Zitieren

Akossou, A. Y., Arzouma, S., Attakpa, E. Y., Fonton, N. H., Kokou, K., 2013: Scaling of teak (Tectona grandis) logs by the xylometer technique: accuracy of volume equations and influence of the log length. Diversity, 5:99–113. Search in Google Scholar

Alexander, D. L., Tropsha, A., Winkler, D. A., 2015: Beware of R2: simple, unambiguous assessment of the prediction accuracy of QSAR and QSPR models. Journal of Chemical Information and Modeling, 55:1316–1322. Search in Google Scholar

Bauer, R., Billard, A., Mothe, F., Longuetaud, F., Houballah, M., Bouvet, A. et al., 2021: Modelling bark volume for six commercially important tree species in France: assessment of models and application at regional scale. Annals of Forest Science, 78:1–23. Search in Google Scholar

Bauwe, A., Koch, M., Kallweit, R., Konopatzky, A., Strohbach, B., Lennartz, B., 2013: Tree-ring growth response of Scots pine (Pinus sylvestris L.) to climate and soil water availability in the lowlands of North-Eastern Germany. Baltic Forestry, 19:212–225. Search in Google Scholar

Berendt, F., de Miguel-Diez, F., Wallor, E., Blasko, L., Cremer, T., 2021a: Comparison of different approaches to estimate bark volume of industrial wood at disc and log scale. Scientific Reports, 11:1–8. Search in Google Scholar

Berendt, F., Pegel, E., Blasko, L., Cremer, T., 2021b: Bark proportion of Scots pine industrial wood. European Journal of Wood and Wood Products, 79:749–752. Search in Google Scholar

Bert, D., Danjon, F., 2006: Carbon concentration variations in the roots, stem and crown of mature Pinus pinaster (Ait.). Forest Ecology and Management, 222:279–295. Search in Google Scholar

Çatal, Y., Aplioglu, K., 2018: Comparison of adaptive neuro-fuzzy inference system, artificial neural networks and non-linear regression for bark volume estimation in brutian pine (Pinus brutia Ten.). Applied Ecology and Environmental Research, 16:2015–2027. Search in Google Scholar

Cellini, J. M., Galarza, M., Burns, S. L., Martinez-Pastur, G. J., Lencinas, M. V., 2012: Equations of bark thickness and volume profiles at different heights with easy-measurement variables. Forest Systems, 21:23–30. Search in Google Scholar

Chai, T., Draxler, R. R., 2014: Root mean square error (RMSE) or mean absolute error (MAE)? Arguments against avoiding RMSE in the literature. Geoscientific Model Development, 7:1247–1250. Search in Google Scholar

DFWR, DHWR, 2020: Rahmenvereinbarung für den Rohholzhandel in Deutschland (RVR). 3rd edn. Fachagentur für Nachwachsende Rohstoffe e.V. (FNR), Gülzow-Prüzen, Germany, 71 p. (In German). Search in Google Scholar

Diamantopoulou, M. J., 2005: Artificial neural networks as an alternative tool in pine bark volume estimation. Computers and Electronics in Agriculture, 48:235–244. Search in Google Scholar

Diamantopoulou, M. J., Özçelik, R., Yavuz, H., 2018: Tree-bark volume prediction via machine learning: A case study based on black alder’s tree-bark production. Computers and Electronics in Agriculture, 151:431–440. Search in Google Scholar

Dimitrov, E., 1976: Mathematical models for determining the bark volume of spruce in relation to certain mensurational characteristics. Forest Abstracts, 37:6281. Search in Google Scholar

Durrant, T. H., De Rigo, D., Caudullo, G., 2016: Pinus sylvestris in Europe: distribution, habitat, usage and threats. European Atlas of Forest tree Species, p. 132–133. Search in Google Scholar

Fehrenbach, H., Köppen, S., Kauertz, B., Detzel, A., Wellenreuther, F., Breitmayer, E. et al., 2017: Biomassekaskaden: mehr Ressourceneffizienz durch Kaskadennutzung von Biomasse; von der Theorie zur Praxis. Texte 53/2017, Umweltbundesamt, Dessau-Roßlau, 134 p. (In German). Search in Google Scholar

Feng, S., Cheng, S., Yuan, Z., Leitch, M., Xu, C. C., 2013: Valorization of bark for chemicals and materials: A review. Renewable and Sustainable Energy Reviews, 26:560–578. Search in Google Scholar

Filho, A. F., Machado, S. A., Carneiro, M. R. A., 2000: Testing accuracy of log volume calculation procedures against water displacement techniques (xylometer). Canadian Journal of Forest Research, 30:990–997. Search in Google Scholar

Gea-Izquierdo, G., Pastur, G. M., Cellini, J. M., Lencinas, M. V., 2004: Forty years of silvicultural management in southern Nothofagus pumilio primary forests. Forest Ecology and Management, 201:335–347. Search in Google Scholar

Gordon, A., 1983: Estimating bark thickness of Pinus radiata. New Zealand Journal of Forestry Science, 13:340–348. Search in Google Scholar

Jansone, Z., Muizniece, I., Blumberga, D., 2017: Analysis of wood bark use opportunities. Energy Procedia, 128:268–274. Search in Google Scholar

Klapwijk, M., Boberg, J., Bergh, J., Bishop, K., Björkman, C., Ellison, D. et al., 2018: Capturing complexity: Forests, decision-making and climate change mitigation action. Global Environmental Change, 52:238–247. Search in Google Scholar

