Uneingeschränkter Zugang

Foliar application of melatonin induces tolerance to drought stress in Moldavian balm plants (Dracocephalum moldavica) through regulating the antioxidant system


Zitieren

Afreen F., Zobayed S., Kozai T., 2006. Melatonin in Glycyrrhiza uralensis: Response of plant roots to spectral quality of light and UV-B radiation. J. Pineal Res. 41, 108-115.10.1111/j.1600-079X.2006.00337.x16879315Search in Google Scholar

Alaei Sh., Melikyan A., Kobraee S., Mahna N., 2013. Effect of different soil moisture levels on morphological and physiological characteristics of Dracocephalum moldavica. Agri. Commun. 1, 23-26.Search in Google Scholar

Antoniou C., Chatzimichail G., Xenofontos R., Pavlou J.J., Panagiotou E., Christou A., Fotopoulos V., 2017. Melatonin systemically ameliorates drought stress-induced damage in Medicago sativa plants by modulating nitro-oxidative homeostasis and proline metabolism. J. Pineal Res. 62, e12401.10.1111/jpi.1240128226194Search in Google Scholar

Arnao M.B., 2014. Phytomelatonin: discovery, content, and role in plants. Adv. Bot. 2014, e815769.10.1155/2014/815769Search in Google Scholar

Arnao M.B., Hernandez-Ruiz J., 2007. Melatonin promotes adventitious and lateral root regeneration in etiolated hypocotyls of Lupinus albus L. J. Pineal Res. 42, 147-152.10.1111/j.1600-079X.2006.00396.x17286746Search in Google Scholar

Arnao M.B., Hernandez-Ruiz J., 2009. Chemical stress by different agents affects the melatonin content of barley roots. J. Pineal Res. 46, 295-299.10.1111/j.1600-079X.2008.00660.x19196434Search in Google Scholar

Arnao M.B., Hernandez-Ruiz J., 2014. Melatonin: plant growth regulator and/or biostimulator during stress? Trends Plant Sci. 19, 789-797.10.1016/j.tplants.2014.07.00625156541Search in Google Scholar

Arnao M.B., Hernandez-Ruiz J., 2015. Function of melatonin in plants: a review. J. Pineal Res. 59, 133-150.10.1111/jpi.1225326094813Search in Google Scholar

Arnao M.B., Hernandez-Ruiz J., 2017a. Growth activity, rooting capacity, and tropism: three auxinic precepts fulfilled by melatonin. Acta Physiol. Plant. 39, 127.10.1007/s11738-017-2428-3Search in Google Scholar

Arnao M.B., Hernandez-Ruiz J., 2017b. Melatonin in its relationship to plant hormones. Ann. Bot. 121(2), 195-207.10.1093/aob/mcx114580879029069281Search in Google Scholar

Bates L.S., 1973. Rapid determination of free proline for water stress studies. Plant Soil 39, 205-207.10.1007/BF00018060Search in Google Scholar

Ben Hamed K., Castagna A., Salem E., Ranieri A., Abdelly C., 2007. Sea fennel (Crithmum maritimum L.) under salinity conditions: a comparison of leaf and root antioxidant responses. Plant Growth Regul. 53, 185-194.10.1007/s10725-007-9217-8Search in Google Scholar

Bradford M.M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254.10.1016/0003-2697(76)90527-3Search in Google Scholar

Cui G., Zhao X., Liu S., Sun F., Zhang C., Xi Y., 2017. Beneficial effects of melatonin in overcoming drought stress in wheat seedlings. Plant Physiol. Bioch. 118, 138-149.10.1016/j.plaphy.2017.06.014Search in Google Scholar

Dhindsa R.S., Dhindsa P., Torpe A., 1981. Leaf senescence correlated with increased levels of membrane permeability and lipid peroxidation and decrease levels of superoxide dismutase and catalase. J. Exp. Bot. 32, 93-101.10.1093/jxb/32.1.93Search in Google Scholar

Galano A., Tan D.X., Reiter R.J., 2011. Melatonin as a natural ally against oxidative stress: a physicochemical examination. J. Pineal Res. 51, 1-16.10.1111/j.1600-079X.2011.00916.xSearch in Google Scholar

Gamze O., Mehmet D.K., Mehmet A., 2005. Effects of salt and drought stresses on germination and seedling growth of pea (Pisum sativum L.). Turk. J. Agri. For. 29, 237-242.Search in Google Scholar

Giannopolitis C.N., Ries S.K., 1977. Superoxide dismutase. I. Occurrence in higher plants. Plant Physiol. 59, 309-314.10.1104/pp.59.2.309Search in Google Scholar

Heath R.L., Packer L., 1969. Photoperoxidation in isolated chloroplast: I. kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys. 125, 189-198.10.1016/0003-9861(68)90654-1Search in Google Scholar

Hernandez-Ruiz J., Arnao M.B., 2008. Melatonin stimulates the expansion of etiolated lupin cotyledons. Plant Growth Regul. 55, 29-34.10.1007/s10725-008-9254-ySearch in Google Scholar

