[
Aas, G., 1998: Morphologische und ökologische Variation mitteleuropäischer Quercus-Arten: Ein Beitrag zum Verständnis der Biodivesität. Libri Botanici, 19:221. (In German).
]Search in Google Scholar
[
Aleksandrov, N., Tonchev, T., 2024: The oak forests in western Bulgaria. Sofia, 430 p.
]Search in Google Scholar
[
Apostol, E. N., Curtu, A. L., Daia, L. M., Apostol, B., Dinu, C. G., Sofletea, N., 2017: Leaf morphological variability and intraspecific taxonomic units for pedunculate oak and grayish oak (genus Quercus L., series Pedunculatae Schwz.) in Southern Carpathian Region (Romania). Science of the Total Environment, 609:497–505.
]Search in Google Scholar
[
Apostol, E. N., 2019: Varibilitatea descriptorilor frunze- Varibilitatea descriptorilor frunzelor în populaţii autohtone de stejar pedunculat (Quercus robur L.) şi stejar brumăriu (Quercus pedunculi-flora K. Koch). Voluntari, Editura Silvică, 127 p. (In Romanian).
]Search in Google Scholar
[
Bartha, D., Berki, I., Lengyel, A., Rasztovits, E., Tiborcz, V., Zagyvai, G., 2018: Erdőtársulások és fafajaik átrendeződési lehetőségei a változó klímában. Erdészettudományi Közlemények, 8:163–195. (In Hungarian).
]Search in Google Scholar
[
Bartholy, J., Pongrácz, R., Pieczka I., 2014: How the climate will change in this century? Hungarian Geographical Bulletin, 63:55–67.
]Search in Google Scholar
[
Bussotti, F., Grossoni, P., 1997: European and Mediterranean oaks (Quercus L.; Fagaceae): SEM characterization of the micromorphology of the abaxial leaf surface. Botanical Journal of the Linnean Society, 124:183–199.
]Search in Google Scholar
[
Curtu, A. L., Gailing, O., Finkeldey, R., 2007: Evidence for hybridization and introgression within a species-rich oak (Quercus spp.) community. BMC Evolutionary Biology, 7:218.
]Search in Google Scholar
[
Curtu, A. L., Sofletea, N., Toader, A. V., Enescu, M. C., 2011: Leaf morphological and genetic differentiation between Quercus robur L. and its closest relative, the drought-tolerant Quercus pedunculiflora K. Koch. Annals of Forest Science, 68:1163–1172.
]Search in Google Scholar
[
Doniţă, N., Bohn, U., Raus, T., Wagner, H., 2003: Thermophilous mixed deciduous broadleaved forests. In: Bohn, U., Gollub, G., Hettwer, C., Neuhäuslová, Z., Raus, T., Schlüter, H., Weber H. (eds.): Karte der natürlichen Vegetation Europas / Map of the Natural Vegetation of Europe. Maßstab / Scale 1 : 2 500 000. Münster, Landwirtschaftsverlag, 530 p.
]Search in Google Scholar
[
Enescu, M. C., 2017: A dichotomous determination key for autochthonous oak species from Romania. Journal of Horticulture, Forestry and Biotechnology, 21:58–62.
]Search in Google Scholar
[
Gellini, R., Bussotti, F., Bettini, D., Grossoni, P., Bottacci, A., 1992: Species of the genus Quercus in Italy: chatacterization by means of leaf surface observation. Giornale Botanico Italiano, 126:481–504.
]Search in Google Scholar
[
Gencsi, L., Vancsura, R., 1992: Dendrológia. Budapest, Mezőgazda Kiadó, 728 p. (In Hungarian).
]Search in Google Scholar
[
Georgescu, C. C., Morariu, I., 1948: Monografia Stejarilor din Romania. București, Tip. “Universul” S. A., 42 p. (In Romanian).
]Search in Google Scholar
[
Hammer, Ø., Harper, D. A. T., Ryan, P. D., 2001: PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontologia Electronica, 4:1–9.
