1. bookVolumen 49 (2022): Heft 2 (July 2022)
Zeitschriftendaten
License
Format
Zeitschrift
eISSN
1338-7014
Erstveröffentlichung
16 Apr 2017
Erscheinungsweise
2 Hefte pro Jahr
Sprachen
Englisch
access type Uneingeschränkter Zugang

Geometric Morphometrics use in the examination of subgenus Quercus leaf shape variation in Algeria

Online veröffentlicht: 05 Aug 2022
Volumen & Heft: Volumen 49 (2022) - Heft 2 (July 2022)
Seitenbereich: 175 - 181
Eingereicht: 10 Jan 2022
Akzeptiert: 05 Jun 2022
Zeitschriftendaten
License
Format
Zeitschrift
eISSN
1338-7014
Erstveröffentlichung
16 Apr 2017
Erscheinungsweise
2 Hefte pro Jahr
Sprachen
Englisch
Abstract

The latest findings on the taxonomic review of Quercus faginea Lam. complex using ‘traditional morphometrics’, demonstrating that the species is represented in Algeria by both Q. faginea and Q. canariensis Willd. Significant variations of the leaf form were also discernible among both species. In this study, the landmark-based geometric morphometrics analysis was used to assess the shape variation of the leaves found on oak stands. 2,600 leaves per 13 stands were collected and scanned, and then using Tps range and MorphoJ software, 11 landmarks—that represent the leaf morphological features—were recorded on leaf images. Shape components and non-forms variations were obtained through a full Procrustes fit followed by creating a leaf-superimposed configuration. Principal component analysis, canonical variate analysis, and discriminate analysis were used to statistically evaluate the leaf shape variability. The results revealed no clear distinction between the two species based on leaf shape. Climate change and environmental factors also appear to have possibly caused a divergent morphological evolution; a reduced leaf size with enduring indumentum—among other Q. faginea traits—could be an efficient mean of adapting to Mediterranean xeric conditions.

Aissi, A., Beghami, Y., Lepais, O. Vela, E., 2021. Analyse morphologique et taxonomique du complexe Quercus faginea (Fagaceae) en Algérie (Morphological and taxonomic analysis of Quercus faginea (Fagaceae) complex in Algeria). Botany, 99: 99–113. https://doi.org/10.1139/cjb-2020-0075 Search in Google Scholar

Akli, A., Lorenzo, Z., Alia, R., Rabhi, K., Torres, E., 2022. Morphometric analyses of leaf shapes in four sympatric Mediterranean oaks and hybrids in the Algerian Kabylie forest. Forests, 13, 508: 1–11. https://doi.org/10.3390/f13040508 Search in Google Scholar

Albarrán-Lara, A.L., Mendoza-Cuenca, L., ValenciaAlvados, S., Gonzales-Rodríguez, A., Oyama, K., 2010. Leaf fluctuating asymmetry increases with hybridization and introgression between Quercus magnoliifolia and Quercus resinosa (Fagaceae) through an altitudinal gradient in Mexico. International Journal of Plant Sciences, 171: 310–322. https://doi.org/10.1086/650317 Search in Google Scholar

Blackith, R., Reyment, R.A. (eds), 1971. Multivariate morphometrics. New York: Academic Press. 412 p. Search in Google Scholar

Bookstein, F.L., 1986. Size and shape spaces for landmark data in two dimensions. Statistical Science, 1: 181–222. https://www.jstor.org/stable/224544110.1214/ss/1177013696 Search in Google Scholar

Bookstein, F.L., 1996. Combining the tools of Geometric Morphometrics. In Marcus, L.F., Corti, M., Loy, A., Naylor, G.J.P., Slice, D.E. (eds). Advances in morphometrics. NATO ASI Series, Series A, Life Sciences, v. 284. Boston: Springer, p. 131–151. https://doiorg/10.1007/978-1-4757-9083-2_1210.1007/978-1-4757-9083-2_12 Search in Google Scholar

Bruschi, P., Vendramin, G.G., Bussotti, F., Grossoni, P., 2000. Morphological and molecular differentiation between Quercus petraea (Matt.) Liebl. and Quercus pubescens Willd. (Fagaceae) in northern and central Italy. Annals of Botany, 85: 325–333. https://doi.org/10.1006/anbo.1999.1046 Search in Google Scholar

Camus, A., 1938. Les Chênes : Monographie du genre Quercus. Volume 2. Atlas [Oaks: monograph of the genus Quercus. Volume 2. Atlas]. Paris: Paul Lechevalier & Fils. 830 p. Search in Google Scholar

