV, Mason CE, Beheshti A. Fundamental biological features of spaceflight: Advancing the field to enable deep-space exploration. Cell. 2020;183:1162–1184. doi:10.1016/j.cell.2020.10.050 AfshinnekooE ScottRT MacKayMJ ParisetE CekanaviciuteE BarkerR GilroyS HassaneD SmithSM ZwartSR Nelman-GonzalezM CrucianBE PonomarevSA OrlovOI ShibaD MurataniM YamamotoM RichardsSE VaishampayanPA MeydanC FooxJ MyrrheJ IstasseE SinghN VenkateswaranK KeuneJA RayHE BasnerM MillerJ VitaternaMH TaylorDM WallaceD RubinsK BaileySM GrabhamP CostesSV MasonCE BeheshtiA Fundamental biological features of spaceflight: Advancing the field to enable deep-space exploration Cell 2020 183 1162 1184 10.1016/j.cell.2020.10.050 Open DOISearch in Google Scholar

Furukawa S, Nagamatsu A, Nenoi M, Fujimori A, Kakinuma S, Katsube T, Wang B, Tsuruoka C, Shirai T, Nakamura AJ, Sakaue-Sawano A, Miyawaki A, Harada H, Kobayashi M, Kobayashi J, Kunieda T, Funayama T, Suzuki M, Miyamoto T, Hidema J, Yoshida Y, Takahashi A. Space radiation biology for “Living in Space.” BioMed Res Int. 2020:e4703286. doi:10.1155/2020/4703286 FurukawaS NagamatsuA NenoiM FujimoriA KakinumaS KatsubeT WangB TsuruokaC ShiraiT NakamuraAJ Sakaue-SawanoA MiyawakiA HaradaH KobayashiM KobayashiJ KuniedaT FunayamaT SuzukiM MiyamotoT HidemaJ YoshidaY TakahashiA Space radiation biology for “Living in Space.” BioMed Res Int 2020 e4703286 10.1155/2020/4703286 Open DOISearch in Google Scholar

Montesinos CA, Khalid R, Cristea O, Greenberger JS, Epperly MW, Lemon JA, Boreham DR, Popov D, Gorthi G, Ramkumar N, Jones JA. Space radiation protection countermeasures in microgravity and planetary exploration. Life. 2021;11:829. doi:10.3390/life11080829 MontesinosCA KhalidR CristeaO GreenbergerJS EpperlyMW LemonJA BorehamDR PopovD GorthiG RamkumarN JonesJA Space radiation protection countermeasures in microgravity and planetary exploration Life 2021 11 829 10.3390/life11080829 Open DOISearch in Google Scholar

NASA LBLEO Science Working Group. 2018. Life Beyond Low Earth Orbit. Report of a science working group to the NASA Human Exploration and Operations Mission Directorate and Space Life and Physical Sciences Division. NASA LBLEO Science Working Group 2018 Life Beyond Low Earth Orbit. Report of a science working group to the NASA Human Exploration and Operations Mission Directorate and Space Life and Physical Sciences Division Search in Google Scholar

Blaber E, Boothby T, Carr CE, Everroad RC, Foster J, Galazka J, Lee JA, Lera M, Ricco A, Sanders L, Szewczyk N, Tahimic C, Todd P, Vaishampayan P, Vanapalli S, Zhang Y, Zitnik M, Harrison L. NASA Space Biology Beyond LEO Instrumentation & Science Series Science Working Group 2022 Annual Report. 2023 (No. ntrs. nasa.gov/citations/20230008417). BlaberE BoothbyT CarrCE EverroadRC FosterJ GalazkaJ LeeJA LeraM RiccoA SandersL SzewczykN TahimicC ToddP VaishampayanP VanapalliS ZhangY ZitnikM HarrisonL NASA Space Biology Beyond LEO Instrumentation & Science Series Science Working Group 2022 Annual Report 2023 (No. ntrs. nasa.gov/citations/20230008417). Search in Google Scholar

Chancellor J, Nowadly C, Williams J, Aunon-Chancellor S, Chesal M, Looper J, Newhauser W. Everything you wanted to know about space radiation but were afraid to ask. J Environ Sci Health Part C Toxicol Carcinog. 2021;39:113–128. doi:10.1080/26896583.2021.1897273 ChancellorJ NowadlyC WilliamsJ Aunon-ChancellorS ChesalM LooperJ NewhauserW Everything you wanted to know about space radiation but were afraid to ask J Environ Sci Health Part C Toxicol Carcinog 2021 39 113 128 10.1080/26896583.2021.1897273 Open DOISearch in Google Scholar

Coulombe JV, Harrisson G, Lewis BJ, El-Jaby S. Evolving radiological protection guidelines for exploration-class missions. Life Sci Space Res. 2022;doi:10.1016/j.lssr.2022.08.004 CoulombeJV HarrissonG LewisBJ El-JabyS Evolving radiological protection guidelines for exploration-class missions Life Sci Space Res 2022 10.1016/j.lssr.2022.08.004 Open DOISearch in Google Scholar

Everroad RC, Foster J, Galazka JM, Jansson J, Lee JA, Lera MP, Perera I, Ricco A, Szewczyk N, Todd P, Zhang Y, Harrison L. NASA Space Biology Beyond LEO Instrumentation & Science Series - Science Working Group 2021 Annual Report. 2021. (No. ntrs. nasa.gov/citations/20210023324). EverroadRC FosterJ GalazkaJM JanssonJ LeeJA LeraMP PereraI RiccoA SzewczykN ToddP ZhangY HarrisonL NASA Space Biology Beyond LEO Instrumentation & Science Series - Science Working Group 2021 Annual Report 2021 (No. ntrs. nasa.gov/citations/20210023324). Search in Google Scholar

