[
Adams, H.D., Zeppel, M.J.B., Anderegg, W.R.L. et al., 2017. A multi-species synthesis of physiological mechanisms in drought-induced tree mortality. Nature Ecology and Evolution, 1: 1285–1291. https://doi.org/10.1038/s41559-017-0248-x
]Search in Google Scholar
[
Allen, C.D., MaCalady, A.K., Chenchouni, H., Bachelet, D., McDowell, N., Vennetier, M., Kitzberger, T., Rigling, A., Breshears, D.D., Hogg, E.H. (Ted), Gonzalez, P., Fensham, R., Zhang, Z., Castro, J., Demidova, N., Lim, J.H., Allard, G., Running, S.W., Semerci, A., Cobb, N., 2010. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management, 259: 660–684. https://doi.org/10.1016/j.foreco.2009.09.001
]Search in Google Scholar
[
Athanasiadis, N., 1986. Forest botany (trees and shrubs of the Greek forests). Part II. Thessaloniki: Giahoudis– Giapoudis. 309 p. (In Greek).
]Search in Google Scholar
[
Aussenac, G., 2002. Ecology and ecophysiology of circum-Mediterranean firs in the context of climate change. Annals of Forest Science, 59: 823–832. https://doi.org/10.1051/forest:2002080
]Search in Google Scholar
[
Baillie, M.G.L., 1982. Tree-ring dating and archaeology. 1st ed. Routledge.
]Search in Google Scholar
[
Bergmeier E., 2002. Plant communities and habitat differentiation in the Mediterranean coniferous woodlands of Mt. Parnon (Greece). Folia Geobotanica, 37 (3): 309– 331. https://doi.org/10.1007/BF02805214
]Search in Google Scholar
[
Bernabei, M., Bontadi, J., Nicolussi, K., 2018. Observations on Holocene subfossil tree remains from high-ele- vation sites in the Italian Alps. The Holocene, 28 (12): 2017–2027. https://doi.org/10.1177/0959683618798149
]Search in Google Scholar
[
Briffa, K.R., Jones, P.D., 1990. Basic chronology statistics and assessment. In Methods of dendrochronology: applications in the environmental sciences. Kluwer Academic Publishers, p. 137–152.
]Search in Google Scholar
[
Brofas, G., Economidou, E., 1994. Le dépérissement du Sapin du Mont Parnasse. Lerôle des conditions climatiques et écologiques [The decline of fir on Mount Parnassus (Greece). The role of climatic and ecological conditions]. Ecologia Mediterranea, 20: 1–8. (In French).
]Search in Google Scholar
[
Camarero, J.J., Gazol, A., Sangüesa-Barreda, G., Cantero, A., Sánchez-Salguero, R., Sánchez-Miranda, A., Granda, E., Serra-Maluquer, X., Ibáñez, R., 2018. Forest growth responses to drought at short- and long-term scales in Spain: squeezing the stress memory from tree rings. Frontiers in Ecology and Evolution, 6: 329909. https://doi.org/10.3389/fevo.2018.00009
]Search in Google Scholar
[
Choat, B., Brodribb, T.J., Brodersen, C.R., Duursma, R.A., López, R., Medlyn, B.E., 2018. Triggers of tree mortality under frought. Nature, 558: 531–539. https://doi.org/10.1038/s41586-018-0240-x
]Search in Google Scholar
[
Ciais, P., Reichstein, M., Viovy, N., Granier, A., Ogée, J., Allard, V., Aubinet, M., Buchmann, N., Bernhofer, C., Carrara, A., Chevallier, F., De Noblet, N., Friend, A.D., Friedlingstein, P., Grünwald, T., Heinesch, B., Keronen, P., Knohl, A., Krinner, G., Loustau, D., Manca, G., Matteucci, G., Miglietta, F., Ourcival, J. M., Papale, D., Pilegaard, K., Rambal, S., Seufert, G., Soussana, J. F., Sanz, M. J., Schulze, E. D., Vesala, T., Valentini, R., 2005. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature, 437: 529–533. https://doi.org/10.1038/nature03972
]Search in Google Scholar
[
Climate Engine, 2023. Desert Research Institute and University of Idaho. [cit. 2024-10-21]. http://climateengine.org
]Search in Google Scholar
[
Colangelo, M., Camarero, J.J., Ripullone, F., Gazol, A., Sánchez-Salguero, R., Oliva, J., Redondo, M.A., 2018. Drought decreases growth and increases mortality of coexisting native and introduced tree species in a temperate floodplain forest. Forests, 9: 1–17. https://doi.org/10.3390/f9040205
]Search in Google Scholar
[
Cook, E.R., 1987. The decomposition of tree-ring series for environmental studies. Tree-Ring Bulletin, 47: 37–59.