]Search in Google Scholar
[
Hegedüs, I. M., Bordács, S., Bartha, D., 2023: Comparative Studies on Leaf Micromorphology of the Abaxial Surface of Quercus robur L. subsp. robur and Quercus robur L. subsp. pedunculiflora [K. Koch] Menitsky. Acta Silvatica et Lignaria Hungarica, 19:75–85.
]Search in Google Scholar
[
Jalas, J., Suominen, J., 1976: Atlas Florae Europae. Distribution of vascular plants in Europe III. Salicaceae to Balanophoraceae. The Committee for Mapping the Flora of Europe and Societas Biologica Fennica. Helsinki, Vanamo, 128 p.
]Search in Google Scholar
[
Keenan, R. J., 2015: Climate change impacts and adaptation in forest management: a review. Annals of Forest Science, 72:145–167.
]Search in Google Scholar
[
Kerner, A., 1863: Das Pflanzenleben der Donaulaender. Innsbruck, Wagner, 348 p. (In German).
]Search in Google Scholar
[
Kézdy, P., 2001: Taxonómiai vizsgálatok a hazai molyhos tölgy alakkörön (Quercus pubescens S. L.). Sopron, 106 p. (In Hungarian).
]Search in Google Scholar
[
Koch, K., 1849: Beiträge zu einer Flora des Orientes II. Linnaea, 22:177–336. (In German).
]Search in Google Scholar
[
Krasilnikov, D. L., 1957: Izmenchivost’ lista u Zapadno-Kavkazskikh dubov. Krasnodar, Uch. Zap. Krasnod, Gos. Ped. Inst., 19 p. (In Russian).
]Search in Google Scholar
[
Kurz, M., Kölz, A., Gorges, J., Carmona, P. B., Brang, P., Vitasse, Y. et al. 2023: Tracing the origin of Oriental beech stands across Western Europe and reporting hybridization with European beech – Implications for assisted gene flow. Forest Ecology and Management, 531:120801.
]Search in Google Scholar
[
Martín-Sánchez, R., Sancho-Knapik, D., Alonso-Forn, D., Ballesteros, A. L., Ferrio, J. P., Hipp, A. L. et al., 2024a: Oak leaf morphology may be more strongly shaped by climate than by phylogeny. Annals of Forest Science, 81:14.
]Search in Google Scholar
[
Martín-Sánchez, R., Hipp, A. L., Knapik, D. S., Chassé, B., Díaz J. P. F., Ballesteros, A. L. et al., 2024b: Convergent evolution in Mediterranean oaks. In: Anonymous (ed.): XX. International Botanical Congress: Book of Abstracts. Posters. Madrid, Fase 20 Ediciones, p. 165.
]Search in Google Scholar
[
Mátyás, Cs., 2002: Erdészeti–természetvédelmi genetika. Budapest, Mezőgazda Kiadó, 422 p. (In Hungarian).
]Search in Google Scholar
[
Mátyás, Cs., Berki, I., Bidló, A., Csóka, G., Czimber, K., Führer, E. et al. 2018: Sustainability of forest fover under climate change on the temperate-continental xeric limits. Forests, 9:489.
]Search in Google Scholar
[
Mátyás, V., 1967: Hamvas- vagy szürketölgy (Quercus pedunculiflora C. Koch). In: Keresztesi B. (szerk.): A tölgyek. Budapest, Akadémiai Kiadó, 81–84 p. (In Hungarian).
]Search in Google Scholar
[
Meger, J., Ulaszewski, B., Chmura, D. J., Burczyk, J., 2024: Signatures of local adaptation to current and future climate in phenology-related genes in natural populations of Quercus robur. BMC Genomics, 25:78.
]Search in Google Scholar
[
Mehrina, M., Nejadsattari, T., Assadi, M., Mehregan, I., 2013: Taxonomic study of the genus Quercus L. Sect. Quercus in the Zagros forests of Iran. The Iranian Journal of Botany, 19:62–74.