Restier-Verlet J, El-Nachef L, Ferlazzo ML, Al-Choboq J, Granzotto A, Bouchet A, Foray N. Radiation on Earth or in space: what does it change? Int J Mol Sci. 2021;22. doi:10.3390/ijms22073739 Restier-VerletJ El-NachefL FerlazzoML Al-ChoboqJ GranzottoA BouchetA ForayN Radiation on Earth or in space: what does it change? Int J Mol Sci 2021 22 10.3390/ijms22073739 Open DOISearch in Google Scholar

Mars K. 5 Hazards of Human Spaceflight. NASA. 2018; http://www.nasa.gov/hrp/5-hazards-of-human-spaceflight MarsK 5 Hazards of Human Spaceflight NASA 2018 http://www.nasa.gov/hrp/5-hazards-of-human-spaceflight Search in Google Scholar

Ball N, Kagawa H, Hindupur A, Kostakis A, Hogan J, Villanueva A, Sharif S, Donovan F, Settles M, Sims K, Gresser A. 2021. BioNutrients-2: Improvements to the BioNutrients-1 nutrient production system. 50th International Conference on Environmental Systems. ICES-2021-331. BallN KagawaH HindupurA KostakisA HoganJ VillanuevaA SharifS DonovanF SettlesM SimsK GresserA 2021 BioNutrients-2: Improvements to the BioNutrients-1 nutrient production system 50th International Conference on Environmental Systems. ICES-2021-331 Search in Google Scholar

Ball N, Kagawa H, Hindupur A, Sims K. 2020. BioNutrients-1: Development of an on-demand nutrient production system for long-duration missions.49th International Conference on Environmental Systems. ICES-2020-119. Presented at the 49th International Conference on Environmental Systems. BallN KagawaH HindupurA SimsK 2020 BioNutrients-1: Development of an on-demand nutrient production system for long-duration missions 49th International Conference on Environmental Systems. ICES-2020-119. Presented at the 49th International Conference on Environmental Systems Search in Google Scholar

Bijlani S, Stephens E, Singh NK, Venkateswaran K, Wang CCC. Advances in space microbiology. iScience. 2021;24:102395. doi:10.1016/j.isci.2021.102395 BijlaniS StephensE SinghNK VenkateswaranK WangCCC Advances in space microbiology iScience 2021 24 102395 10.1016/j.isci.2021.102395 Open DOISearch in Google Scholar

Santomartino R, Zea L, Cockell CS. The smallest space miners: principles of space biomining. Extremophiles. 2022;26:7. doi:10.1007/s00792-021-01253- SantomartinoR ZeaL CockellCS The smallest space miners: principles of space biomining Extremophiles 2022 26 7 10.1007/s00792-021-01253- Open DOISearch in Google Scholar

Massaro Tieze S, Liddell LC, Santa Maria SR, Bhattacharya S. BioSentinel: A biological CubeSat for deep space exploration. Astrobiology. 2020. doi:10.1089/ast.2019.2068 Massaro TiezeS LiddellLC Santa MariaSR BhattacharyaS BioSentinel: A biological CubeSat for deep space exploration Astrobiology 2020 10.1089/ast.2019.2068 Open DOISearch in Google Scholar

Ricco AJ, Maria SRS, Hanel RP, Bhattacharya S. BioSentinel: A 6U nanosatellite for deep-space biological science. IEEE Aerosp Electron Syst Mag. 2020;35:6–18. doi:10.1109/MAES.2019.2953760 RiccoAJ MariaSRS HanelRP BhattacharyaS BioSentinel: A 6U nanosatellite for deep-space biological science IEEE Aerosp Electron Syst Mag 2020 35 6 18 10.1109/MAES.2019.2953760 Open DOISearch in Google Scholar

Santa Maria SR, Marina DB, Massaro Tieze S, Liddell LC, Bhattacharya S. BioSentinel: Long-term Saccharomyces cerevisiae preservation for a deep space biosensor mission. Astrobiology. 2020;20:1–14. doi:10.1089/ast.2019.2073 Santa MariaSR MarinaDB Massaro TiezeS LiddellLC BhattacharyaS BioSentinel: Long-term Saccharomyces cerevisiae preservation for a deep space biosensor mission Astrobiology 2020 20 1 14 10.1089/ast.2019.2073 Open DOISearch in Google Scholar

Bücker H. 1975. Biostack: a study of the biological effects on HZE galactic cosmic radiation. Biomedical Results of Apollo, NASA SP-368. National Aeronautics and Space Administration. BückerH 1975 Biostack: a study of the biological effects on HZE galactic cosmic radiation Biomedical Results of Apollo, NASA SP-368. National Aeronautics and Space Administration Search in Google Scholar

Cucinotta FA, Wilson JW, Katz R, Atwell W, Badhwar GD, Shavers MR. Track structure and radiation transport model for space radiobiology studies. Adv Space Res. Proceedings of the F3.1, F3.4, F2.4 and F3.8 Symposia of COSPAR Scientific Commission F. 1996;18:183–194. doi:10.1016/0273-1177(96)00039-7 CucinottaFA WilsonJW KatzR AtwellW BadhwarGD ShaversMR Track structure and radiation transport model for space radiobiology studies Adv Space Res. Proceedings of the F3.1, F3.4, F2.4 and F3.8 Symposia of COSPAR Scientific Commission F. 1996 18 183 194 10.1016/0273-1177(96)00039-7 Open DOISearch in Google Scholar

