1. bookVolumen 68 (2022): Heft 2 (June 2022)
Zeitschriftendaten
License
Format
Zeitschrift
eISSN
2454-0358
Erstveröffentlichung
14 Dec 2009
Erscheinungsweise
4 Hefte pro Jahr
Sprachen
Englisch
access type Uneingeschränkter Zugang

Radial increment and defoliation of Pinus sylvestris (L.) on sandy soils relate to summer temperatures and ground water level

Online veröffentlicht: 09 May 2022
Volumen & Heft: Volumen 68 (2022) - Heft 2 (June 2022)
Seitenbereich: 78 - 90
Zeitschriftendaten
License
Format
Zeitschrift
eISSN
2454-0358
Erstveröffentlichung
14 Dec 2009
Erscheinungsweise
4 Hefte pro Jahr
Sprachen
Englisch
Abstract

The study deals with the analysis of the impact of climate and ground water table level on radial increment and defoliation of Scots pine (Pinus sylvestris L.) growing on sandy soils. The research was performed in the area of the Borska nížina (i.e. Borská Lowland, situated in southwest of Slovakia), where a substantial die-back of pine trees has been observed in the last decade. Increment measurements and defoliation assessment were performed at 150 adult trees of Scots pine growing at three permanent monitoring plots within the international network of ICP Forests during the years 1989–2018. We examined the impact of climatic and hydrological factors on selected features of pine using the methods of correlation analysis and linear mixed models. Statistical analyses confirmed that the annual radial increment of Scots pine significantly depended on the mean air temperature from June to August, and mean ground water level in the mentioned months. These two factors also significantly correlated with crown defoliation. The factors explained 26% and 32% of increment and defoliation variability, respectively. From the long-term perspective, our analyses indicated that the decrease of ground water level by 0.5 m in summer resulted in the increase of defoliation by 10%. The obtained results indicate a further increase of Scots pine die-back on easy-to-dry sandy soils in regions with low precipitation totals, particularly considering the ongoing climate change and its inherent factors.

Ayanz, J. S., de Rigo, D., Caudullo, G., Durrant, T. H., Mauri, A., 2016: European Atlas of Forest Tree Species. European Commission, Official Journal of European Union, 54, 200 p.Search in Google Scholar

Basler, D., Körner, Ch., 2012: Photoperiod sensitivity of bud burst in 14 temperate forest tree species. Agricultural and Forest Meteorology, 165:73–81.10.1016/j.agrformet.2012.06.001Search in Google Scholar

Bauwe, A., Jurasinski, G., Scharnweber, T., Schröder, C., Lennartz, B., 2015: Impact of climate change on tree-ring growth of Scots pine, common beech and pedunculate oak in northeastern Germany. iForest 9:1–11.10.3832/ifor1421-008Search in Google Scholar

Bauwe, A., Koch, M., Kallweit, R., Konopatzky, A., Strohbach, B., Lennartz, B., 2013: Tree-ring growth response of Scots pine (Pinus sylvestris L.) to climate and soil water availability in the lowlands of northeastern Germany. Baltic Forestry, 19:212–225.Search in Google Scholar

Bochníček, O. et al., 2015: Climate Atlas of Slovakia. SHMI, Bratislava, 131 p. Available online http://klimat.shmu.sk/kas/Search in Google Scholar

Bogino S, Bravo F., 2009: Climate and intraannual density fluctuations in Pinus pinaster subsp. mesogeensis in Spanish woodlands. Canadian Journal of Forest Research, 39:1557–1565.10.1139/X09-074Search in Google Scholar

Cornes, R., van der Schrier, G., van den Besselaar, E. J. M., Jones, P. D., 2018: An Ensemble Version of the E-OBS Temperature and Precipitation Datasets. Journal of Geophysical Research: Atmospheres: 123.10.1029/2017JD028200Search in Google Scholar

D’Arrigo, R., Wilson, R., Liepert, B., Cherubini, P., 2008: On the ‘‘Divergence Problem’’ in Northern Forests: a review of the tree ring evidence and possible causes. Global and Planetary Change, 60:289–305.10.1016/j.gloplacha.2007.03.004Search in Google Scholar

Dobbertin, M., 2005: Tree growth as indicator of tree vitality and of tree reaction to environmental stress: a review. European Journal of Forest Research, 124:319–333.10.1007/s10342-005-0085-3Search in Google Scholar