Kozak, A., Yang, R., 1981: Equations for estimating bark volume and thickness of commercial trees in British Columbia. The Forestry Chronicle, 57:112–115. Search in Google Scholar

Kozakiewicz, P., Jankowska, A., Mamiński, M., Marciszewska, K., Ciurzycki, W., Tulik, M., 2020: The wood of scots pine (Pinus sylvestris L.) from post-agricultural lands has suitable properties for the timber industry. Forests, 11:1033. Search in Google Scholar

Kurt, Y., Calikoglu, M., Isik, K., 2021: Relationships between bark thickness, tree age and tree diameter in Pinus brutia Ten. plantations. FEB, 30:3122–3129. Search in Google Scholar

Laasasenaho, J., Melkas, T., Alden, S., 2005: Modelling bark thickness of Picea abies with taper curves. Forest Ecology and Management, 206:35–47. Search in Google Scholar

Lacoste, C., Basso, M. C., Pizzi, A., Laborie, M. P., Celzard, A., Fierro, V., 2013: Pine tannin-based rigid foams: Mechanical and thermal properties. Industrial Crops and Products, 43:245–250. Search in Google Scholar

Leite, C., Pereira, H., 2017: Cork-containing barks – a review. Frontiers in Materials, 3:63. Search in Google Scholar

Leskinen, P., Cardellini, G., González-García, S., Hurmekoski, E., Sathre, R., Seppälä, J. et al., 2018: Substitution effects of wood-based products in climate change mitigation. Retrieved from https://www.efi.int/sites/default/files/files/publication-bank/2018/efi_fstp_7_2018.pdf Search in Google Scholar

Li, H., Zhao, P., 2013: Improving the accuracy of tree-level aboveground biomass equations with height classification at a large regional scale. Forest Ecology and Management, 289:153–163. Search in Google Scholar

Liepiņš, J., Liepiņš, K., 2015: Evaluation of bark volume of four tree species in Latvia. Research for rural development, 2:22–28. Search in Google Scholar

Magalhães, T. M., 2021: Effects of site and tree size on wood density and bark properties of Lebombo iron-wood (Androstachys johnsonii Prain). New Zealand Journal of Forestry Science, 51:3. Search in Google Scholar

Ohtani, K., 2000: Bootstrapping R2 and adjusted R2 in regression analysis. Economic Modelling, 17:473–483. Search in Google Scholar

Özçelik, R., Wiant Jr, H. V., Brooks, J. R., 2008: Accuracy using xylometry of log volume estimates for two tree species in Turkey. Scandinavian Journal of Forest Research, 23:272–277. Search in Google Scholar

Pasztory, Z., Mohácsiné, I. R., Gorbacheva, G., Börcsök, Z., 2016: The utilization of tree bark. BioResources, 11:7859–7888. Search in Google Scholar

Pizzi, A., 2019: Tannin-based biofoams-A review. Journal of Renewable Materials, 7:474–489. Search in Google Scholar

Repola, J., 2008: Biomass equations for birch in Finland. Silva Fennica, 42:605–624. Search in Google Scholar

Sonmez, T., Keles, S., Tilki, F., 2007: Effect of aspect, tree age and tree diameter on bark thickness of Picea orientalis. Scandinavian Journal of Forest Research, 22:193–197. Search in Google Scholar

Stängle, S. M., Dormann, C. F., 2018: Modelling the variation of bark thickness within and between European silver fir (Abies alba Mill.) trees in southwest Germany. Forestry: An International Journal of Forest Research, 91:283–294. Search in Google Scholar

Stängle, S. M., Weiskittel, A. R., Dormann, C. F., Brüchert, F., 2016: Measurement and prediction of bark thickness in Picea abies: assessment of accuracy, precision, and sample size requirements. Canadian Journal of Forest Research, 46:39–47. Search in Google Scholar

Templeton, G. F. 2011: A two-step approach for transforming continuous variables to normal: implications and recommendations for IS research. Communications of the Association for Information Systems, 28:4. Search in Google Scholar

Vieira, S. A., Alves, L. F., Aidar, M., Araújo, L. S., Baker, T., Batista, J. L. F. et al., 2008: Estimation of biomass and carbon stocks: the case of the Atlantic Forest. Biota Neotropica, 8:21–29. Search in Google Scholar

Wehenkel, C., Cruz-Cobos, F., Carrillo, A., Lujan-Soto, J. E., 2012: Estimating bark volumes for 16 native tree species on the Sierra Madre Occidental, Mexico. Scandinavian Journal of Forest Research, 27:578–585. Search in Google Scholar

Weiskittel, A. R., Hann, D. W., Kershaw Jr, J. A., Van-clay, J. K., 2011: Forest growth and yield modeling, Wiley-Blackwell, Oxford, 415 p. Search in Google Scholar

Wenig, C., Dunlop, J. W., Hehemeyer-Cürten, J., Reppe, F. J., Horbelt, N., Krauthausen, K. et al., 2021: Advanced materials design based on waste wood and bark. Philosophical Transactions of the Royal Society A, 379:20200345. Search in Google Scholar

Wenig, C., 2022: The Bark Project. Combining Science and Design to Elaborate New Models of Production for the Design Industry. In: Ribault (eds.): Design, Gestaltung, Formatività: Philosophies of Making. Birkhäuser. Berlin, Boston, p. 273–284. Search in Google Scholar

Wilms, F., Duppel, N., Cremer, T., Berendt, F., 2021: Bark thickness and heights of the bark transition area of Scots pine. Forests, 12:1386. Search in Google Scholar

eISSN:
2454-0358
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Biologie, Botanik, Ökologie, andere