1. bookVolumen 68 (2022): Heft 2 (June 2022)
Zeitschriftendaten
License
Format
Zeitschrift
eISSN
2454-0358
Erstveröffentlichung
14 Dec 2009
Erscheinungsweise
4 Hefte pro Jahr
Sprachen
Englisch
access type Uneingeschränkter Zugang

Population genetic diversity in Quercus robur and Ulmus laevis in Southern Urals (Russia): a comparatively study of adults and progeny in localities with contrast forest cover

Online veröffentlicht: 09 May 2022
Volumen & Heft: Volumen 68 (2022) - Heft 2 (June 2022)
Seitenbereich: 101 - 108
Zeitschriftendaten
License
Format
Zeitschrift
eISSN
2454-0358
Erstveröffentlichung
14 Dec 2009
Erscheinungsweise
4 Hefte pro Jahr
Sprachen
Englisch
Abstract

Extensive forest areas decreased and fragmented during anthropogenic development of the zone of broad-leaved forest tree species in Russia. The pedunculate oak (Quercus robur L.) and the European white elm (Ulmus laevis Pall.), important key components of these ecosystems, suffered last few centuries of extreme climate events, attacks of insects and diseases. Using ISSR genetic markers, we compared expected heterozygosity and allelic diversity of these two species in natural and artificial stands, planted and naturally regenerated progeny. Weak differences in the genetic diversity in Q. robur and U. laevis were revealed in areas with different forest cover and participation of the species in a stand composition. Overall, we found that the genetic diversity of parent natural and artificial stands is well reproducing in natural offspring and planted saplings. But the tree species studied express both higher and lower heterozygosity in planted trees in comparison to natural stands.

Aguilar, R., Quesada, M., Ashworth, L., Herrerias-Diego, Y., Lobo, J., 2008: Genetic consequences of habitat fragmentation in plant populations: susceptible signals in plant traits and methodological approaches. Molecular Ecology, 17:5177–5188.10.1111/j.1365-294X.2008.03971.x19120995Search in Google Scholar

Aravanopoulos, F. A., 2018: Do silviculture and forest management affect the genetic diversity and structure of long-impacted forest tree populations? Forests, 9:14.10.3390/f9060355Search in Google Scholar

Augustynczik, A. L. D., Asbeck, T., Basile, M., Bauhus, J., Storch, I., Mikusiński, G. et al., 2019: Diversification of forest management regimes secures tree micro-habitats and bird abundance under climate change. Science of the Total Environment, 650:2717–2730.10.1016/j.scitotenv.2018.09.36630296777Search in Google Scholar

Bacles, C. F. E., Jump, A. S., 2011: Taking a tree’s perspective on forest fragmentation genetics. Trends in Plant Science, 16:13–18.10.1016/j.tplants.2010.10.00221050799Search in Google Scholar

Baisheva, E., Shirokikh, P., Martynenko, V., 2019: Bryophyte diversity in the forests of the Southern Urals. In: Sabovljević, M. S., Sabovljević, A. D. (eds.): Bryophytes. IntechOpen, p. 2–26.10.5772/intechopen.88301Search in Google Scholar

Bertolasi, B., Leonarduzzi, C., Piotti, A., Leonardi, S., Zago, L., Gui, L. et al., 2015: A last stand in the Po valley: Genetic structure and gene flow patterns in Ulmus minor and U. pumila. Annals of Botany, 115:683–692.10.1093/aob/mcu256434329125725008Search in Google Scholar

Blanc-Jolivet, C., Degen, B., 2014: Using simulations to optimize genetic diversity in Prunus avium seed harvests. Tree Genetics and Genomes, 10:503–512.10.1007/s11295-014-0699-zSearch in Google Scholar

Bradshaw, R. H. W., 2004: Past anthropogenic influence on European forests and some possible consequences. Forest Ecology and Management, 197:203–212.10.1016/j.foreco.2004.05.025Search in Google Scholar

Bushbom, J., Yanbaev, Y., Degen, B., 2011: Efficient long-distance gene flow into an isolated relict oak stand. Journal of Heredity, 102:464–472.10.1093/jhered/esr02321525180Search in Google Scholar