Mileikowsky C, Cucinotta FA, Wilson JW, Gladman B, Horneck G, Lindegren L, Melosh J, Rickman H, Valtonen M, Zheng JQ. Natural transfer of viable microbes in space. Icarus. 2000;145:391–427. doi:10.1006/icar.1999.6317 MileikowskyC CucinottaFA WilsonJW GladmanB HorneckG LindegrenL MeloshJ RickmanH ValtonenM ZhengJQ Natural transfer of viable microbes in space Icarus 2000 145 391 427 10.1006/icar.1999.6317 Open DOISearch in Google Scholar

Zea L, Santa Maria SR, Ricco AJ. 7 - CubeSats for microbiology and astrobiology research In: Cappelletti C, Battistini S, Malphrus BK, editors. Cubesat Handbook. Academic Press; 2021. pp. 147–162. doi:10.1016/B978-0-12-817884-3.00007-2 ZeaL Santa MariaSR RiccoAJ 7 - CubeSats for microbiology and astrobiology research In: CappellettiC BattistiniS MalphrusBK editors. Cubesat Handbook Academic Press 2021 147 162 10.1016/B978-0-12-817884-3.00007-2 Open DOISearch in Google Scholar

Kitts C, Ronzano K, Rasay R, Mas I, Williams P, Mahacek P, Minelli G, Hines J, Agasid E, Friedericks C, Piccini M, Parra M, Timucin L, Beasley C, Henschke M, Luzzi E, Mai N, McIntyre M, Ricks R, Squires D, Storment C, Tucker J, Yost B, Defouw G, Ricco A. Flight results from the GeneSat-1 biological microsatellite mission. Small Satell Conf. 2007. KittsC RonzanoK RasayR MasI WilliamsP MahacekP MinelliG HinesJ AgasidE FriedericksC PicciniM ParraM TimucinL BeasleyC HenschkeM LuzziE MaiN McIntyreM RicksR SquiresD StormentC TuckerJ YostB DefouwG RiccoA Flight results from the GeneSat-1 biological microsatellite mission Small Satell Conf. 2007 Search in Google Scholar

Minelli G, Kitts C, Ronzano K, Beasley C, Rasay R, Mas I, Williams P, Mahacek P, Shepard J, Acain J, Hines J, Agasid E, Friedericks C, Piccini M, Parra M, Timucin L, Henschke M, Luzzi E, Mai N, McIntyre M, Ricks R, Squires D, Storment C, Tucker J, Yost B, Defouw G, Ricco A. 2008. Extended life flight results from the GeneSat-1 biological microsatellite mission. Small Satellite Conference. MinelliG KittsC RonzanoK BeasleyC RasayR MasI WilliamsP MahacekP ShepardJ AcainJ HinesJ AgasidE FriedericksC PicciniM ParraM TimucinL HenschkeM LuzziE MaiN McIntyreM RicksR SquiresD StormentC TuckerJ YostB DefouwG RiccoA 2008 Extended life flight results from the GeneSat-1 biological microsatellite mission Small Satellite Conference Search in Google Scholar

Padgen MR, Liddell LC, Bhardwaj SR, Gentry D, Marina D, Parra M, Boone T, Tan M, Ellingson L, Rademacher A, Benton J, Schooley A, Mousavi A, Friedericks C, Hanel RP, Ricco AJ, Bhattacharya S, Maria SRS. BioSentinel: A biofluidic nanosatellite monitoring microbial growth and activity in deep space. Astrobiology. 2021;23. doi:10.1089/ast.2020.2305 PadgenMR LiddellLC BhardwajSR GentryD MarinaD ParraM BooneT TanM EllingsonL RademacherA BentonJ SchooleyA MousaviA FriedericksC HanelRP RiccoAJ BhattacharyaS MariaSRS BioSentinel: A biofluidic nanosatellite monitoring microbial growth and activity in deep space Astrobiology 2021 23 10.1089/ast.2020.2305 Open DOISearch in Google Scholar

Ricco AJ, Parra M, Niesel D, Piccini M, Ly D, McGinnis M, Kudlicki A, Hines JW, Timucin L, Beasley C, Ricks R, McIntyre M, Friedericks C, Henschke M, Leung R, Diaz-Aguado M, Kitts C, Mas I, Rasay M, Agasid E, Luzzi E, Ronzano K, Squires D, Yost B. 2011. PharmaSat: drug dose response in microgravity from a free-flying integrated biofluidic/optical culture-and-analysis satellite. Presented at the Microfluidics, BioMEMS, and Medical Microsystems IX. International Society for Optics and Photonics. p. 79290T. doi:10.1117/12.881082 RiccoAJ ParraM NieselD PicciniM LyD McGinnisM KudlickiA HinesJW TimucinL BeasleyC RicksR McIntyreM FriedericksC HenschkeM LeungR Diaz-AguadoM KittsC MasI RasayM AgasidE LuzziE RonzanoK SquiresD YostB 2011 PharmaSat: drug dose response in microgravity from a free-flying integrated biofluidic/optical culture-and-analysis satellite Presented at the Microfluidics, BioMEMS, and Medical Microsystems IX International Society for Optics and Photonics 79290T 10.1117/12.881082 Open DOISearch in Google Scholar

