1. bookVolume 28 (2020): Issue 2 (December 2020)
Zeitschriftendaten
License
Format
Zeitschrift
Erstveröffentlichung
30 Jul 2019
Erscheinungsweise
2 Hefte pro Jahr
Sprachen
Englisch
access type Open Access

Some univalence conditions related to a general integral operator

Online veröffentlicht: 31 Dec 2020
Seitenbereich: 33 - 47
Eingereicht: 15 Apr 2020
Akzeptiert: 06 Sep 2020
Zeitschriftendaten
License
Format
Zeitschrift
Erstveröffentlichung
30 Jul 2019
Erscheinungsweise
2 Hefte pro Jahr
Sprachen
Englisch

[1] C. Bărbatu, D. Breaz, Univalence Criteria for a General Integral Operator, Advancements in Complex Analysis - From Theory to Practice, to appear.Search in Google Scholar

[2] J. Becker, LĂ«ownersche Differentialgleichung und quasikonform fortsezbare schlichte Funktionen, J. Reine Angew. Math., vol. 255, 1972, 23-43.Search in Google Scholar

[3] D. Breaz, N. Breaz, Two Integral Operators, Studia Univ.”Babes-Bolyai”, Cluj-Napoca, Mathematica, vol. 47, no. 3, 2002, 13-21.Search in Google Scholar

[4] D. Breaz, S. Owa, N. Breaz, A new integral univalent operator, Acta Universitatis Apulensis, vol. 16, 2008.Search in Google Scholar

[5] R. Bucur, D. Breaz, Univalence conditions for a new general integral operator, Int. Elect. J. of Pure and Applied Math., vol. 9, no. 3, 2015, 215-223.Search in Google Scholar

[6] R. Bucur, L. Andrei, D. Breaz, Univalence criterion, starlikeness and convexity for a new integral operator, Proceedings of the ICTAMI, Alba Iulia, 2015, 17-26.Search in Google Scholar

[7] B. A. Frasin, Order of convexity and univalence of general integral operator, Journal of the Franklin, vol. 348, 2011, 1012-1019.Search in Google Scholar

[8] B. A. Frasin, M. Darus, On certain analytic univalent functions, Internat. J. Math. and Math. Sci., vol. 25, no. 5, 2001, 305-310.Search in Google Scholar

[9] B. A. Frasin, J. Jahangiri A new and comprehensive class of analytic functions, Analele Univ. Oradea, Fasc. Math., vol. XV, 2008, 59-62.Search in Google Scholar

[10] I. J. Kim, E. P. Merkes, On an integral of powers of a spirallike function, Kyungpook Math. J., vol. 12, no. 2, 1972, 249-253.Search in Google Scholar

[11] O. Mayer, The Functions Theory of the One Variable Complex, Acad. Ed., Bucuresti, Romania, 1981, 101-117.Search in Google Scholar

[12] P. T. Mocanu, I. ƞerb, A sharp simple criterion for a subclass of starlike functions, Complex variables, vol. 32, 1997, 161-168.Search in Google Scholar

[13] Z. Nehari, Conformal Mapping, Mc Graw-Hill Book Comp., New York, 1975 (Dover Publ. Inc., 1975).Search in Google Scholar

[14] A. Oprea, D. Breaz, Univalence conditions for a general operator, Analele ƞtiinƣfice ale Universitaƣii “Ovidius” Constanƣa, vol. 23, no. 1, 2015, 213-224.Search in Google Scholar

[15] A. Oprea, D. Breaz, H.M. Srivastava, Univalence conditions for a new family of integral Operators. Filomat, Serbia, vol. 30, no. 5, 2016, 1243-1251.Search in Google Scholar

[16] H. Oversea, Integral operators of Bazilvic type, Bull. Math. Bucuresti, vol. 37, 1993, 115-125.Search in Google Scholar

[17] S. Ozaki, M. Nunokawa, The Schwarzian derivative and univalent functions, Proceedings of the American Mathematical Society, Mathematics, vol. 33, 1972, 392-394.Search in Google Scholar

[18] N. N. Pascu, An a univalence criterion II, Itinerant Seminar on Functional Equations, Approximation and Convexity, Cluj Napoca, 1985, 153-154.Search in Google Scholar

[19] N. N. Pascu, An improvement of Becker’s univalence criterion of univalence, Proceedings of the Commemorative Session Simion Stoilov, BraƟov, 1987.Search in Google Scholar

[20] N. N. Pascu, V. Pescar, On the integral operators Kim-Merkes and Pfaltzgraff, Mathematica, Univ. Babes-Bolyai, Cluj-Napoca, vol. 32, no. 2, 1990, 185-192.Search in Google Scholar

[21] V. Pescar, A new generalization of Ahlfors’s and Becker’s criterion of univalence, Bull. Malaysian Math. Soc., vol. 19, no. 2, 1996, 53-54.Search in Google Scholar

[22] Pescar V., New univalence criteria for some integral operators, Studia Univ. Babes-Bolyai Math., vol. 59, no. 2, 2014, 185-192.Search in Google Scholar

[23] V. Pescar, S. Owa, Univalence of certain integral operators, Int. J. Math. Math. Sci., vol. 23, 2000, 697-701.Search in Google Scholar

[24] J. Pfaltzgraff, Univalence of the integral of (fâ€Č (z))λ, Bull. London Math. Soc., vol. 7, no. 3, 1975, 254-256.Search in Google Scholar

[25] N. Ularu, D. Breaz, Univalence criterion and convexity for an integral operators, Applied Mathematics Letters, vol. 25, 2012, 658-661.Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo