1. bookVolume 27 (2019): Issue 2 (December 2019)
Zeitschriftendaten
License
Format
Zeitschrift
Erstveröffentlichung
30 Jul 2019
Erscheinungsweise
2 Hefte pro Jahr
Sprachen
Englisch
access type Open Access

Two New Classes of Analytic Functions Defined by Strong Differential Subordinations and Superordinations

Online veröffentlicht: 20 Mar 2020
Seitenbereich: 3 - 11
Eingereicht: 04 Jun 2019
Akzeptiert: 08 Dec 2019
Zeitschriftendaten
License
Format
Zeitschrift
Erstveröffentlichung
30 Jul 2019
Erscheinungsweise
2 Hefte pro Jahr
Sprachen
Englisch

In the present investigation, by making use of strong differential subordinations and superordinations, we introduce and study two new classes of holomorphic functions containing generalized differential operator. Also we determine important properties for functions belongs to these classes.

MSC 2010

[1] A. A. Lupaş, A note on special strong differential superordinations using multiplier transformation, Journal of Computational Analysis and Applications, vol. 17, no. 4, 2014, 746-751.Search in Google Scholar

[2] F. M. Al-Oboudi, On univalent functions defined by a generalized Sălăgean operator, Int. J. Math. Math. Sci., vol. 27, 2004, 1429-1436.Search in Google Scholar

[3] A. Amourah, M. Darus, Some properties of a new class of univalent functions involving a new generalized differential operator with negative coefficients, Indian J. Sci. Tech., vol. 9, no. 36, 2016, 1-7.Search in Google Scholar

[4] N. E. Cho, T. H. Kim, Multiplier transformations and strongly close-to-convex functions, Bull. Korean Math. Soc., vol. 40, no. 3, 2003, 399-410.Search in Google Scholar

[5] N. E. Cho, O. S. Kwon, H. M. Srivastava, Strong differential subordination and superordination for multivalently meromorphic functions involving the Liu- Srivastava operator, Integral transforms Spec. Funct., vol. 21, no. 8, 2010, 589-601.Search in Google Scholar

[6] M. Darus, R. W. Ibrahim, On subclasses for generalized operators of complex order, Far East J. Math. Sci., vol. 33, no. 3, 2009, 299-308.Search in Google Scholar

[7] M. P. Jeyaraman, T. K. Suresh, Strong differential subordination and superordination of analytic functions, J. Math. Anal. Appl., vol. 385, no. 2, 2012, 854-864.Search in Google Scholar

[8] S. S. Miller, P. T. Mocanu, Differential Subordinations. Theory and Applications, Series on Monographs and Textbooks in Pure and Applied Mathematics, vol. 225, Marcel Dekker Inc., New York, Basel, 2000.Search in Google Scholar

[9] G. I. Oros, Strong differential superordination, Acta Universitatis Apulensis, vol. 19, 2009, 101-106.Search in Google Scholar

[10] G. St. Sălăgean, Subclasses of univalent functions, Lecture Notes in Math., Springer Verlag, Berlin, vol. 1013, 1983, 362-372.Search in Google Scholar

[11] A. K. Wanas, A. A. Lupaş, On a new strong differential Subordinations and superordinations of analytic functions involving the generalized differential operator, Int. J. Pure Appl. Math., vol. 116, no. 3, 2017, 571-579.Search in Google Scholar

[12] A. K. Wanas, A. H. Majeed, New strong differential subordinations and superordinations of symmetric analytic functions, Int. J. Math. Anal., vol. 11, no. 11, 2017, 543-549.Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo