Uneingeschränkter Zugang

Protective Effect of Flaxseed on the Health of Experimental Animals Exposed to Xylene


Zitieren

1. Adkins, Y., Kelley, D. S., 2010: Mechanisms underlying the cardioprotective effects of omega-3 polyunsaturated fatty acids. J. Nutr. Biochem., 21, 781—792. DOI: 10.1016/j.jnutbio. 2009.12.004.Search in Google Scholar

2. Al-Bishri, W. M., 2013: Favourable effects of flaxseed supplemented diet on liver and kidney functions in hypertensive Wistar rats. J. Oleo. Sci., 62, 9, 709—715. DOI: 10.5650/jos.62.709.10.5650/jos.62.70924005015Search in Google Scholar

3. Al-Ghamdi, S., Raftery, M., Yaqoob, M., 2003: Organic solvent-induced proximal tubular cell toxicity via caspase-3 activation. J. Toxicol. Clin. Toxicol., 41, 7, 941—945. DOI: 10. 1081=CLT-120026515.10.1081/CLT-12002651514705839Search in Google Scholar

4. Andrejčáková, Z., Sopková, D., Vlčková, R., Kulichová, L., Gancarčíková, S., Almášiová, V., et al., 2016: Synbiotics suppress the release of lactate dehydrogenase, promote non-specific immunity and integrity of jejunum mucosa in piglets. Anim. Sci. J., 87, 9, 1157—1166. Epub 2015, Dec. 21. DOI: 10. 1111/asj.12558.10.1111/asj.12558715959127581561Search in Google Scholar

5. Andrejčáková, Z., Sopková, D., Vlčková, R., Hertelyová, Z., Gancarčíková, S., Nemcová, R., 2019: The application of Lactobacillus reuteri CCM 8617 and flaxseed positively improved the health of mice challenged with enterotoxigenic E. coli O149:F4. Probiotics Antimicrob. Proteins, In press. DOI: 10.1007/s12602-019-09578-x.10.1007/s12602-019-09578-x31410766Search in Google Scholar

6. Bancroft, J., 2008:Theory and Practice of Histological Techniques. Elsevier Health Sciences, 725 pp.Search in Google Scholar

7. Bassett, C. M., Rodriguez-Leyva, D., Pierce, G. N., 2009: Experimental and clinical research findings on the cardiovascular benefits of consuming flaxseed. Appl. Physiol. Nutr. Metab., 34, 5, 965—974. DOI: 10.1139/H09-087.10.1139/H09-08719935863Search in Google Scholar

8. Bomba, A., Jonecová, Z., Koščová, J., Nemcová, R., Gancarčíková, S., Mudroňová, D., et al., 2006: The improvement of probiotics efficacy by synergistically acting components of natural origin. Biologia, 61, 6, 729—734. DOI: 10.2478/s11756-006-0149-y.10.2478/s11756-006-0149-ySearch in Google Scholar

9. Bomba, A., Brandeburová, A., Ričanyová, J., Strojný, L., Chmelárová, A., Szabadosová, V., et al., 2012: The role of probiotics and natural bioactive compounds in modulation of the common molecular pathways in pathogenesis of atherosclerosis and cancer. Biologia, 67, 1, 1—13. DOI: 10.2478/s11756-011-0155-6.10.2478/s11756-011-0155-6Search in Google Scholar

10. Borovská, D., Nemcová, R., Gancarčíková, S., Koščová, J., 2013: The synbiotic effect of lactobacilli and flaxseed on selected intestinal microflora and organic acid levels in weaned piglets. Microbiology, 2, 10, 82—86.Search in Google Scholar

11. Buckner, A., Buckner, C. A., Montaut, S., Lafrenie, R. M., 2019: Treatment with flaxseed oil induces apoptosis in cultured malignant cells. Heliyon, 5, 8, e02251. DOI: 10.1016/j. heliyon.2019.e02251.Search in Google Scholar

12. Calder, P. C., 2006: N-3 polyunsaturated fatty acids, inflammation, and inflammatory diseases. Am. J. Clin. Nutr., 83, (Suppl. 6), 1505—1519. DOI: 10.1093/ajcn/83.6.1505S.10.1093/ajcn/83.6.1505S16841861Search in Google Scholar

13. Charles River Laboratories International, 2011: CD-1® IGS Mice NOMENCLATURE: Crl:CD1(ICR): https://www.criver.com/sites/default/files/resources/CD1IGSMouseModelInformationSheet.pdf.Search in Google Scholar

14. Clavel, T., Henderson, G., Alpert, C. A., Philippe, C., Rigottier-Gois, L., Dore, J., et al., 2005: Intestinal bacterial communities that produce active oestrogen-like compounds enterodiol and enterolactone in humans. Appl. Environ. Microbiol., 71, 10, 6077—6085. DOI: 10.1128/AEM.71.10.6077-6085.2005.10.1128/AEM.71.10.6077-6085.2005126596516204524Search in Google Scholar