Dobbertin, M., Neumann, M., 2016: Part V: Tree Growth. In: UNECE ICP Forests, Programme Coordinating Centre (ed.): Manual on methods and criteria for harmonized sampling, assessment, monitoring and analysis of the effects of air pollution on forests. Thünen Institute of Forest Ecosystems, Eberswalde, Germany, 17 p. + Annex [http://www.icp-forests.org/manual.htm]Search in Google Scholar

de Luis, M., Čufar, K., Saz, M. A., Longares, L. A., Ceglar, A., Kajfež-Bogataj, L., 2014: Trends in seasonal precipitation and temperature in Slovenia during 1951–2007. Regional Environmental Change, 14:1801–1810.10.1007/s10113-012-0365-7Search in Google Scholar

Eichhorn, J., Roskams, P., Potočić, N., Timmermann, V., Ferretti, M., Mues, V. et al., 2016: Part IV: Visual Assessment of Crown Condition and Damaging Agents. In: UNECE ICP Forests Programme Coordinating Centre (ed.): Manual on methods and criteria for harmonized sampling, assessment, monitoring and analysis of the effects of air pollution on forests. Thünen Institute of Forest Ecosystems, Eberswalde, Germany, 49 p. + Annex.Search in Google Scholar

Eilmann, B., Pascale, W., Rigling, A., Eckstein, D., 2006: Growth reactions of Pinus sylvestris L. and Quercus pubescens Willd. to drought years at a xeric site in Valais, Switzerland. Dendrochronologia, 23:121–132.10.1016/j.dendro.2005.10.002Search in Google Scholar

Fritts, H. C., 2001: Tree rings and climate. Blackburn Press, Caldwell, 567 p.Search in Google Scholar

Gottardini, E., Cristofolini, F., Cristofolini, A., Pollastrini, M., Camin, F., Ferretti, M., 2020: A multi-proxy approach reveals common and species-specific features associated with tree defoliation in broad-leaved species. Forest Ecology and Management, 467:118151.10.1016/j.foreco.2020.118151Search in Google Scholar

Henttonen, H. M., Mäkkinen, H., Heiskanen, J., Peltoniemi, M., Laurén, A., Hordo, M., 2014: Response of radial increment variation of Scots pine to temperature, precipitation and soil water content along a latitudinal gradient across Finland and Estonia. Agricultural and Forest Meteorology, 198–199:294–308.10.1016/j.agrformet.2014.09.004Search in Google Scholar

Irvine, J., Perks, M. P., Magnani, F., Grace, J., 1998: The response of Pinus sylvestris to drought: Stomatal control of transpiration and hydraulic conductance. Tree Physiology, 18:393–402.10.1093/treephys/18.6.39312651364Search in Google Scholar

IUSS Working Group WRB: World Reference Base for Soil Resources 2014, Update 2015. World Soil Resources Reports 106, FAO, Rome 2015.Search in Google Scholar

Jaagus, J., Aasa, A., Aniskevich, S., Boincean, B., Bojariu, R., Briede, A. et al., 2021: Long-term changes in drought indices in eastern and Central Europe. International Journal of Climatology, doi.org/10.1002/joc.7241.10.1002/joc.7241Search in Google Scholar

Jokanovic, V. N., Vulevic, T., Lazarevic, K., 2020: Risk assessment of forest decline by application of geostatistics and multi-criteria analysis. Journal of Hydrology and Hydromechanics, 68:285–292.10.2478/johh-2020-0013Search in Google Scholar

Kath, J., Reardon-Smith, K., Le Brocque, A. F., Dyer, F. J., Dafny, E., Fritz, L. et al., 2014: Groundwater decline and tree change in floodplain landscapes: Identifying non-linear threshold responses in canopy condition. Global Ecology and Conservation, 2:148–160.10.1016/j.gecco.2014.09.002Search in Google Scholar

Kočický, D., Ivanič, B., 2011: Geomorphological classification of Slovakia. State Geological Institute of Dionyz Stur, Bratislava, Available online https://apl.geology.sk/temapy/.Search in Google Scholar

Kölling, C., 2007: Klimahüllen für 27 Waldbaumarten. AFZ-DerWald, 23:1242–1245Search in Google Scholar

Koprowski, M., 2013: Spatial distribution of introduced Norway spruce growth in lowland Poland: The influence of changing climate and extreme weather events. Quaternary International, 283:139–14610.1016/j.quaint.2012.04.020Search in Google Scholar

Krakau, U. K., Liesebach, M., Aronen, T., Lelu-Walter, M. A., Schneck, V., 2013: Scots Pine (Pinus sylvestris L.). In: Pâques, L. E. (ed.): Forest tree breeding in Europe. Current state-of-the-art and perspectives. Springer, Dordrecht Chapter 6, p. 267–323.10.1007/978-94-007-6146-9_6Search in Google Scholar

Lalic, B., Eitzinger, J., Marta A. D., Orlandini, S., Sremac, A. F., Pacher, B., 2018: Agricultural Meteorology and Climatology. Firenze, Firenze University Press, 353 p.10.36253/978-88-6453-795-5Search in Google Scholar