Corcuera, L., Camarero, J.J., Gil-Pelegrín, E., 2002. Functional groups in Quercus species derived from the analysis of pressure-volume curves. Trees, 16: 465–472. https://doi.org/10.1007/s00468-002-0187-1 Search in Google Scholar

Dean, C., Adams, F., Rohlf, J., Dennis, E.S., 2004. Geometric morphometrics: ten years of progress following the ‘revolution’. Italian Journal of Zoology, 71: 5–16. https://doi.org/10.1080/11250000409356545 Search in Google Scholar

Dryden, I.L., Mardia, K.V., 1998. Statistical shape analysis. Chichester, UK: John Wiley and Sons. Search in Google Scholar

Gil-Pelegrín, E., Ángel, S.M., María, C.J., Peguero-Pina, J.J., Sancho-Knapik, D., 2017. Oaks under Mediterranean-type climates: functional response to summer aridity. In Gil-Pelegrín, E., Peguero-Pina, J.J., & SanchoKnapik, D. (eds). Oaks physiological ecology. Exploring the functional diversity of genus Quercus L. Volume 7. Spain: Springer International Publishing, 2017, p. 137–177. https://doi.org/10.1007/978-3-319-69099-5_5 Search in Google Scholar

Hardin, J.W., 1979. Patterns of variation in foliar trichomes of eastern North American Quercus. American Journal of Botany, 66: 576–585. https://doi.org/10.1002/j.1537-2197.1979.tb06260.x Search in Google Scholar

He, Y., LI, N., Wang, Z., Wang, H., Yang, G., Xiao, L., Wu, J., Sun, B., 2014. Quercus yangyiensis sp. nov. from the Late Pliocene of Baoshan, Yunnan and its paleoclimatic significance. Acta Geologica Sinica, 88: 738–747. https://doi.org/10.1111/1755-6724.12234 Search in Google Scholar

Jensen, R.J., 1990. Detecting shape variation in oak leaf morphology: a comparison of rotational-fit methods. American Journal of Botany, 77: 1279–1293. https://doi.org/10.2307/2444589 Search in Google Scholar

Jensen, R.J., Hokanson, S.C., Isebrands, J.G., Hancock, J.F., 1993. Morphometric variation in oaks of the Apostle Islands in Wisconsin: evidence of hybridization between Quercus rubra and Q. ellipsoidalis (Fagaceae). American Journal of Botany, 80: 1358–1366. https://doi.org/10.1002/j.1537-2197.1993.tb15375.x Search in Google Scholar

Kendall, D.G., 1989. A survey of the Statistical Theory of Shape. Statistical Science, 4: 116–120. https://doi.org/10.1214/ss/1177012589 Search in Google Scholar

Klingenberg, C.P., Monteiro, L.R., 2005. Distances and directions in multidimensional shape spaces: implications for morphometric applications. Systematic Biology, 54: 678–688. https://doi.org/10.1080/1063515059094725816126663 Search in Google Scholar

Klingenberg, C.P., 2011. MorphoJ: an integrated software package for geometric morphometrics. Molecular Ecology Resources, 11: 353–357. https://doi.org/10.1111/j.1755-0998.2010.02924.x21429143 Search in Google Scholar

Kremer, A., Dupouey J.L.J., Deans, D., Cottrell, J., Csaikl, U., Finkeldey, R., Espinel, S., Jensen, J., Kleinschmit, J., Barbara, V.D., Ducousso, A., Forrest, I., de-Heredia, U.L., Lowe, A.J., Tutkova, M., Munro, R.C., Badeau, S.S.V., 2002. Leaf morphological differentiation between Quercus robur and Quercus petraea is stable across western European mixed oak stands. Annals of Forest Science, 59: 777–787. https://doi.org/10.1051/forest:2002065 Search in Google Scholar

Lepais, O., Aissi, A., Véla, E., Beghami, Y., 2022. Joint analysis of microsatellites and flanking sequences enlightens complex demographic history of interspecific gene flow and vicariance in rear-edge oak populations. Heredity. https://doi.org/10.1101/2021.07.12.452011 Search in Google Scholar

Liu, Y., Li, Y., Song, J., Zhang, R., Yan, Y., Wang, Y., Du, F.K., 2018. Geometric morphometric analyses of leaf shapes in two sympatric Chinese oaks: Quercus dentata Thunberg and Quercus aliena Blume (Fagaceae). Annals of Forest Science, 75: 90. https://doi.org/10.1007/s13595-018-0770-2 Search in Google Scholar

Maire, R., 1961. Flore de l’Afrique du Nord. Volume 7. Paris, France: Paul Lechevalier & Fils, p. 97–105. Search in Google Scholar