]Search in Google Scholar
[
Dimopoulos, P., 1993. Floristic and phytosociological research of Mount Kyllini. Ecological approach. PhD thesis. University of Patras, Patras.
]Search in Google Scholar
[
Dimopoulos, P., Raus, T., Bergmeier, E., Constantinidis, T., Iatrou, G., Kokkini, S., Strid, A., Tzanoudakis, D., 2013. Vascular plants of Greece: an annotated checklist. Berlin: Botanischer Garten und Botanisches Museum Berlin-Dahlem, Athens: Hellenic Botanical Society. 372 p.
]Search in Google Scholar
[
Dobbertin, M., 2005. Tree growth as indicator of tree vitality and of tree re-action to environmental stress: a review. European Journal of Forest Research, 124: 319–333. https://doi.org/10.1007/s10342-005-0085-3
]Search in Google Scholar
[
Dow, C., Jacobs, J.J., Saunders, M.R., Marshall, P., Jenkins, M.A., 2024. A dendrochronological examination of a recent decline of chestnut oak across southern Indiana. Forest Ecology and Management, 561: 121846.
]Search in Google Scholar
[
Field, C.B., Barros, V., Stocker, T.F., Dahe, Q., 2012. Managing the risks of extreme events and disasters to advance climate change adaptation: Special report of the Intergovernmental Panel on Climate Change. 1st ed. Cambridge: Cambridge University Press.
]Search in Google Scholar
[
Fritts, H.C., 1976. Tree-rings and climate. London: Academic Press. 567 p.
]Search in Google Scholar
[
Gentilesca, T., Todaro, L., 2008. Tree-ring growth and climate response of silver fir (Abies alba Mill.) in Basilicata (Southern Italy). Forest@ - Journal of Silviculture and Forest Ecology, 5: 47–56.
]Search in Google Scholar
[
Giorgi, F., Im, E-S., Coppola, E., Diffenbaugh, N.S., Gao, X.J., Mariotti, L., Shi, Y., 2011. Higher hydroclimatic intensity with global warming. Journal of Climate, 24 (20): 5309–24. https://doi.org/10.1175/2011JCLI3979.1
]Search in Google Scholar
[
Gouvas, M., Sakellariou, N., 2011. Climate and forest vegetation of Greece. Athens, Greece: National Observatory of Athens, Institute of Environmental Research and Sustainable Development. 238 p. (In Greek with English summary).
]Search in Google Scholar
[
Gouvas, M., Theodoropoulos, K., 2022. The influence of air temperature on the lower- and higher altitudinal distribution limits of forest trees and shrubs in Greece. Geotechnical Scientific Issues, 31, Iss. 2 (1): 28–39.
]Search in Google Scholar
[
Harkönen, S., Neumann, M., Mues, V., Berninger, F., Bronisz, K., Cardellini, G., Chirici, G., Hasenauer, H., Koehl, M., Lang, M., Merganicova, K., Mohren, F., Moiseyev, A., Moreno, A., Mura, M., Muys, B., Olschofsky, K., Del Perugia, B., Rørstad, P.K., Solberg, B., Thivolle-Cazat, A., Trotsiuk, V., Makela, A., 2019. A climate-sensitive forest model for assessing impacts of forest management in Europe. Environmental Modelling and Software, 115: 128–143. https://doi.org/10.1016/j.envsoft.2019.02.009
]Search in Google Scholar
[
Hellenic National Meteorological Service, 2024. [Monthly precipitation and Temperature data from the Arachova Station WMO No 126666]. Hellenic National Meteorological Service.