Liddell LC, Gentry DM, Gilbert R, Marina D, Massaro Tieze S, Padgen MR, Akiyama K, Keenan K, Bhattacharya S, Santa Maria SR. BioSentinel: validating sensitivity of yeast biosensors to deep space relevant radiation. Astrobiology. 2023;23:648–656. doi:10.1089/ast.2022.0124 LiddellLC GentryDM GilbertR MarinaD Massaro TiezeS PadgenMR AkiyamaK KeenanK BhattacharyaS Santa MariaSR BioSentinel: validating sensitivity of yeast biosensors to deep space relevant radiation Astrobiology 2023 23 648 656 10.1089/ast.2022.0124 Open DOISearch in Google Scholar

Figliozzi G. 2023. What is the lunar explorer instrument for space biology applications? NASA. http://www.nasa.gov/ames/leia FigliozziG 2023 What is the lunar explorer instrument for space biology applications? NASA http://www.nasa.gov/ames/leia Search in Google Scholar

Kiefer J. The physical basis for the biological action of heavy ions. New J Phys. 2008;10:075004. doi:10.1088/1367-2630/10/7/075004 KieferJ The physical basis for the biological action of heavy ions New J Phys 2008 10 075004 10.1088/1367-2630/10/7/075004 Open DOISearch in Google Scholar

Hellweger FL, Bucci V. 2009. A bunch of tiny individuals—individual-based modeling for microbes. Ecol Model. 2009;220:8–22. doi:10.1016/j.ecolmodel.2008.09.004 HellwegerFL BucciV 2009 A bunch of tiny individuals—individual-based modeling for microbes Ecol Model 2009 220 8 22 10.1016/j.ecolmodel.2008.09.004 Open DOISearch in Google Scholar

Hellweger FL, Kianirad E. 2007. Individual-based modeling of phytoplankton: Evaluating approaches for applying the cell quota model. J Theor Biol. 2007;249:554–565 doi:10.1016/j.jtbi.2007.08.020 HellwegerFL KianiradE 2007 Individual-based modeling of phytoplankton: Evaluating approaches for applying the cell quota model J Theor Biol 2007 249 554 565 10.1016/j.jtbi.2007.08.020 Open DOISearch in Google Scholar

Plante I, Wu H. 2014. RITRACKS: A software for simulation of stochastic radiation track structure, micro and nanodosimetry, radiation chemistry and DNA damage for heavy ions. Presented at the COSPAR Scientific Assembly. Moscow. PlanteI WuH 2014 RITRACKS: A software for simulation of stochastic radiation track structure, micro and nanodosimetry, radiation chemistry and DNA damage for heavy ions Presented at the COSPAR Scientific Assembly Moscow Search in Google Scholar

Blyth BJ, Sykes PJ. Radiation-induced bystander effects: What are they, and how relevant are they to human radiation exposures? Radiat Res. 2011;176:139–157. doi:10.1667/RR2548.1 BlythBJ SykesPJ Radiation-induced bystander effects: What are they, and how relevant are they to human radiation exposures? Radiat Res 2011 176 139 157 10.1667/RR2548.1 Open DOISearch in Google Scholar

Heeran AB, Berrigan HP, O’Sullivan J. The radiation-induced bystander effect (RIBE) and its connections with the hallmarks of cancer. Radiat Res. 2019;192:668–679. doi:10.1667/RR15489.1 HeeranAB BerriganHP O’SullivanJ The radiation-induced bystander effect (RIBE) and its connections with the hallmarks of cancer Radiat Res 2019 192 668 679 10.1667/RR15489.1 Open DOISearch in Google Scholar

Hei TK, Zhou H, Ivanov VN, Hong M, Lieberman HB, Brenner DJ, Amundson SA, Geard CR. Mechanism of radiation-induced bystander effects: a unifying model. J Pharm Pharmacol. 2005;60:943–950. doi:10.1211/jpp.60.8.0001 HeiTK ZhouH IvanovVN HongM LiebermanHB BrennerDJ AmundsonSA GeardCR Mechanism of radiation-induced bystander effects: a unifying model J Pharm Pharmacol 2005 60 943 950 10.1211/jpp.60.8.0001 Open DOISearch in Google Scholar

Singh A. 2023. AMMPER. Available at https://github.com/nasa/AMMPER. SinghA 2023 AMMPER Available at https://github.com/nasa/AMMPER. Search in Google Scholar

Jorgensen P, Edgington NP, Schneider BL, Rupeš I, Tyers M, Futcher B. The size of the nucleus increases as yeast cells grow. Mol Biol Cell. 2007;18:3523–3532. doi:10.1091/mbc.e06-10-0973 JorgensenP EdgingtonNP SchneiderBL RupešI TyersM FutcherB The size of the nucleus increases as yeast cells grow Mol Biol Cell 2007 18 3523 3532 10.1091/mbc.e06-10-0973 Open DOISearch in Google Scholar

Krawczyk K, Dzwinel W, Yuen DA. Nonlinear development of bacterial colony modeled with cellular automata and agent objects. Int J Mod Phys C. 2003;14:1385–1404. doi:10.1142/S0129183103006199 KrawczykK DzwinelW YuenDA Nonlinear development of bacterial colony modeled with cellular automata and agent objects Int J Mod Phys C. 2003 14 1385 1404 10.1142/S0129183103006199 Open DOISearch in Google Scholar