Chomic-Zegar, E., Nowakowska, J. A., Tereba, A., 2015: Forest decline has not reduced genetic diversity of naturally regenerated Norway spruce from the Beskids, Poland. Silvae Genetica, 64:270–278.10.1515/sg-2015-0025Search in Google Scholar

Collin, E., 2003: EUFORGEN. Technical guidelines for genetic conservation and use for European white elm (Ulmus laevis). Rome, Italy, International Plant Genetic Resources Institute (IPGRI).Search in Google Scholar

Contreras-Hermosilla, A., 2000: The underlying causes of forest decline. Bogor, Indonesia, CIFOR Occasional Paper No. 30, Centre for International Forestry Research.Search in Google Scholar

Cortés, A. J., Restrepo-Montoya, M., Bedoya-Canas, L. E., 2020: Modern strategies to assess and breed forest tree adaptation to changing climate. Frontiers in Plant Science, 11:1606.10.3389/fpls.2020.583323760942733193532Search in Google Scholar

Čurn, V., Dědouchová, M., Kubátová, B., Malá, J., Máchová, P., Cvrčková, H., 2014: Assessment of genetic variability in autochthonous elm populations using ISSR markers. Journal of Forest Science, 60:511–518.10.17221/81/2013-JFSSearch in Google Scholar

Degen, B., Yanbaev, Y., Blanc-Jolivet, C., Ianbaev, R., Bakhtina, S., Mader, M., 2021: Genetic comparison of planted and natural Quercus robur stands in Russia. Silvae Genetica, 70:1–8.10.2478/sg-2021-0001Search in Google Scholar

Dyderski, M., Dyderska, S., Frelich, L., Jagodziński, A. M., 2018: How much does climate change threaten European forest tree species distributions? Global Change Biology, 24:1150–1163.10.1111/gcb.1392528991410Search in Google Scholar

Fageria, M. S., Rajora, O. P., 2014: Effects of silvicultural practices on genetic diversity and population structure of white spruce in Saskatchewan. Tree Genetics & Genomes, 10:287–296.10.1007/s11295-013-0682-0Search in Google Scholar

Gauli, A., Gailing, O., Stefenon, V. M., Finkeldey, R., 2009: Genetic similarity of natural populations and plantations of Pinus roxburghii Sarg. in Nepal. Annals of Forest Science, 66:1–10.10.1051/forest/2009053Search in Google Scholar

Gorchakovsky, P. L., 1988. Vegetation and botanical-geographical division of the Bashkir ASSR. In: Keys to higher plants of the Bashkir ASSR. Moscow, Publishing House Science, p. 3–13.Search in Google Scholar

Jolivet, C., Holtken, A. M., Liesebach, H., Steiner, W., Degen, B., 2012: Mating patterns and pollen dispersal in four contrasting wild cherry populations (Prunus avium L.). European Journal of Forest Research, 131:1055–1069.10.1007/s10342-011-0576-3Search in Google Scholar

Kramer, A. T., Ison, J. L., Ashley, M. V., Howe, H. F., 2008: The paradox of forest fragmentation genetics. Conservation Biology, 22:878–885.10.1111/j.1523-1739.2008.00944.x18544089Search in Google Scholar

Kremer, A., Hipp, A. L., 2020: Oaks: An evolutionary success story. New Phytologist, 226:987–1011.10.1111/nph.16274716613131630400Search in Google Scholar

Lowe, A. A., Boshier, D. H., Ward, M., Bacles, C. F. E., Navarro, C., 2005: Genetic resource impacts of habitat loss and degradation: Reconciling empirical evidence and predicted theory for neotropical trees. Heredity, 95:255–273.10.1038/sj.hdy.680072516094300Search in Google Scholar

Neyshtadt, M. I., 1957: History of forests and paleogeography of USSR in Holocene. Moscow, Izd-vo AN SSSR.Search in Google Scholar

Nielsen, L. R., Kjær, E. D., 2010: Fine-scale gene flow and genetic structure in a relic Ulmus laevis population at its northern range. Tree Genetics and Genomes, 6:643–649.10.1007/s11295-010-0280-3Search in Google Scholar

