This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.
G.A. Demiroz, E. Oner, Investigation of the quality properties of open end spun recycled yarns made from blends of recycled fabric scrap wastes and virgin polyester fibre, J. Text. Inst. 110(11) (2019)569–1579.DemirozG.A.OnerE.Investigation of the quality properties of open end spun recycled yarns made from blends of recycled fabric scrap wastes and virgin polyester fibreJ. Text. Inst.1101120195691579Search in Google Scholar
R.H. Yang, C. He, H.X. Zhong, Effects of trash-removing part geometry on the airflow in the rotor spinning unit and the yarn properties, Text. Res. J. 93(2022) 5–6.YangR.H.HeC.ZhongH.X.Effects of trash-removing part geometry on the airflow in the rotor spinning unit and the yarn propertiesText. Res. J.93202256Search in Google Scholar
X.Y. Zhu, X.P. Wang, J.S. Kou, S.Y. Sun, An energy stable incompressible SPH method with consistent solid boundary treatment, J. Comput. Appl. Math. 428(2023)115367.ZhuX.Y.WangX.P.KouJ.S.SunS.Y.An energy stable incompressible SPH method with consistent solid boundary treatmentJ. Comput. Appl. Math.4282023115367Search in Google Scholar
J. Valášek, P. Sváček, On aerodynamic force computation in fluid–structure interaction problems - Comparison of different approaches, J. Comput. Appl. Math. 428(2023)115208.ValášekJ.SváčekP.On aerodynamic force computation in fluid–structure interaction problems - Comparison of different approachesJ. Comput. Appl. Math.4282023115208Search in Google Scholar
L. Feldman, Theoretical trajectory studies of light bodies in non-uniform two-dimensional flows, Text. Res. J. 36(9) (1966)809–813.FeldmanL.Theoretical trajectory studies of light bodies in non-uniform two-dimensional flowsText. Res. J.3691966809813Search in Google Scholar
L.H. Bangert, P.M. Sagdeo, On fiber alignment using fluid-dynamic forces, Text. Res. J. 47(12) (1977)773–780.BangertL.H.SagdeoP.M.On fiber alignment using fluid-dynamic forcesText. Res. J.47121977773780Search in Google Scholar
W.G. Nan, Y.S. Wang, H.P. Tang, A viscoelastic model for flexible fibers with material damping, Powder Technol. 276(2015) 175–182.NanW.G.WangY.S.TangH.P.A viscoelastic model for flexible fibers with material dampingPowder Technol.2762015175182Search in Google Scholar
T. Sasayama, M. Inagaki, Efficient bead-chain model for predicting fiber motion during molding of fiber-reinforced thermoplastics, J. Non-Newtonian Fluid Mech. 264(2019)135–143.SasayamaT.InagakiM.Efficient bead-chain model for predicting fiber motion during molding of fiber-reinforced thermoplasticsJ. Non-Newtonian Fluid Mech.2642019135143Search in Google Scholar
S. Yamamoto, T. Matsuoka, A method for dynamic simulation of rigid and flexible fibers in a flow field, J. Chem. Phys. 98(1) (1993)644–650.YamamotoS.MatsuokaT.A method for dynamic simulation of rigid and flexible fibers in a flow fieldJ. Chem. Phys.9811993644650Search in Google Scholar
P. Skjetne, R.F. Ross, D.J. Klingenberg, Simulation of single fiber dynamics, J. Chem. Phys. 107(6) (1997)2108–2121.SkjetneP.RossR.F.KlingenbergD.J.Simulation of single fiber dynamicsJ. Chem. Phys.1076199721082121Search in Google Scholar
Z.G. Pei, Y. Zhang, J. Zhou, A model for the particle-level simulation of multiple flexible fibers moving in a wall-bounded fluid flow, J. Fluids Struct. 80(2018) 37–38.PeiZ.G.ZhangY.ZhouJ.A model for the particle-level simulation of multiple flexible fibers moving in a wall-bounded fluid flowJ. Fluids Struct.8020183738Search in Google Scholar
R.F. Ross, D.J. Klingenberg, Dynamic simulation of flexible fibers composed of linked rigid bodies, J. Chem. Phys. 106(7) (1997)2949–2960.RossR.F.KlingenbergD.J.Dynamic simulation of flexible fibers composed of linked rigid bodiesJ. Chem. Phys.1067199729492960Search in Google Scholar
L.X. Kong, R.A. Platfoot, Computational two-phase air/fiber flow within transfer channels of rotor spinning machines, Text. Res. J. 67(4) (1997)269–278.KongL.X.PlatfootR.A.Computational two-phase air/fiber flow within transfer channels of rotor spinning machinesText. Res. J.6741997269278Search in Google Scholar
C.F. Schmid, L.H. Switzer, D.J. Klingenberg, Simulations of fiber flocculation: Effects of fiber properties and inter fiber friction, J. Rheol. 44(4) (2000)781–809.SchmidC.F.SwitzerL.H.KlingenbergD.J.Simulations of fiber flocculation: Effects of fiber properties and inter fiber frictionJ. Rheol.4442000781809Search in Google Scholar