Horowitz J, Normand MD, Corradini MG, Peleg M. Probabilistic model of microbial cell growth, division, and mortality. Appl Environ Microbiol. 2010;76:230–242. doi:10.1128/AEM.01527-09 HorowitzJ NormandMD CorradiniMG PelegM Probabilistic model of microbial cell growth, division, and mortality Appl Environ Microbiol 2010 76 230 242 10.1128/AEM.01527-09 Open DOISearch in Google Scholar

Allen RJ, Waclaw B. Bacterial growth: a statistical physicist’s guide. Rep Prog Phys. 2029;82:016601. doi:10.1088/1361-6633/aae546 AllenRJ WaclawB Bacterial growth: a statistical physicist’s guide Rep Prog Phys 2019 82 016601 10.1088/1361-6633/aae546 Open DOISearch in Google Scholar

Simonsen LC, Slaba TC, Guida P, Rusek A. NASA’s first ground-based galactic cosmic ray simulator: Enabling a new era in space radiobiology research. PLOS Biol. 2020;18:e3000669. doi:10.1371/journal.pbio.3000669 SimonsenLC SlabaTC GuidaP RusekA NASA’s first ground-based galactic cosmic ray simulator: Enabling a new era in space radiobiology research PLOS Biol 2020 18 e3000669 10.1371/journal.pbio.3000669 Open DOISearch in Google Scholar

Curtis SB, Letaw JR. Galactic cosmic rays and cell-hit frequencies outside the magnetosphere. Adv Space Res. 1989;9:293–298. doi:10.1016/0273-1177(89)90452-3 CurtisSB LetawJR Galactic cosmic rays and cell-hit frequencies outside the magnetosphere Adv Space Res 1989 9 293 298 10.1016/0273-1177(89)90452-3 Open DOISearch in Google Scholar

Kim M-HY, Rusek A, Cucinotta FA. Issues for simulation of galactic cosmic ray exposures for radiobiological research at ground-based accelerators. Front Oncol. 2015;5. KimM-HY RusekA CucinottaFA Issues for simulation of galactic cosmic ray exposures for radiobiological research at ground-based accelerators Front Oncol 2015 5 Search in Google Scholar

Stewart RD, Yu VK, Georgakilas AG, Koumenis C, Park JH, Carlson DJ. Effects of radiation quality and oxygen on clustered DNA lesions and cell death. Radiat Res. 2011;176:587–602. doi:10.1667/RR2663.1 StewartRD YuVK GeorgakilasAG KoumenisC ParkJH CarlsonDJ Effects of radiation quality and oxygen on clustered DNA lesions and cell death Radiat Res 2011 176 587 602 10.1667/RR2663.1 Open DOISearch in Google Scholar

Wingate CL, Baum JW. Measured radial distributions of dose and LET for alpha and proton beams in hydrogen and tissue-equivalent gas. Radiat Res. 1976;65:1–19. doi:10.2307/3574282 WingateCL BaumJW Measured radial distributions of dose and LET for alpha and proton beams in hydrogen and tissue-equivalent gas Radiat Res 1976 65 1 19 10.2307/3574282 Open DOISearch in Google Scholar

Ferradini C, Jay-Gerin J-P. The effect of pH on water radiolysis: a still open question — a minireview. Res Chem Intermed. 2000;26:549–565. doi:10.1163/156856700X00525 FerradiniC Jay-GerinJ-P The effect of pH on water radiolysis: a still open question — a minireview Res Chem Intermed 2000 26 549 565 10.1163/156856700X00525 Open DOISearch in Google Scholar

Attri P, Kim YH, Park DH, Park JH, Hong YJ, Uhm HS, Kim K-N, Fridman A, Choi EH. Generation mechanism of hydroxyl radical species and its lifetime prediction during the plasma-initiated ultraviolet (UV) photolysis. Sci Rep. 2015;5:9332. doi:10.1038/srep09332 AttriP KimYH ParkDH ParkJH HongYJ UhmHS KimK-N FridmanA ChoiEH Generation mechanism of hydroxyl radical species and its lifetime prediction during the plasma-initiated ultraviolet (UV) photolysis Sci Rep 2015 5 9332 10.1038/srep09332 Open DOISearch in Google Scholar

Krumova K, Cosa G. Overview of reactive oxygen species. Singlet Oxygen: Applications in Biosciences and Nanosciences, Comprehensive Series in Photochemical & Photobiological Sciences. London: Royal Society of Chemistry; 2016, 1–12. KrumovaK CosaG Overview of reactive oxygen species. Singlet Oxygen: Applications in Biosciences and Nanosciences, Comprehensive Series in Photochemical & Photobiological Sciences London Royal Society of Chemistry 2016 1 12 Search in Google Scholar

Plante I, Cucinotta F. Simulation of the radiolysis of water using Green’s functions of the diffusion equation. Radiat Prot Dosimetry. 2015;166. doi:10.1093/rpd/ncv179 PlanteI CucinottaF Simulation of the radiolysis of water using Green’s functions of the diffusion equation Radiat Prot Dosimetry 2015 166 10.1093/rpd/ncv179 Open DOISearch in Google Scholar

Thomas JK. Rates of reaction of the hydroxyl radical. Trans Faraday Soc. 1965;61:702. doi:10.1039/tf9656100702 ThomasJK Rates of reaction of the hydroxyl radical Trans Faraday Soc 1965 61 702 10.1039/tf9656100702 Open DOISearch in Google Scholar