Oleksyn, J., Przybyl, K., 2007: Oak decline in the Soviet Union – scale and hypotheses. European Journal of Forest Pathology, 17:321–336.10.1111/j.1439-0329.1987.tb01325.xSearch in Google Scholar

Popadyuk, R. V., Smirnova, O. V., Evstigneev, O. I., Yanitskaya, T. O., Chumatchenko, S. I., Zaugolnova, L. B. et al., 1995: Current state of broad-leaved forests in Russia, Belorussia, Ukraine: Historical development, biodiversity, structure and dynamic. Russian Academy of Sciences, Pushchino Research Centre.Search in Google Scholar

Popov, G. V., 1984: Forests of Bashkiria. Ufa, Bashkirskoe knijnoe izdatelstvo.Search in Google Scholar

Poudel, R. C., Möller, M., Liu, J., Gao, L. M., Baral, S. R., Li, D. Z., 2014: Low genetic diversity and high inbreeding of the endangered yews in Central Himalaya: implications for conservation of their highly fragmented populations. Diversity and Distributions, 20:1270–284.10.1111/ddi.12237Search in Google Scholar

Prunier, J., Verta, J. P., MacKay, J. J., 2016: Conifer genomics and adaptation: At the crossroads of genetic diversity and genome function. New Phytolo-gist, 209:44–62.10.1111/nph.1356526206592Search in Google Scholar

Ratnam, W., Rajora, O. P., Finkeldey, R., Aravanopoulos, F., Bouvet, J. M., Vaillancourt, R. E. et al., 2014: Genetic effects of forest management practices: Global synthesis and perspectives. Forest Ecology and Management, 333:52–65.10.1016/j.foreco.2014.06.008Search in Google Scholar

Rogers, S. O., Bendich, A. J., 1985: Extraction of DNA from milligram amounts of fresh, herbarium, and mummified plant tissues. Plant Molecular Biology, 5:69–76.10.1007/BF0002008824306565Search in Google Scholar

Su, J., Yan, Y., Song, J., Li, J., Mao, J., Wang, N. et al., 2018: Recent fragmentation may not alter genetic patterns in endangered long-lived species: evidence from Taxus cuspidata. Frontiers in Plant Science, 9:1571.10.3389/fpls.2018.01571622003830429863Search in Google Scholar

Vakkari, P., Rusanen, M., Heikkinen, J., Huotari, T., Kärkkäinen, K., 2020: Patterns of genetic variation in leading-edge populations of Quercus robur: Genetic patchiness due to family clusters. Tree Genetics and Genomes, 16:1–12.10.1007/s11295-020-01465-9Search in Google Scholar

Venturas, M. D., Lopez Rodriguez, R. A., Perea García-Calvo, R., Fernandez, V., Guzman Delgado, P., Rodriguez-Calcerrada, J. et al., 2015: Ulmus laevis in the Iberian Peninsula: A review of its ecology and conservation. iForest, 8:1–8.10.3832/ifor1201-008Search in Google Scholar

Vijayan, K., 2005: Inter Simple Sequence Repeat (ISSR) polymorphism and its application in Mulberry genome analysis. International Journal of Industrial Entomology, 10:79–86.Search in Google Scholar

Vranckx, G. U. Y., Jacquemyn, H., Muys, B., Honnay, O., 2012: Meta-analysis of susceptibility of woody plants to loss of genetic diversity through habitat fragmentation. Conservation Biollogy, 26:228–237.10.1111/j.1523-1739.2011.01778.x22044646Search in Google Scholar

Wehenkel, C., Corral-Rivas, J J., Castel-Lanos-Bocaz, H. A., Pinedo-Alvarez, A., 2009: Is there a positive relationship between naturalness and genetic diversity in forest tree communities? Investigación Agraria: Sistemas y Recursos Forestales, 18:20–27.10.5424/fs/2009181-01047Search in Google Scholar

Zietkiewicz, E., Rafalski, J., Labuda, D., 1994: Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics, 20:176–183.10.1006/geno.1994.11518020964Search in Google Scholar

Empfohlene Artikel von Trend MD

Planen Sie Ihre Fernkonferenz mit Scienceendo