Leontovyč, R., Vakula, J., Zúbrik, M., Gubka, A., Kunca, A., Nikolov, Ch. et al., 2017: Analýza vplyvu škodlivých činiteľov a hospodárenia v lesoch na zdravotný stav lesov a návrh opatrení na ochranu lesov v podmienkach borovicových porastov na viatych pieskoch Záhoria. 24 p.Search in Google Scholar

Leštianska, A., Fleischer, P., Merganičová, K., Střelcová, K., 2020: Interspecific variation in growth and tree water status of conifers under water-limited conditions. Journal of Hydrology and Hydromechanics. 68:368–381.10.2478/johh-2020-0028Search in Google Scholar

Lindner, M., Maroschek, M., Netherer, S., Kremer, A., Barbati, A., Garcia-Gonzalo, J. et al., 2010: Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. Forest Ecology and Management, 259:698–709.10.1016/j.foreco.2009.09.023Search in Google Scholar

Lukasová, V., Škvareninová, J., Bičárová, S., Sitárová, Z., Hlavatá, H., Borsányi, P. et al., 2021: Regional and altitudinal aspects in summer heatwave intensification in the Western Carpathians. Theoretical and Applied Climatology, 146:1111–1125.10.1007/s00704-021-03789-5Search in Google Scholar

Mácová, M., 2008: Dendroclimatological comparison of native Pinus sylvestris and invasive Pinus strobus in different habitats in the Czech Republic. Preslia, 80:277–289.Search in Google Scholar

Menzel, A., Fabian, P., 1999: Growing season extended in Europe. Nature, 397:659.10.1038/17709Search in Google Scholar

Merlin, M., Perot, T., Perret, S., Korboulewsky, N., Vallet, P., 2015: Effects of stand composition and tree size on resistance and resilience to drought in sessile oak and Scots pine. Forest Ecology and Management, 339:22–33.10.1016/j.foreco.2014.11.032Search in Google Scholar

Misi, D., Náfrádi, K., 2016: Possibility of identification of negative extreme climatic events using Pinus sylvestris tree-rings in Transdanubia, Hungary. Dendrobiology, 75:45–54.10.12657/denbio.075.005Search in Google Scholar

Misi, D., Náfrádi, K., 2017: Growth response of Scots pine to changing climatic conditions over the last 100 years: A case study from Western Hungary. Trees-Structure and Function, 31:919–928.10.1007/s00468-016-1517-zSearch in Google Scholar

Oleksyn, J., Tjoelker, M. G., Reich, P. B., 1998: Adaptation to changing environment in Scots pine populations across a latitudinal gradient. Silva Fennica, 32:129–140.10.14214/sf.691Search in Google Scholar

Oyen, B. H., Blom, H. H., Gjerde, I., Myking, T., Saetersdal, M., Thunes, K. H., 2006: Ecology, history and silviculture of Scots pine (Pinus sylvestris L.) in western Norway – a literature review. Forestry, 79:319–329.10.1093/forestry/cpl019Search in Google Scholar

Panayotov, M., Zafirov, N., Cherubini, P., 2013: Fingerprints of extreme climate events in Pinus sylvestris tree rings from Bulgaria. Trees, 27:211–227.10.1007/s00468-012-0789-1Search in Google Scholar

Pärn, H., 2009: Temporal History of Relationships between Scots Pine (Pinus sylvestris L.) Radial Growth and Mean Monthly Temperatures. Baltic Forestry, 15:48–57.Search in Google Scholar

Picon-Cochard, C., Coll, L., Balandier, P., 2006: The role of below-ground competition during early stages of secondary succession: the case of 3-year-old Scots pine (Pinus sylvestris L.) seedlings in an abandoned grassland. Oecologica, 148:373–383.10.1007/s00442-006-0379-216489460Search in Google Scholar

Pretzsch, H., Steckel, M., Heym, M. et al., 2020: Stand growth and structure of mixed-species and monospecific stands of Scots pine (Pinus sylvestris L.) and oak (Quercus robur L., Quercus petraea (Matt.) Liebl.) analysed along a productivity gradient through Europe. European Journal of Forest Research, 139:349–367.10.1007/s10342-019-01233-ySearch in Google Scholar

Reich, P. B., Oleksyn, J., 2008: Climate warming will reduce growth and survival of Scots pine except in the far north. Ecology Letters, 11:588–597.10.1111/j.1461-0248.2008.01172.x18363717Search in Google Scholar

Richardson, D. M., Rundel, P. W., 1998: Ecology and biogeography of Pinus: an introduction. In: Richardson, D. M. (ed.): Ecology and biogeography of Pinus, p. 3–46, Cambridge University Press, Cambridge.Search in Google Scholar