Le Caër S. 2011. Water radiolysis: influence of oxide surfaces on H2 production under ionizing radiation. Water. 2011;3:235–253. doi:10.3390/w3010235 Le CaërS 2011 Water radiolysis: influence of oxide surfaces on H2 production under ionizing radiation Water 2011 3 235 253 10.3390/w3010235 Open DOISearch in Google Scholar

Cucinotta FA, Wilson JW, Katz R, Atwell W, Badhwar GD, Shavers MR. Track structure and radiation transport model for space radiobiology studies. Adv Space Res. Proceedings of the F3.1, F3.4, F2.4 and F3.8 Symposia of COSPAR Scientific Commission F. 1996;18:183–194. doi:10.1016/0273-1177(96)00039-7 CucinottaFA WilsonJW KatzR AtwellW BadhwarGD ShaversMR Track structure and radiation transport model for space radiobiology studies Adv Space Res. Proceedings of the F3.1, F3.4, F2.4 and F3.8 Symposia of COSPAR Scientific Commission F. 1996 18 183 194 10.1016/0273-1177(96)00039-7 Open DOISearch in Google Scholar

Nikjoo H, O’Neill P, Terrissol M, Goodhead DT. Quantitative modelling of DNA damage using Monte Carlo track structure method. Radiat Environ Biophys. 1999;38:31–38. doi:10.1007/s004110050135 NikjooH O’NeillP TerrissolM GoodheadDT Quantitative modelling of DNA damage using Monte Carlo track structure method Radiat Environ Biophys 1999 38 31 38 10.1007/s004110050135 Open DOISearch in Google Scholar

Erixon K, Cedervall B. Linear induction of DNA double-strand breakage with X-ray dose, as determined from DNA fragment size distribution. Radiat Res. 1995;142:153–162. doi:10.2307/3579023 ErixonK CedervallB Linear induction of DNA double-strand breakage with X-ray dose, as determined from DNA fragment size distribution Radiat Res 1995 142 153 162 10.2307/3579023 Open DOISearch in Google Scholar

Ponomarev AL, George K, Cucinotta FA. Computational model of chromosome aberration yield induced by high- and low-LET radiation exposures. Radiat Res. 2012;177:727–737. doi:10.1667/RR2659.1 PonomarevAL GeorgeK CucinottaFA Computational model of chromosome aberration yield induced by high- and low-LET radiation exposures Radiat Res 2012 177 727 737 10.1667/RR2659.1 Open DOISearch in Google Scholar

Madeo F, Fröhlich E, Ligr M, Grey M, Sigrist SJ, Wolf DH, Fröhlich K-U. Oxygen stress: a regulator of apoptosis in yeast. J Cell Biol. 1999;145:757–767. doi:10.1083/jcb.145.4.757 MadeoF FröhlichE LigrM GreyM SigristSJ WolfDH FröhlichK-U Oxygen stress: a regulator of apoptosis in yeast J Cell Biol 1999 145 757 767 10.1083/jcb.145.4.757 Open DOISearch in Google Scholar

Karschau J, de Almeida C, Richard MC, Miller S, Booth IR, Grebogi C, de Moura APS. A matter of life or death: modeling DNA damage and repair in bacteria. Biophys J. 2011;100:814–821. doi:10.1016/j.bpj.2010.12.3713 KarschauJ de AlmeidaC RichardMC MillerS BoothIR GrebogiC de MouraAPS A matter of life or death: modeling DNA damage and repair in bacteria Biophys J. 2011 100 814 821 10.1016/j.bpj.2010.12.3713 Open DOISearch in Google Scholar

Lisby M, Mortensen UH, Rothstein R. Colocalization of multiple DNA double-strand breaks at a single Rad52 repair centre. Nat Cell Biol. 2003;5:572–577. doi:10.1038/ncb997 LisbyM MortensenUH RothsteinR Colocalization of multiple DNA double-strand breaks at a single Rad52 repair centre Nat Cell Biol 2003 5 572 577 10.1038/ncb997 Open DOISearch in Google Scholar

Plante I, Slaba T, Shavers Z, Hada M. A bi-exponential repair algorithm for radiation-induced double-strand breaks: application to simulation of chromosome aberrations. Genes. 2019;10:936. doi:10.3390/genes10110936 PlanteI SlabaT ShaversZ HadaM A bi-exponential repair algorithm for radiation-induced double-strand breaks: application to simulation of chromosome aberrations Genes 2019 10 936 10.3390/genes10110936 Open DOISearch in Google Scholar

Lettier G, Feng Q, Mayolo AA de, Erdeniz N, Reid RJD, Lisby M, Mortensen UH, Rothstein R. The role of DNA double-strand breaks in spontaneous homologous recombination in S. cerevisiae. PLOS Genet. 2006;2:e194. doi:10.1371/journal.pgen.0020194 LettierG FengQ MayoloAA de ErdenizN ReidRJD LisbyM MortensenUH RothsteinR The role of DNA double-strand breaks in spontaneous homologous recombination in S. cerevisiae PLOS Genet 2006 2 e194 10.1371/journal.pgen.0020194 Open DOISearch in Google Scholar

Kiefer J, Egenolf R, Ikpeme S. Heavy ion-induced DNA double-strand breaks in yeast. Radiat Res. 2002;157:141–148. doi:10.1667/0033-7587(2002)157[0141:HIIDDS]2.0.CO;2 KieferJ EgenolfR IkpemeS Heavy ion-induced DNA double-strand breaks in yeast Radiat Res 2002 157 141 148 10.1667/0033-7587(2002)157[0141:HIIDDS]2.0.CO;2 Open DOISearch in Google Scholar

