Zitieren

Callens N, Kinnaird A, Dannenberg K, Fittock M, Inga M, Persson O, Roth M, Schmitdt A, Siegl M (2013) REXUS/BEXUS – Rocket and balloon experiments for university students. 21st ESA Symposium on European Rocket & Balloon Programmes and Related Research 9–13 June 2013. Thun, Switzerland: European Space AgencyCallensNKinnairdADannenbergKFittockMIngaMPerssonORothMSchmitdtASieglM2013REXUS/BEXUS – Rocket and balloon experiments for university students21st ESA Symposium on European Rocket & Balloon Programmes and Related Research9–13 June 2013Thun, SwitzerlandEuropean Space AgencySearch in Google Scholar

Eyckmans J, Boudou T, Yu X, Chen CS (2011) A hitchhiker's guide to mechanobiology. Developmental Cell21: 35–47EyckmansJBoudouTYuXChenCS2011A hitchhiker's guide to mechanobiologyDevelopmental Cell21354710.1016/j.devcel.2011.06.015Search in Google Scholar

Goldermann M, Hanke W (2001) Ion channel are sensitive to gravity changes. Microgravity Science and Technology13: 35–38GoldermannMHankeW2001Ion channel are sensitive to gravity changesMicrogravity Science and Technology13353810.1007/BF02873330Search in Google Scholar

Goldin AL (1992) [15] Maintenance of Xenopus laevis and oocyte injection. In Methods in Enzymology Vol. 207, pp 266–279. Academic PressGoldinAL1992[15]Maintenance of Xenopus laevis and oocyte injectionInMethods in Enzymology207266279Academic Press10.1016/0076-6879(92)07017-ISearch in Google Scholar

Hanke W, Fernandes de Lima MV, Wiedemann M, Meissner K (2006) Microgravity dependence of excitable biological and physicochemical media. Protoplasma229: 235–242HankeWFernandes de LimaMVWiedemannMMeissnerK2006Microgravity dependence of excitable biological and physicochemical mediaProtoplasma22923524210.1007/s00709-006-0211-117180507Search in Google Scholar

Hanke W, Wiedemann M, Fernandes de Lima VM (2002) Control of the excitability of neuronal tissue by weak external forces. Faraday Discussions120: 237–248HankeWWiedemannMFernandes de LimaVM2002Control of the excitability of neuronal tissue by weak external forcesFaraday Discussions12023724810.1039/b102706a11901678Search in Google Scholar

Kohn FPM (2013) High throughput fluorescent screening of membrane potential and intracellular calcium concentration under variable gravity conditions. Microgravity Science and Technology25: 113–120KohnFPM2013High throughput fluorescent screening of membrane potential and intracellular calcium concentration under variable gravity conditionsMicrogravity Science and Technology2511312010.1007/s12217-012-9331-8Search in Google Scholar

Meissner K, Hanke W (2005) Action potential properties are gravity dependent. Microgravity Science and Technology17: 38–43MeissnerKHankeW2005Action potential properties are gravity dependentMicrogravity Science and Technology17384310.1007/BF02870977Search in Google Scholar

Pietsch J, Bauer J, Egli M, Infanger M, Wise P, Ulbrich C, Grimm D (2011) The effects of weightlessness on the human organism and mammalian cells. Current Molecular Medicine11: 350–364PietschJBauerJEgliMInfangerMWisePUlbrichCGrimmD2011The effects of weightlessness on the human organism and mammalian cellsCurrent Molecular Medicine1135036410.2174/15665241179597660021568935Search in Google Scholar

Richard S, Henggeler D, Ille F, Vadrucci Beck S, Moeckli M, Forster IC, Franco-Obregón A, Egli M (2012) A semi-automated electrophysiology system for recording from Xenopus oocytes under microgravity conditions. Microgravity Science and Technology24: 237–244RichardSHenggelerDIlleFVadrucci BeckSMoeckliMForsterICFranco-ObregónAEgliM2012A semi-automated electrophysiology system for recording from Xenopus oocytes under microgravity conditionsMicrogravity Science and Technology2423724410.1007/s12217-012-9307-8Search in Google Scholar

Schaffhauser DF, Andrini O, Ghezzi C, Forster IC, Franco-Obregon A, Egli M, Dittrich PS (2011) Microfluidic platform for electrophysiological studies on Xenopus aevis oocytes under varying gravity levels. Lab on a Chip11: 3471–3478SchaffhauserDFAndriniOGhezziCForsterICFranco-ObregonAEgliMDittrichPS2011Microfluidic platform for electrophysiological studies on Xenopus aevis oocytes under varying gravity levelsLab on a Chip113471347810.1039/c0lc00729c21870012Search in Google Scholar

Sieber M, Hanke W, Kohn FPM (2014) Modification of membrane fluidity by gravity. Open Journal of Biophysics4: 7SieberMHankeWKohnFPM2014Modification of membrane fluidity by gravityOpen Journal of Biophysics4710.4236/ojbiphy.2014.44012Search in Google Scholar

Wiedemann M, Fernandes de Lima VM, Hanke W (2002) Gravity dependence of waves in the retinal spreading depression and in gel type Belousov-Zhabotinsky systems. Physical Chemistry Chemical Physics4: 1370–1373WiedemannMFernandes de LimaVMHankeW2002Gravity dependence of waves in the retinal spreading depression and in gel type Belousov-Zhabotinsky systemsPhysical Chemistry Chemical Physics41370137310.1039/b109166mSearch in Google Scholar

Wiedemann M, Hanke W (2002) Gravity sensing in the central nervous system. Journal of Gravitational Physiology9: P43–P44WiedemannMHankeW2002Gravity sensing in the central nervous systemJournal of Gravitational Physiology9P43P44Search in Google Scholar

Wuest SL, Roesch C, Ille F, Egli M (2017) Calcium dependent current recordings in Xenopus laevis oocytes in microgravity. Acta Astronautica141: 228–236WuestSLRoeschCIlleFEgliM2017Calcium dependent current recordings in Xenopus laevis oocytes in microgravityActa Astronautica14122823610.1016/j.actaastro.2017.10.003Search in Google Scholar

eISSN:
2332-7774
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
2 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Biologie, andere, Materialwissenschaft, Physik