15. Dasgupta, A. Wahed, A., 2014: Clinical chemistry, immunology and laboratory quality control. A Comprehensive Review for Board Preparation, Certification and Clinical Practice. 1st Edition, Elsevier, 504 pp.Search in Google Scholar

16. Feller, S. E., 2008: Acyl chain conformations in phospholipid bilayers: a comparative study of docosahexaenoic acid and saturated fatty acids. Chem. Phys. Lipids, 153, 1, 76—80. DOI: 10.1016/j.chemphyslip.2008.02.013.10.1016/j.chemphyslip.2008.02.01318358239Search in Google Scholar

17. Ficková, M., Nagy, M., 2007: Apoptosis – programmed cell death, and plant metabolites (In Slovak). Chemické Listy (Chemical Letters), 101, 131—137.Search in Google Scholar

18. Hussein, S. A., El Senosi, Y. A. F., Hussanien, M. R., Hammad, M. M. F., 2016: Evaluation of the protective role of flaxseed oil on inflammatory mediators, antioxidant defence system and oxidative stress of liver tissue in hypercholesterolemic rats. Int. J. Pharma. Sci., 6, 3, 1480—1489. http://ijps.aizeonpublishers.net/content/2016/3/ijps1480-1489.pdf.Search in Google Scholar

19. Juárez, M., Dugan, M. E., Aldai, N., Aalhus, J. L., Patience, J. F., Zijlstra, R. T. et al., 2010: Feeding co-extruded flaxseed to pigs: Effects of duration and feeding level on growth performance and backfat fatty acid composition of grower-finisher pigs. Meat Sci., 84, 3, 578—584. DOI: 10.1016/j.meatsci.2009.10.015.10.1016/j.meatsci.2009.10.015Search in Google Scholar

20. Kandyala, R., Raghavendra, S. P., Rajasekharan, S. T., 2010: Xylene: An overview of its health hazards and preventive measures. J. Oral. Maxillofac. Pathol., 14, 1, 1—5. DOI: 10. 4103/0973-029X.64299.10.4103/0973-029X.64299Search in Google Scholar

21. Kádasi, A., Štochmaľová, A., Maruniaková, N., Kolesárová, A., Grossman, R., Sirotkin, A. V., 2016: Effect of natural plant extracts on porcine functions. J. Microbiol. Biotech. Food Sci., 4, 2, 45—48. DOI: 10.15414/jmbfs.2015.4.special2.45-48.10.15414/jmbfs.2015.4.special2.45-48Search in Google Scholar

22. Kending, D. M., Tarloff, J. B., 2007: Inactivation of lactate dehydrogenase by several chemicals: Implications for in vitro toxicology studies. Toxicology in Vitro, 21, 125—132. DOI: 10.1016/j.tiv.2006.08.004.10.1016/j.tiv.2006.08.004Search in Google Scholar

23. Komprda, T., 2003:Basis of Human Nutrition (In Czech), 1st edn., Mendel’s Agriculture and Forestry University in Brno, 162 pp.Search in Google Scholar

24. Kükner, A., Canpolat, L., Ozan, E., Gökçimen, A., Ozan, S., Doğrul, M., 1997: The effect of xylene inhalation on the rat liver. Acta Physiol. Hung., 85, 3, 231—241.Search in Google Scholar

25. Legrand, C., Bour, J. M., Capiaumont, J., Martial, A., Marc, A., Wudtke, M. et al., 1992: Lactate dehydrogenase (LDH) activity of the number of dead cells in the medium of cultured eukaryotic cells as marker. J. Biotechnol., 25, 231—243. DOI: 10.1016/0168-1656(92)90158-6.10.1016/0168-1656(92)90158-6Search in Google Scholar

26. Lombardi, F., Terranova, P., 2007: Antiarrhythmic properties of N-3 polyunsaturated fatty acids (n-3 PUFA). Curr. Med. Chem., 14, 2070—2080. DOI: 10.2174/092986707781368405.10.2174/09298670778136840517691948Search in Google Scholar

27. Ma, D. W., Seo, J., Switzer, K. C., Fan, Y. Y., McMurray, D. N., Lupton, J. R. et al., 2004: n-3 PUFA and membrane microdomains: a new frontier in bioactive lipid research. J. Nutr. Biochem., 15, 11, 700—706. DOI: 10.1016/j.jnutbio. 2004.08.002.Search in Google Scholar

28. Martín, M. G., Molina, A. Z., 2020: Transaminases: Valoración y significación clínica. Protocolos diagnóstico-terapéuticos de Gastroenterología, Hepatología y Nutrición Pediátrica SEGHNP-AEP. 267—275. https://www.aeped.es/sites/default/files/documentos/transaminasas.pdf.Search in Google Scholar

29. Ming, L. G., Chen, K. M., Xian, C. J., 2013: Functions and action mechanisms of flavonoids genistein and icariin in regulating bone remodeling. J. Cell Physiol., 228, 513—521. DOI: 10.1002/jcp.24158.10.1002/jcp.2415822777826Search in Google Scholar