Kost M, Kiefer J. Biological action of heavy ion irradiation on individual yeast cells In: McCormack PD, Swenberg CE, Bücker H, editors. Terrestrial Space Radiation and Its Biological Effects, Nato ASI Series. Boston, MA: Springer US; 1988, 197–203. doi:10.1007/978-1-4613-1567-4_14 KostM KieferJ Biological action of heavy ion irradiation on individual yeast cells In: McCormackPD SwenbergCE BückerH editors. Terrestrial Space Radiation and Its Biological Effects, Nato ASI Series Boston, MA Springer US 1988 197 203 10.1007/978-1-4613-1567-4_14 Open DOISearch in Google Scholar

Kiefer J, Müller J, Götzen J. 1988. Mitotic recombination in continuously γ-irradiated diploid yeast. Radiat Res. 1988;113:71–78. doi:10.2307/3577181 KieferJ MüllerJ GötzenJ 1988 Mitotic recombination in continuously γ-irradiated diploid yeast Radiat Res 1988 113 71 78 10.2307/3577181 Open DOISearch in Google Scholar

Kiefer J, Wagner E. Radiosensitivity of continuous cultures: experiments with diploid yeast. Radiat Res. 1975;63:336–345. doi:10.2307/3574158 KieferJ WagnerE Radiosensitivity of continuous cultures: experiments with diploid yeast Radiat Res 1975 63 336 345 10.2307/3574158 Open DOISearch in Google Scholar

Nicholson WL, Ricco AJ. Nanosatellites for biology in space: in situ measurement of Bacillus subtilis spore germination and growth after 6 months in low Earth orbit on the O/OREOS Mission. Life. 2020;10:1. doi:10.3390/life10010001 NicholsonWL RiccoAJ Nanosatellites for biology in space: in situ measurement of Bacillus subtilis spore germination and growth after 6 months in low Earth orbit on the O/OREOS Mission Life 2020 10 1 10.3390/life10010001 Open DOISearch in Google Scholar

Padgen MR, Lera MP, Parra MP, Ricco AJ, Chin M, Chinn TN, Cohen A, Friedericks CR, Henschke MB, Snyder TV, Spremo SM, Wang J-H, Matin AC. EcAMSat spaceflight measurements of the role of σs in antibiotic resistance of stationary phase Escherichia coli in microgravity. Life Sci Space Res. 2020;24:18–24. doi:10.1016/j.lssr.2019.10.007 PadgenMR LeraMP ParraMP RiccoAJ ChinM ChinnTN CohenA FriedericksCR HenschkeMB SnyderTV SpremoSM WangJ-H MatinAC EcAMSat spaceflight measurements of the role of σs in antibiotic resistance of stationary phase Escherichia coli in microgravity Life Sci Space Res 2020 24 18 24 10.1016/j.lssr.2019.10.007 Open DOISearch in Google Scholar

Pross HD, Casares A, Kiefer J. Induction and repair of DNA double-strand breaks under irradiation and microgravity. Radiat Res. 153:521–525. doi:10.1667/0033-7587(2000)153[0521:IARODD]2.0.CO;2 ProssHD CasaresA KieferJ Induction and repair of DNA double-strand breaks under irradiation and microgravity Radiat Res 153 521 525 10.1667/0033-7587(2000)153[0521:IARODD]2.0.CO;2 Open DOISearch in Google Scholar

Pross HD, Kiefer J. Repair of cellular radiation damage in space under microgravity conditions. Radiat Environ Biophys. 1999;38:133–138. doi:10.1007/s004110050149 ProssHD KieferJ Repair of cellular radiation damage in space under microgravity conditions Radiat Environ Biophys 1999 38 133 138 10.1007/s004110050149 Open DOISearch in Google Scholar

Takahashi A, Ohnishi K, Takahashi S, Masukawa M, Sekikawa K, Amano T, Nakano T, Nagaoka S, Ohnishi T. The effects of microgravity on induced mutation in Escherichia coli and Saccharomyces cerevisiae. Adv Space Res. 2001;28:555–561. doi:10.1016/S0273-1177(01)00391-X TakahashiA OhnishiK TakahashiS MasukawaM SekikawaK AmanoT NakanoT NagaokaS OhnishiT The effects of microgravity on induced mutation in Escherichia coli and Saccharomyces cerevisiae Adv Space Res 2001 28 555 561 10.1016/S0273-1177(01)00391-X Open DOISearch in Google Scholar

Ware JH, Sanzari J, Avery S, Sayers C, Krigsfeld G, Nuth M, Wan XS, Rusek A, Kennedy AR. Effects of proton radiation dose, dose rate and dose fractionation on hematopoietic cells in mice. Radiat Res. 2010;174:325–330. doi:10.1667/RR1979.1 WareJH SanzariJ AveryS SayersC KrigsfeldG NuthM WanXS RusekA KennedyAR Effects of proton radiation dose, dose rate and dose fractionation on hematopoietic cells in mice Radiat Res 2010 174 325 330 10.1667/RR1979.1 Open DOISearch in Google Scholar

Bujarrabal A, Schumacher B. 2016. Hormesis running hot and cold. Cell Cycle. 2016;15(24);3335–3336. doi: 10.1080/15384101.2016.1235859 BujarrabalA SchumacherB 2016 Hormesis running hot and cold Cell Cycle 2016 15 24 3335 3336 10.1080/15384101.2016.1235859 Open DOISearch in Google Scholar