McDonald, P.G., Fonseca, C.R., Overton, J.M., Westoby, M., 2003. Leaf-size divergence along rainfall and soilnutrient gradients: is the method of size reduction common among clades? Functionnal Ecology, 17: 50–57. https://doi.org/10.1046/j.1365-2436.2003.00698.x Search in Google Scholar

Mohebi Bijarpasi, M., Rostami Shahraji, T., Samizadeh Lahiji, H., 2019. Genetic variability and heritability of some morphological and physiological traits in Fagus orientalis Lipsky along an elevation gradient in Hyrcanian forests. Folia Oecologica, 46: 45–53. https://doi.org/10.2478/foecol-2019-0007 Search in Google Scholar

Peguero-Pina, J.J., Sisó, S., Sancho-Knapik, D., Díaz-Espejo, A., Flexas, J., Galmés, J., Gil-Pelegrín, E., 2016. Leaf morphological and physiological adaptations of a deciduous oak (Quercus faginea Lam.) to the Mediterranean climate: a comparison with a closely related temperate species (Quercus robur L.). Tree Physiology, 36: 287–299. https://doi.org/10.1093/treephys/tpv107 Search in Google Scholar

Peñaloza-Ramírez, J.M., Gonzáles-Rodríguez, A., Mendoza -Cuenca, L., Caron, H., Kremer, A., Oyama, K., 2010. Interspecific gene flow in a multispecies oak hybrid zone in the Sierra Tarahumara of Mexico. Annals of Botany, 105: 389–399. https://doi.org/10.1093/aob/mcp301 Search in Google Scholar

Rohlf, F.J., Marcus, L.F., 1993. A revolution morphometrics. Trends in Ecology and Evolution, 8: 129–132. https://doi.org/10.1016/0169-5347(93)90024-J Search in Google Scholar

Rohlf, J., 1999. Shape Statistics: Procrustes superimpositions and tangent spaces. Journal of Classification, 16: 197–223. https://doi.org/10.1007/s003579900054 Search in Google Scholar

Schimper, A.F.W., 1903. Plant-geography upon a physiological basis. Oxford, UK: Clarendon Press. https://doi.org/10.5962/bhl.title.8099 Search in Google Scholar

TPS software series, Morphometrics at SUNY Stony Brook, 2016. [cit. 2016-12-26]. https://life.bio.synsb.edu/morpho/ Search in Google Scholar

Trabut, L., 1892. Sur les variations du Quercus Mirbeckii. Durieu en Algérie [About Quercus Mirbeckii. Durieu variations in Algeria]. Revue Générale de Botanique, 4: 1–6. Search in Google Scholar

Tschan, G.F., Denk, T., 2012. Trichome types, foliar indumentum and epicuticular wax in the Mediterranean gall oaks, Quercus subsection Galliferae (Fagaceae): implications for taxonomy, ecology and evolution. Botanical Journal of Linnean Society, 169: 611–644. https://doi.org/10.1111/j.1095-8339.2012.01233.x Search in Google Scholar

Viscosi, V., Fortini, P., Slice, D.E., Loy, A., Blasi, C., 2009a. Geometric morphometric analyses of leaf variation in four oak species of subgenus Quercus (Fagaceae). Plant Biosystems, 143: 575–587. https://doi.org/10.1080/11263500902775277 Search in Google Scholar

Viscosi, V., Lepais, O., Gerber, S., Fortini, P., 2009b. Leaf morphological analysis in four European oak species (Quercus) and their hybrids: a comparison of traditional and new morphometric methods. Plant Biosystems, 143: 564–574. https://doi.org/10.1080/11263500902723129 Search in Google Scholar

Viscosi, V., Loy, A., Fortini, P., 2010. Geometric morphometric analysis as a tool to explore covariation between shape and other quantitative leaf traits in European white oaks. In Nimis, P.l., Vigines, L.R. (eds). Tools for identifying biodiversity: progress and problems. Trieste, Italy: EUT Edizioni Università di Trieste, 2010, p. 257–261. Search in Google Scholar

Viscosi, V., Cardini, A., 2012. Leaf morphology, taxonomy and geometric morphometrics: a simplified protocol for beginners. PloS One, 7: 1–20. https://doi.org/10.1371/annotation/bc347abe-8d03-4553-8754-83f41a9d51ae Search in Google Scholar

Viscosi, V., 2015. Geometric morphometrics and leaf phenotypic plasticity: assessing fluctuating asymmetry and allometry in European white oaks (Quercus). Botanical Journal of Linnean Society, 179: 335–348. https://doi.org/10.1111/boj.12323 Search in Google Scholar

Empfohlene Artikel von Trend MD

Planen Sie Ihre Fernkonferenz mit Scienceendo