30. Mohammadi-Sartang, M., Mazloom, Z., Raeisi-Dehkordi, H., Barati-Boldaji, R., Bellissimo, N., Totosy de Zepetnek, J. O., 2017: The effect of flaxseed supplementation on body weight and body composition: a systematic review and meta-analysis of 45 randomized placebo-controlled trials. Obes. Rev., 18, 9, 1096—1107. DOI: 10.1111/obr.12550.10.1111/obr.1255028635182Search in Google Scholar

31. Pourjafari, F., Haghpanah, T., Sharififar, F., Nematollahi-Mahani, S. N., Afgar, A., Karam, G. A. et al., 2019: Protective effects of hydro-alcoholic extract of Foeniculum vulgare and Linum usitatissimum on ovarian follicle reserve in the first-generation mouse pups. Heliyon, 5, 10, e02540. DOI: 10. 1016/j.heliyon.2019.e02540.10.1016/j.heliyon.2019.e02540681220831667392Search in Google Scholar

32. Rietjens, I. M., Sotoca, A. M., Vervoort, J., Louisse, J., 2013: Mechanisms underlying the dualistic mode of action of major soy isoflavones in relation to cell proliferation and cancer risks. Mol. Nutr. Food Res., 57, 100—113. DOI: 10.1002/mnfr.201200439.10.1002/mnfr.20120043923175102Search in Google Scholar

33. Sopková, D., Hertelyová, Z., Andrejčáková, Z., Vlčková, R., Gancarčíková, S., Petrilla, V. et al., 2017: The application of probiotics and flaxseed promotes metabolism of n-3 polyun-saturated fatty acids in pigs. J. Appl. Anim. Res., 45, 1, 93—98. DOI: 10.1080/09712119.2015.1124333.10.1080/09712119.2015.1124333Search in Google Scholar

34. Szabadosová, V., Pramuková, B., Hijová, E., 2011: Flaxseed, the cancer’s foe (In Slovak). Slovenský lekár (Slovak Doctor) 3—8.Search in Google Scholar

35. United States Environmental Protection Agency (US EPA), 2003: Toxicological Review of Xylenes (CAS No. 1330-20-7). In Support of Summary Information on the Integrated Risk Information System (IRIS), 106 pp. https://cfpub.epa.gov/ncea/iris/iris_documents/documents/toxreviews/0270tr.pdfSearch in Google Scholar

36. Vlčková, R., Andrejčáková, Z., Sopková, D., Hertelyová, Z., Kozioł, K., Koziorowski, M., et al., 2018: Supplemental flax-seed modulates ovarian functions of weanling gilts via the action of selected fatty acids. Anim. Reprod. Sci., 193, 171—181. DOI: 10.1016/j.anireprosci.2018.04.066.10.1016/j.anireprosci.2018.04.066Search in Google Scholar

37. Wall, R., Ross, R. P., Fitzgerald, G. F., Stanton, C., 2010: Fatty acids from fish: the anti-inflammatory potential of long-chain omega-3 fatty acids. Nutr. Rev., 68, 5, 280—289. DOI: 10.1111/j.1753-4887.2010.00287.x.10.1111/j.1753-4887.2010.00287.xSearch in Google Scholar

38. Wang, L. Q., 2002: Mammalian phytoestrogens: enterodiol and enterolactone. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 777, 1—2, 289–309. DOI: 10.1016/s1570-0232(02)00281-7.10.1016/S1570-0232(02)00281-7Search in Google Scholar

39. Wang, D. F., Zhou, L. L., Zhou, H. L., Hou, G. Y., Zhou, X., Li, W., 2017: Effects of Piper sarmentosum extract on the growth performance, antioxidant capability and immune response in weaned piglets. J. Anim. Physiol. Anim. Nutr., 101, 1, 105—112. DOI: 10.1111/jpn.12517.10.1111/jpn.1251727045971Search in Google Scholar

40. Wang, W., Liu, Y., Sun, M., Sai, N., You, L., Dong X. et al., 2019: Hepatocellular toxicity of paris saponins I, II, VI and VII on two kinds of hepatocytes-HL-7702 and HepaRG cells, and the underlying mechanisms. Cells, 8, 7, pii: E690. DOI: 10.3390/cells8070690.10.3390/cells8070690667899831324003Search in Google Scholar

41. Yanagihara, N., Zhang, H., Toyohira, Y., Takahashi, K., Ueno, S., Tsuitsui, M., et al., 2014: New insights into the pharmacological potential of plant flavonoids in the catecholamine system. J. Pharmacol. Sci., 124, 123—128. DOI: 10. 1254/jphs.13r17cp.10.1254/jphs.13R17CP24492414Search in Google Scholar

42. Zhang, X., Wang, H., Yin, P., Fan, H., Sun, L., Liu, Y., 2017: Flaxseed oil ameliorates alcoholic liver disease via anti-inflammation and modulating gut microbiota in mice. Lipids Health Dis., 16, 1, 44. DOI: 10.1186/s12944-017-0431-8.10.1186/s12944-017-0431-8532264328228158Search in Google Scholar

eISSN:
2453-7837
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Biologie, Molekularbiologie, Biotechnologie, Mikrobiologie und Virologie, Medizin, Veterinärmedizin