Calabrese E.J. Hormetic mechanisms. Crit Rev Toxicol. 2013;43:580–606. doi:10.3109/10408444.2013.808172 CalabreseE.J. Hormetic mechanisms Crit Rev Toxicol 2013 43 580 606 10.3109/10408444.2013.808172 Open DOISearch in Google Scholar

Kabilan U, Graber TE, Alain T, Klokov D. 2020. Ionizing radiation and translation control: a link to radiation hormesis? Int J Mol Sci. 2020;21:6650. doi:10.3390/ijms21186650 KabilanU GraberTE AlainT KlokovD 2020 Ionizing radiation and translation control: a link to radiation hormesis? Int J Mol Sci 2020 21 6650 10.3390/ijms21186650 Open DOISearch in Google Scholar

Mathieu A, Fleurier S, Frénoy A, Dairou J, Bredeche M-F, Sanchez-Vizuete P, Song X, Matic I. Discovery and function of a general core hormetic stress response in E. coli induced by sublethal concentrations of antibiotics. Cell Rep. 2016;17:46–57. doi:10.1016/j.celrep.2016.09.001 MathieuA FleurierS FrénoyA DairouJ BredecheM-F Sanchez-VizueteP SongX MaticI Discovery and function of a general core hormetic stress response in E. coli induced by sublethal concentrations of antibiotics Cell Rep 2016 17 46 57 10.1016/j.celrep.2016.09.001 Open DOISearch in Google Scholar

Vaiserman AM. Radiation hormesis: historical perspective and implications for low-dose cancer risk assessment. Dose-Response 2010;8. doi:10.2203/dose-response.09-037.Vaiserman VaisermanAM Radiation hormesis: historical perspective and implications for low-dose cancer risk assessment Dose-Response 2010 8 10.2203/dose-response.09-037.Vaiserman Open DOISearch in Google Scholar

Keszenman DJ, Sutherland BM. Yields of clustered DNA damage induced by charged-particle radiations of similar kinetic energy per nucleon: LET dependence in different DNA microenvironments. Radiat Res. 2010;174:238–250. doi:10.1667/RR2093.1 KeszenmanDJ SutherlandBM Yields of clustered DNA damage induced by charged-particle radiations of similar kinetic energy per nucleon: LET dependence in different DNA microenvironments Radiat Res 2010 174 238 250 10.1667/RR2093.1 Open DOISearch in Google Scholar

Li Y, Reynolds P, O’Neill P, Cucinotta FA. Modeling damage complexity-dependent non-homologous end-joining repair pathway. PLOS ONE. 2014;9:e85816. doi:10.1371/journal.pone.0085816 LiY ReynoldsP O’NeillP CucinottaFA Modeling damage complexity-dependent non-homologous end-joining repair pathway PLOS ONE 2014 9 e85816 10.1371/journal.pone.0085816 Open DOISearch in Google Scholar

Lomax ME, Folkes LK, O’Neill P. Biological consequences of radiation-induced DNA damage: relevance to radiotherapy. Clin Oncol. Adv Clin Radiobiol. 2013;25:578–585. doi:10.1016/j.clon.2013.06.007 LomaxME FolkesLK O’NeillP Biological consequences of radiation-induced DNA damage: relevance to radiotherapy Clin Oncol. Adv Clin Radiobiol. 2013 25 578 585 10.1016/j.clon.2013.06.007 Open DOISearch in Google Scholar

Moscariello M, Sutherland B. Saccharomyces cerevisiae-based system for studying clustered DNA damages. Radiat Environ Biophys. 2010;49:447–456. doi:10.1007/s00411-010-0303-3 MoscarielloM SutherlandB Saccharomyces cerevisiae-based system for studying clustered DNA damages Radiat Environ Biophys 2010 49 447 456 10.1007/s00411-010-0303-3 Open DOISearch in Google Scholar

Friedland W, Dingfelder M, Kundrát P, Jacob P. Track structures, DNA targets and radiation effects in the biophysical Monte Carlo simulation code PARTRAC. Mutat Res Mol Mech Mutagen 2911;711:28–40. doi:10.1016/j.mrfmmm.2011.01.003 FriedlandW DingfelderM KundrátP JacobP Track structures, DNA targets and radiation effects in the biophysical Monte Carlo simulation code PARTRAC Mutat Res Mol Mech Mutagen 2011 711 28 40 10.1016/j.mrfmmm.2011.01.003 Open DOISearch in Google Scholar

Prise KM, Schettino G, Folkard M, Held KD. New insights on cell death from radiation exposure. Lancet Oncol. 2005;6:520–528. doi:10.1016/S1470-2045(05)70246-1 PriseKM SchettinoG FolkardM HeldKD New insights on cell death from radiation exposure Lancet Oncol 2005 6 520 528 10.1016/S1470-2045(05)70246-1 Open DOISearch in Google Scholar

Harper JV, Anderson JA, O’Neill P. Radiation induced DNA DSBs: contribution from stalled replication forks? DNA Repair. 2010;9:907–913. doi:10.1016/j.dnarep.2010.06.002 HarperJV AndersonJA O’NeillP Radiation induced DNA DSBs: contribution from stalled replication forks? DNA Repair 2010 9 907 913 10.1016/j.dnarep.2010.06.002 Open DOISearch in Google Scholar

Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
2 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Biologie, Biologie, andere, Materialwissenschaft, Materialwissenschaft, andere, Physik, Physik, andere