1. bookVolumen 30 (2022): Heft 4 (December 2022)
Zeitschriftendaten
License
Format
Zeitschrift
eISSN
1898-9934
Erstveröffentlichung
09 Jun 2008
Erscheinungsweise
4 Hefte pro Jahr
Sprachen
Englisch
Uneingeschränkter Zugang

Prime Representing Polynomial with 10 Unknowns – Introduction. Part II

Online veröffentlicht: 18 Feb 2023
Volumen & Heft: Volumen 30 (2022) - Heft 4 (December 2022)
Seitenbereich: 245 - 253
Akzeptiert: 27 Dec 2022
Zeitschriftendaten
License
Format
Zeitschrift
eISSN
1898-9934
Erstveröffentlichung
09 Jun 2008
Erscheinungsweise
4 Hefte pro Jahr
Sprachen
Englisch

[1] Marcin Acewicz and Karol Pąk. Pell’s equation. Formalized Mathematics, 25(3):197–204, 2017. doi:10.1515/forma-2017-0019. DOI öffnenSearch in Google Scholar

[2] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pąk, and Josef Urban. Mizar: State-of-the-art and beyond. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in Computer Science, pages 261–279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi:10.1007/978-3-319-20615-8_17. DOI öffnenSearch in Google Scholar

[3] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, and Karol Pąk. The role of the Mizar Mathematical Library for interactive proof development in Mizar. Journal of Automated Reasoning, 61(1):9–32, 2018. doi:10.1007/s10817-017-9440-6.604425130069070 DOI öffnenSearch in Google Scholar

[4] James P. Jones, Sato Daihachiro, Hideo Wada, and Douglas Wiens. Diophantine representation of the set of prime numbers. The American Mathematical Monthly, 83(6):449–464, 1976.10.1080/00029890.1976.11994142 Search in Google Scholar

[5] Yuri Matiyasevich. Primes are nonnegative values of a polynomial in 10 variables. Journal of Soviet Mathematics, 15:33–44, 1981. doi:10.1007/BF01404106. DOI öffnenSearch in Google Scholar

[6] Karol Pąk. The Matiyasevich theorem. Preliminaries. Formalized Mathematics, 25(4): 315–322, 2017. doi:10.1515/forma-2017-0029. DOI öffnenSearch in Google Scholar

[7] Karol Pąk. Prime representing polynomial. Formalized Mathematics, 29(4):221–228, 2021. doi:10.2478/forma-2021-0020. DOI öffnenSearch in Google Scholar

[8] Karol Pąk and Cezary Kaliszyk. Formalizing a diophantine representation of the set of prime numbers. In June Andronick and Leonardo de Moura, editors, 13th International Conference on Interactive Theorem Proving, ITP 2022, August 7-10, 2022, Haifa, Israel, volume 237 of LIPIcs, pages 26:1–26:8. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.ITP.2022.26. DOI öffnenSearch in Google Scholar

[9] Marco Riccardi. The perfect number theorem and Wilson’s theorem. Formalized Mathematics, 17(2):123–128, 2009. doi:10.2478/v10037-009-0013-y. DOI öffnenSearch in Google Scholar

[10] Zhi-Wei Sun. Further results on Hilbert’s Tenth Problem. Science China Mathematics, 64:281–306, 2021. doi:10.1007/s11425-020-1813-5. DOI öffnenSearch in Google Scholar

Empfohlene Artikel von Trend MD