]Search in Google Scholar
[
Huntington, J.L., Hegewisch, K.C., Daudert, B., Morton, C.G., Abatzoglou, J.T., Mcevoy, D.J., Erickson, T., 2017. Climate Engine: Cloud computing and visualization of climate and remote sensing data for advanced natural resource monitoring and process understanding. Bulletin of the American Meteorological Society, 98: 2397–2410. https://doi.org/10.1175/BAMS-D-15-00324.1
]Search in Google Scholar
[
Karavitis, C.A., 1998. Drought and urban water supplies: the case of metropolitan Athens. Water Policy, 1: 505– 524. https://doi.org/10.1016/S1366-7017(99)00009-4
]Search in Google Scholar
[
Kempes, C.P., Myers, O.B., Breshears, D.D., Ebersole, J.J., 2008. Comparing response of Pinus edulis tree-ring growth to five alternate moisture indices using historic meteorological data. Journal of Arid Environments, 72: 350– 357. https://doi.org/10.1016/j.jaridenv.2007.07.009
]Search in Google Scholar
[
Kharuk, V.I., Im, S.T., Petrov, I.A., Dvinskaya, M.L., Fedotova, E.V., Ranson, K.J., 2017. Fir decline and mortality in the Southern Siberian Mountains. Regional Environmental Change, 17: 803–812. https://doi.org/10.1007/s10113-016-1073-5
]Search in Google Scholar
[
Kokmotos, S., 2008. Floral and phytosociological study of the Mt.ous areas of Boeotia (Elikonas - Xerovouni -Neraidolakkoma): comparative investigation and ecological approach. University of Athens, Faculty of Science, Department of Biology.
]Search in Google Scholar
[
Koulelis, P.P., Daskalakou, E.N., Ioannidis, K.E., 2019. Impact of regional climatic conditions on tree growth on mainland Greece. Folia Oecologica, 46 (2): 127–136. https://doi.org/10.2478/foecol-2019-0015
]Search in Google Scholar
[
Koulelis, P.P., Fassouli, V.P., Petrakis, P.V., Ioannidis, K.D., Alexandris, S., 2022. The impact of selected climatic factors on Greek fir growth on Mt Giona in mainland Greece based on tree ring analysis. Austrian Journal of Forest Science, 139 (1): 1–30.
]Search in Google Scholar
[
Koulelis., P.P., Fassouli,V.P., Petrakis, P.V., Ioannidis, K.D., 2022. The impact of selected climatic factors on the growth of Greek fir on Mount Giona in mainland Greece based on tree ring analysis. Austrian Journal of Forest Science, 1: 1–30.
]Search in Google Scholar
[
Koulelis, P.P., Petrakis, P.V., 2023. Brief overview of Greek fir radial growth in response to climate and European Fir Budworm: three case Studies from Giona Mountain, Central Greece. Climate, 11 (4): 78. https://doi.org/10.3390/cli11040078
]Search in Google Scholar
[
Koutavas, A., 2008. Late 20th century growth acceleration in Greek firs (Abies cephalonica) from Cephalonia Island, Greece: a CO2 fertilization effect? Dendrochronologia, 26 (1): 13–19, https://doi.org/10.1016/j.dendro.2007.06.001
]Search in Google Scholar
[
Koutavas, A., 2013. CO2 fertilization and enhanced drought resistance in Greek firs from Cephalonia Island, Greece. Global Change Biology, 19: 529–539. http://dx.doi.org/10.1111/gcb.12053
]Search in Google Scholar
[
Markalas, S., 1992. Site and stand factors related to mortality rate in a fir forest after a combined incidence of drought and insect attack. Forest Ecology and Management, 47: 367–374. https://doi.org/10.1016/0378-1127(92)90286-I
]Search in Google Scholar
[
Mazza, G., Gallucci, V., Manetti, M.C., Urbinati, C., 2014. Climate-growth relationships of silver fir (Abies alba Mill.) in marginal populations of Central Italy. Dendrochronologia, 32: 181–190. https://doi.org/10.1016/j.dendro.2014.04.004
]Search in Google Scholar
[
McDowell, N., Pockman, W.T., Allen, C.D., Breshears, D.D., Cobb, N., Kolb, T., Plaut, J., Sperry, J., West, A., Williams, D.G. et al., 2008.Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? New Phytolo-gist, 178: 719–739. https://doi.org/10.1111/j.1469-8137.2008.02436.x
]Search in Google Scholar
[
McKee, T.B., Doesken, N.J., Kleist, J., 1993. The relationship of drought frequency and duration to time scales. In 8th Conference on Applied Climatology. Anaheim, California, 17–22 January 1993. American Meteorological Society, Boston, Mass., p. 179–184.
]Search in Google Scholar
[
Mitsopoulos, D., Panetsos C.P., 1987. Origin of variation in fir forests of Greece. Silvae Genetica, 36: 1–15.