Lindstrom S B, Uesaka T. Simulation of the motion of flexible fibers in viscous fluid flow, Phys. Fluids 19(11) (2007)113307–113322.LindstromS BUesakaTSimulation of the motion of flexible fibers in viscous fluid flowPhys. Fluids19112007113307113322Search in Google Scholar
G.B. Jeffery, The motion of ellipsoidal particles immersed in a viscous fluid, Proc. R. Soc. A 102(715) (1922)161–179.JefferyG.B.The motion of ellipsoidal particles immersed in a viscous fluidProc. R. Soc. A1027151922161179Search in Google Scholar
E. Anczurowski, S.G. Mason, The kinetics of flowing dispersions: II. Equilibrium orientations of rods and discs, J. Colloid Interface Sci. 23(4) (1967)522–532.AnczurowskiE.MasonS.G.The kinetics of flowing dispersions: II. Equilibrium orientations of rods and discsJ. Colloid Interface Sci.2341967522532Search in Google Scholar
A.C. Smith, W.W. Roberts, Straightening of crimped and hooked fibers in converging transport ducts: computational modeling, Text. Res. J. 64(6) (1994)335–344.SmithA.C.RobertsW.W.Straightening of crimped and hooked fibers in converging transport ducts: computational modelingText. Res. J.6461994335344Search in Google Scholar
F. Xu, D.Y. Li, P. Gao, W.Y. Zang, Z.D. Duan, J.P. Ou, Numerical simulation of two-dimensional transmission line icing and analysis of factors that influence icing, J. Fluids Struct. 118(2023)103858.XuF.LiD.Y.GaoP.ZangW.Y.DuanZ.D.OuJ.P.Numerical simulation of two-dimensional transmission line icing and analysis of factors that influence icingJ. Fluids Struct.1182023103858Search in Google Scholar
D. Kunhappan, B. Harthong, B. Chareyre, G. Balarac, P. J. J. Dumont, Numerical modeling of high aspect ratio flexible fibers in inertial flows, Phys. Fluids 29(9) (2017)093302.KunhappanD.HarthongB.ChareyreB.BalaracG.DumontP. J. J.Numerical modeling of high aspect ratio flexible fibers in inertial flowsPhys. Fluids2992017093302Search in Google Scholar
R.H. Yang, C. He, B. Pan, H.X Zhong, C.D. Xu, Effect of position of the fiber transport channel on fiber motion in the high-speed rotor, Text. Res. J. 91(19–20) (2021)2294–2302.YangR.H.HeC.PanB.ZhongH.XXuC.D.Effect of position of the fiber transport channel on fiber motion in the high-speed rotorText. Res. J.9119–20202122942302Search in Google Scholar
A. Capone, G. P. Romano, Interactions between fluid and fibers in a turbulent backward-facing step flow, Phys. Fluids 27 (2015)053303.CaponeA.RomanoG. P.Interactions between fluid and fibers in a turbulent backward-facing step flowPhys. Fluids272015053303Search in Google Scholar
H. Masoud, N.W. Mureithi, F.P. Gosselin, Large coupled bending and torsional deformation of an elastic rod subjected to fluid flow, J. Fluids Struct. 62(2016)367–383.MasoudH.MureithiN.W.GosselinF.P.Large coupled bending and torsional deformation of an elastic rod subjected to fluid flowJ. Fluids Struct.622016367383Search in Google Scholar
Y.Z. Jin, J.Y. Cui, X.D. Li, H.L, Chen. An investigation on the distribution of massive fiber granules in rotor spinning units, Text. Res. J. 87(7) (2017)865–877.JinY.Z.CuiJ.Y.LiX.D.ChenH.LAn investigation on the distribution of massive fiber granules in rotor spinning unitsText. Res. J.8772017865877Search in Google Scholar
H. Berthet, M. Fermigier, A. Lindner, Single fiber transport in a confined channel: Microfluidic experiments and numerical study, Phys. Fluids 25(2013)103601.BerthetH.FermigierM.LindnerA.Single fiber transport in a confined channel: Microfluidic experiments and numerical studyPhys. Fluids252013103601Search in Google Scholar
M.N. Xiao, H.S. Dou, C.Y. Wu, Critical rotating speed of rotor cup in an air suction open-end spinning machine, Text. Res. J. 87(13) (2017)1593–1603.XiaoM.N.DouH.S.WuC.Y.Critical rotating speed of rotor cup in an air suction open-end spinning machineText. Res. J.8713201715931603Search in Google Scholar
S.V. Patanker, D.B. Spalding, A Calculation procedure for heat mass and momentum transfer in three dimensional parabolic flows, Int. J. Heat Mass Transf. 15(1972)1787–1806.PatankerS.V.SpaldingD.B.A Calculation procedure for heat mass and momentum transfer in three dimensional parabolic flowsInt. J. Heat Mass Transf.15197217871806Search in Google Scholar