Roberts, J., 1976: A study of root distribution and growth in a Pinus sylvestris L. (Scots pine) plantation in east Anglia. Plant and Soil, 44:607–621.10.1007/BF00011380Search in Google Scholar

Rohner, B., Kumar, S., Liechti, K., Gessler, A., Ferretti. M., 2021: Tree vitality indicators revealed a rapid response of beech forests to the 2018 drought. Ecological Indicators, 120:106903.10.1016/j.ecolind.2020.106903Search in Google Scholar

Sánchez-Salguero, R., Camarero, J. J., Hevia, A., Madrigal-González, J., Linares, J. C., Ballesteros-Canovas, J. A. et al., 2015: What drives growth of Scots pine in continental Mediterranean climates: drought, low temperatures or both? Agriculture and Forest Meteorology, 206:151–162.10.1016/j.agrformet.2015.03.004Search in Google Scholar

Sanchez-Gomez, D., Zavala, M. A., Valladares, F., 2006: Seedling survival responses to irradiance are differentially influenced by low-water availability in four tree species of the Iberian cool temperate Mediterranean ecotone. Acta Oecologica, 30:322–332.10.1016/j.actao.2006.05.005Search in Google Scholar

Schutt, P., Koch, W., Blaschke, H., Lang, K. J., Schuck, H. J., Summerer, H. et al., 1984: Avant que forêt ne meure: le dépérissement de la forêt - principaux dégâts observés et évolution. Delachaux et Niestlé, Neuchâtel, CHE, Switzerland, 128 p.Search in Google Scholar

Sidor, C. G., Bosela, M., Büntgen, U., Vlad, R., 2018: Mixed effects of climate variation on the scots pine forests: Age and species mixture matter. Dendrochronologia, 52:48–56.10.1016/j.dendro.2018.09.005Search in Google Scholar

Speer, H. J., 2012: The Fundamentals of Tree-Ring Research. University of Arizona, Terre Haute, 510 p.Search in Google Scholar

Spellmann, H., Albert, M., Schmidt, M., Sutmöller, J., Overbeck, M., 2011: Waldbauliche anpassungsstrategien für veränderte klimaverhältnisse. AFZ-Der Wald 11:19–23.Search in Google Scholar

Spurk, M., 1997: Dendroklimatologische Untersuchungen an Kiefern (Pinus sylvestris L.) der planar-kolinnen Stufe in Deutschland. Dendrochronologia, 15:51–72.Search in Google Scholar

Strumia, G., Wimmer, R., Grabner, M., 1997: Dendro-climatic sensitivity of Pinus nigra Arnold in Austria. – Dendrochronologia, 15:129–137.Search in Google Scholar

Šilhán, K., Ružek, I., Frištyk, M., Wiśniewská, K., 2021: Growth responses of Pinus sylvestris (L.) to burial by drift sand and its application to the reconstruction of aeolian dune development. Catena, 196:104830.10.1016/j.catena.2020.104830Search in Google Scholar

Van der Werf. G. W., Sass-Klaassen, U., Mohren, G. M. J., 2007: The impact of the 2003 summer drought on the intra-annual growth pattern of beech (Fagus sylvatica L.) and oak (Quercus robur L.) on a dry site in the Netherlands. Dendrochronologia, 25:103–112.10.1016/j.dendro.2007.03.004Search in Google Scholar

Vitas, A., Erlickyté, R., 2008: Influence of droughts to the radial growth of Scots pine (Pinus sylvestris L.). Ekológia (Bratislava), 27:367–378.Search in Google Scholar

Wilczyński, S., Skrzyszewski, J., 2002: The climatic signal in tree-rings of Scots pine (Pinus sylvestris L.) from foot-hills of the Sudetic Mountains (southern Poland). Forstwissenschaftliches Centralblatt, 121:15–24.10.1046/j.1439-0337.2002.01042.xSearch in Google Scholar

Xenakis, G., Ray, D., Mencuccini, M., 2012: Effects of climate and site characteristics on Scots pine growth. European Journal of Forest Research, 131:427–439.10.1007/s10342-011-0516-2Search in Google Scholar

Zielski, A., Krapiec, M., Koprowski, M., 2010: Dendro-chronological Data. In: Przybylak, R., Majorowicz, J., Brázdil, R., Kejna, M. (eds.): Polish Climate in European Context an Historical Overview, Springer, Dodrecht, The Netherlands, p. 87–100.Search in Google Scholar

Zlatník, A., 1976: Přehled skupin typů geobiocénů původně lesních a křovinných ČSSR. Zpravodaj Geografického ústavu Československé akademie věd, Brno, 13:55–64.Search in Google Scholar

Empfohlene Artikel von Trend MD

Planen Sie Ihre Fernkonferenz mit Scienceendo