]Search in Google Scholar
[
Navarro-Cerrillo, R.M., Gazol, A., Rodríguez-Vallejo, C., Manzanedo, R.D., Palacios-Rodríguez, G., Camarero, J.J., 2020. Linkages between climate, radial growth and defoliation in Abies pinsapo forests from Southern Spain. Forests, 11: 1–16. https://doi.org/10.3390/f11091002
]Search in Google Scholar
[
Navarro-Cerrillo, R.M., Rodriguez-Vallejo, C., Silveiro, E., Hortal, A., Palacios-Rodríguez, G., Duque-Lazo, J., Camarero, J.J., 2018. Cumulative drought stress leads to a loss of growth resilience and explains higher mortality in planted than in naturally regenerated Pinus pinaster stands. Forests, 9: 1–18. https://doi.org/10.3390/f9060358
]Search in Google Scholar
[
Oogathoo, S., Duchesne, L., Houle, D., Kneeshaw, D., Bélanger, N., 2024. Precipitation and relative humidity favours tree growth while air temperature and relative humidity respectively drive winter stem shrinkage and expansion. Frontiers in Forests and Global Change, 7 (April): 1–13. https://doi.org/10.3389/ffgc.2024.1368590
]Search in Google Scholar
[
Palahi, M., Mavsar, R., Gracia, C., Birot, Y., 2008. Mediterranean forests under focus. International Forestry Review, 10 (4): 676–688. https://doi.org/10.1505/ifor.10.4.676
]Search in Google Scholar
[
Panetsos, CP., 1975. Monograph of Abies cephalonica Loudon. Annales Forestales, Anali za Sumarstvo, 7/1. Zagreb: Acad. Scientiarum et Artium Slavorum Meridionalium, p. 1–22.
]Search in Google Scholar
[
Papadopoulos, A., 2013. Resin tapping history of an Aleppo pine forest in Central Greece. The Open Forest Science Journal, 6 (1): 50–53.
]Search in Google Scholar
[
Papadopoulos, A., 2016. Tree-ring patterns and climate response of Mediterranean fir populations in Central Greece. Dendrochronologia, 40: 17–25.
]Search in Google Scholar
[
Papadopoulos, A., Raftoyannis, Y., Pantera, A., 2007. Fir decline in Greece: a dendroclimatological approach. In CEST-2007: Proceedings of the 10th International Conference on Environmental Science and Technology. Kos, Greece, 5–7 September, p. 571–578.
]Search in Google Scholar
[
Papadopoulos, A.M., 2009. Investigations dendroclimatologiques du Sapin de Céphalonie en Grèce Centrale [Dendroclimatological investigations of the Cephalonian fir in Central Greece]. Geographia Technica, nr 2: 34–38. (In French).
]Search in Google Scholar
[
Papageorgiou, A., Kostoudi, C., Sorotos, I., Varsamis, G., Korakis, G., Drouzas, A., 2015. Diversity in needle morphology and genetic markers in a marginal Abies cephalonica (Pinaceae) population. Annals of Forest Research, 58 (2): 217–234.
]Search in Google Scholar
[
Pasho, E., Camarero, J.J., de Luis, M., Vicente-Serrano, S.M., 2011. Impacts of drought at different time scales on forest growth across a wide climatic gradient in northeastern Spain. Agricultural and Forest Meteorology, 151: 1800–1811.
]Search in Google Scholar
[
Pearl, J.K., Keck, J.R., Tintor, W., Siekacz, L., Herrick, H.M., Meko, M.D., Pearson, C.L., 2020. New frontiers in tree-ring research. Holocene, 30 (6): 923–941. https://doi.org/10.1177/0959683620902230
]Search in Google Scholar
[
Peña-Gallardo, M., Vicente-Serrano, S.M., Camarero, J.J., Gazol, A., Sánchez-Salguero, R., Domínguez-Castro, F., El Kenawy, A., Beguería-Portugés, S., Gutiérrez, E., De Luis, M. et al., 2018. Drought sensitiveness on forest growth in Peninsular Spain and the Balearic Islands. Forests, 9: 524. https://doi.org/10.3390/f9090524
]Search in Google Scholar
[
Peñuelas, J., Lloret, F., Montoya, R., 2001. Severe drought effects on Mediterranean woody flora in Spain. Forest Science, 47: 214–218.