]Search in Google Scholar
[
Menitsky, Y. L., 1984: Duby Azii. Leningrad, Izdateľstvo “Nauka” leningradskoye otdeleniye, 316 p. (In Russian).
]Search in Google Scholar
[
Molnár, Á. P., Erdélyi, A., Hartdégen, J., Biró, M., Pánya, I., Vadász, Cs., 2022: Természetvédelmi célú történeti elemzés – a Peszéri-erdő elmúlt három évszázada. Tájökológiai Lapok, 20:73–105. (In Hungarian).
]Search in Google Scholar
[
Molnár, S., Farkas, P., Börcsök, Z., Zoltán, Gy., 2016: Földünk ipari fái. Sopron, ERFARET Nonprofit Kft, 616 p. (In Hungarian).
]Search in Google Scholar
[
Neale, D., Kremer, A., 2011: Forest tree genomics: growing resources and applications. Nature Reviews Genetics, 12:111–122.
]Search in Google Scholar
[
Panahi, P., Jamzad, Z., Pourmajidian, M. R., Fallah, A., Pourhashemi, M., 2012: Foliar epidermis morphology in Quercus (subgenus Quercus, section Quercus) in Iran. Acta Botanica Croatica, 71:95–113.
]Search in Google Scholar
[
Petit, R. J., Ulrike, M. Cs., Bordács, S., Burg, K., Coart, E., Cottrell, J. et al. 2002: Chloroplast DNA variation in European white oaks: Phylogeography and patterns of diversity based on data from over 2600 populations. Forest Ecology and Management, 156:5–26.
]Search in Google Scholar
[
Schneider, C. A., Rasband, W. S., Eliceiri, K. W., 2012: NIH Image to ImageJ: 25 Years of Image Analysis. Nature Methods, 9:671–675.
]Search in Google Scholar
[
Schwarz, O., 1937: Monographie der Eichen Europas und des Mittelmeergebietes. Selbstverlag, Dahlem bei Berlin, 200 p. (In German).
]Search in Google Scholar
[
Tschan, G. F., Denk, T., 2012: Trichome types, foliar indumentum and epicuticular wax in the Mediterranean gall oaks, Quercus subsection Galliferae (Fagaceae): implications for taxonomy, ecology and evolution. Botanical Journal of the Linnean Society, 169:611–644.
]Search in Google Scholar
[
Uslu, E., Bakiş, Y., Babaç, M. T., 2011: A study on biogeo-graphical distribution of Turkish oak species and their relations with the Anatolian Diagonal. Acta Botanica Hungarica, 53:423–440.
]Search in Google Scholar
[
Uzunova, K. G., Palamarev, E. Ch., 1992: The foliar epidermis studies of Fagaceae Dumort. from the Balkan Peninsula. IV. Quercus L. (subgenus Quercus, sec. Robur Reichenb.). Fitologia, 43:3–29.
]Search in Google Scholar
[
Yilmaz, O. Y., Yilmaz, H., 2016: Bioclimatic factors affecting the distribution of Quercus robur L. (pedunculate oak) subspecies in Turkey. Eurasian Journal of Forest Science, 4:31–39.
]Search in Google Scholar
[
Yurukov, S., Zhelev, P., 2001: The woody flora of Bulgaria: A review. Schweizerische Zeitschrift für Forstwesen, 152:52–60.
]Search in Google Scholar
[
Zimmermann, F., Reutimann, O., Baltensweiler, A., Walthert, L., Olofsson, J. K., Rellstab, C., 2025: Fine-scale variation in soil properties promotes local taxonomic diversity of hybridizing oak species (Quercus spp.). Evolutionary Applications, 18:e70076.
]Search in Google Scholar
[
IPCC, 2021: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S. et al. (eds.)]. Cambridge, Cambridge University Press, 2391 p.
]Search in Google Scholar