]Search in Google Scholar
[
QGIS Development Team, 2021. QGIS Geographic Information System (Version 3.22.3). Open Source Geospatial Foundation. Retrieved from https://qgis.org
]Search in Google Scholar
[
Samaras, D.A., Gaertner, S., Reif, A., Theodoropoulos, K., 2015. Drought effects on the floristic differentiation of Greek fir forests in the mountains of central Greece. iForest, 8: 786–797. [cit. 2024-10-07]. http://www.sisef.it/iforest/contents/?id=ifor1214-007
]Search in Google Scholar
[
Sarris, D., Christodoulakis, D., Körner, C., 2007. Recent decline in precipitation and tree growth in the eastern Mediterranean. Global Change Biology, 13 (6): 1187– 1200. https://doi.org/10.1111/j.1365-2486.2007.01348.x
]Search in Google Scholar
[
Sass-Klaassen, U.G., Chowdhury, Q.M., Sterck, F.J., weifel, R., 2007. Effects of water availability on the growth and tree morphology of Quercus pubescens Willd. and Pinus sylvestris L. in the Valais, Switzerland. In Haneca, K., Verheyden, A., Beeckman, H., Gärtner, H., Helle, G., Schleser, G. (eds). TRACE - Tree Rings in Archaeology, Climatology and Ecology, Vol. 5 Proceedings of the DENDROSYMPOSIUM. Tervuren, Belgium, 20-22 April, 2006. Forschungszentrum Jülich, p. 206–217.
]Search in Google Scholar
[
Schweingruber, F.H., 2012. Tree rings: basics and applications of dendrochronology. Springer Science & Busi ness Media.
]Search in Google Scholar
[
Seppälä, R., Buck, A., Katila, P., 2009. Adaptation of forests and people to climate change: a global assessment report: prepared by the Global Forest Expert Panel on adaptation of forests to climate change. IUFRO World Series, 22. Vienna, Austria: International Union of Forest Research Organizations (IUFRO).
]Search in Google Scholar
[
Speer, J.H., 2010. Fundamentals of tree-ring research. Tucson: University of Arizona Press.
]Search in Google Scholar
[
Stokes, M.A., 1996. An introduction to tree-ring dating. Tucson: University of Arizona Press. 73 p.
]Search in Google Scholar
[
Strid, A., Tan, K., 1997. Flora Hellenica, volume 1. Königstein: Koeltz Scientific Books. 547 p.
]Search in Google Scholar
[
Trotsiuk, V., Babst, F., Grossiord, C., Gessler, A., Forrester, D.I., Buchmann, N., Schaub, M., Eugster, W., 2021. Tree growth in Switzerland is increasingly constrained by rising evaporative demand. Journal of Ecology, 109 (8): 2981–2990. https://doi.org/10.1111/1365-2745.13712
]Search in Google Scholar
[
Trouet, V., Coppin, P., Beeckman, H., 2006. Annual growth ring patterns in brachystegia spiciformis reveal influence of precipitation on tree growth. Biotropica, 38 (3): 375–382. https://doi.org/10.1111/j.1744-7429.2006.00155.x
]Search in Google Scholar
[
Tsopelas, P., Angelopoulos, A., Economou, A., Soulioti, N., 2004. Mistletoe (Viscum album) in the fir forest of Mount Parnis, Greece. Forest Ecology and Management, 202 (1-3): 59–65. https://doi.org/10.1016/j.foreco.2004.06.032
]Search in Google Scholar
[
Vieira, J., Campelo, F., Nabais, C., 2008. Age-dependent responses of tree-ring growth and intra-annual density fluctuations of Pinus pinaster to Mediterranean climate. Trees - Structure and Function, 3: 257–265. https://doi.org/10.1007/s00468-008-0273-0
]Search in Google Scholar
[
Waring, R.H., Running S.W., 1998. Forest ecosystems: analysis at multiple scales. 2nd ed. San Diego: Academic Press.
]Search in Google Scholar
[
Wigley, T.M.L., Briffa, K.R., Jones, P.D., 1984. On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. Journal of Applied Meteorology and Climatology, 23: 201–213. https://doi.org/10.1175/1520-0450(1984)023<0201:OTAVOC>2.0.CO;2
]Search in Google Scholar
[
Zheng, P., Wang, D., Jia, G., Yu, X., Liu, Z., Wang, Y., Zhang, Y., 2022. Variation in water supply leads to different responses of tree growth to warming, Forest Ecosystems, 9: 100003. https://doi.org/10.1016/j.fecs.2022.100003
]Search in Google Scholar
[
Zweifel, R., Steppe, K., Sterck, F.J., 2007. Stomatal regulation by microclimate and tree water relations: interpreting eco-physiological field data with a hydraulic plant model. Journal of Experimental Botany, 58 (8): 2113– 2131. https://doi.org/10.1093/jxb/erm050
]Search in Google Scholar