Hernandez-Ruiz J., Arnao M.B., 2016. Phytomelatonin, an interesting tool for agricultural crops. Focus Sci. 2, 1-7.10.20286/focsci-020227Search in Google Scholar

Hernandez-Ruiz J., Cano A., Arnao M.B., 2004. Melatonin: growth-stimulating compound present in lupin tissues. Planta 220, 140-144.10.1007/s00425-004-1317-315232696Search in Google Scholar

Hernandez-Ruiz J., Cano A., Arnao M.B., 2005. Melatonin acts as a growth-stimulating compound in some monocot species. J. Pineal Res. 39, 137-142.10.1111/j.1600-079X.2005.00226.xSearch in Google Scholar

Hussein M.S., El-Sherheny S.E., Khalil M.Y., Naguib N.Y., Aly S.M., 2006. Growth characters and chemical constituents of Dracocephalum moldavica L. plants in relation to compost fertilizer and planting distance. Sci. Hortic. 108, 322-331.10.1016/j.scienta.2006.01.035Search in Google Scholar

Janas K.M., Posmyk M.M., 2013. Melatonin, an underestimated natural substance with great potential for agricultural application. Acta Physiol. Plant. 35, 3285-3292.10.1007/s11738-013-1372-0Search in Google Scholar

Letchamo W., Gosselin A., 1996. Transpiration, essential oil glands, epicuticular wax and morphology of Thymus vulgaris are influenced by light intensity and water supply. J. Hort. Sci. 71, 123-134.10.1080/14620316.1996.11515388Search in Google Scholar

Li C., Tan D.X., Liang D., Chang C., Jia D.F., Ma F.W., 2015. Melatonin mediates the regulation of ABA metabolism, free-radical scavenging and Stomatal behavior in two Malus species under drought stress. J. Exp. Bot. 66, 669-680.10.1093/jxb/eru476Search in Google Scholar

Li C., Wang P., Wei Z., Liang D., Liu C., Yin L., Jia D., Fu M., Ma F., 2012. The mitigation effects of exogenous melatonin on salinity-induced stress in Malus hupehensis. J. Pineal Res. 53, 298-306.10.1111/j.1600-079X.2012.00999.xSearch in Google Scholar

Lichtenthaler H.K., 1987. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Meth. Enzymol. 148, 350-382.10.1016/0076-6879(87)48036-1Search in Google Scholar

Liu J., Wang W., Wang L., Sun Y., 2015. Exogenous melatonin improves seedling health index and drought tolerance in tomato. Plant Growth Regul. 77, 317-326.10.1007/s10725-015-0066-6Search in Google Scholar

Maksup S., Roytrakul S., Supaibulwatana K., 2014. Physiological and comparative proteomic analyses of Thai jasmine rice and two check cultivars in response to drought stress. J. Plant Interact. 9, 43-55.10.1080/17429145.2012.752042Search in Google Scholar

Manchester L.C., Tan D.X., Reiter R.J., Park W., Monis K., Qi W., 2000. High levels of melatonin in the seeds of edible plants possible function in germ tissue protection. Life Sci. 67, 3023-3029.10.1016/S0024-3205(00)00896-1Search in Google Scholar

Meirs S., Philosophhadas S., Aharoni N., 1992. Ethylene increased accumulation of fluorescent lipid peroxidation products detected during senescence of parsley by a newly developed method. J. Amer. Soc. Hort. Sci. 117, 128-132.10.21273/JASHS.117.1.128Search in Google Scholar

Meng J.F., Xu T.F., Wang Z.Z., Fang Y.L., Xi Z.M., Zhang Z.W., 2014. The ameliorative effects of exogenous melatonin on grape cuttings under water-deficient stress: antioxidant metabolites, leaf anatomy, and chloroplast morphology. J. Pineal Res. 57, 200-212.10.1111/jpi.1215925039750Search in Google Scholar

Nakano Y., Asada K., 1981. Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 22, 867-880.Search in Google Scholar

Nawaz M.A., Huang Y., Bie Z., Ahmed W., Reiter R.J., Niu M., Hameed S., 2016. Melatonin: current status and future perspectives in plant science. Front Plant Sci. 6, 1230.10.3389/fpls.2015.01230470726526793210Search in Google Scholar

Polle A., 2001. Dissecting the superoxide dismutase-ascorbate glutathione pathway in chloroplasts by metabolic modeling. Computer simulations as a step towards flux analysis. Plant Physiol. 126, 445-462.10.1104/pp.126.1.44510231711351106Search in Google Scholar

Sarropoulou V., Therios I., Dimassi-Theriou K., 2012. Melatonin promotes adventitious root regeneration in in vitro shoot tip explants of the commercial sweet cherry rootstocks CAB-6P (Prunus cerasus L.), Gisela 6 (P. Cerasus × P. canescens), and M × M 60 (P. avium × P. mahaleb). J. Pineal Res. 52, 38-46.10.1111/j.1600-079X.2011.00914.x21749439Search in Google Scholar

Sharma P., Dubey R.S., 2007. Involvement of oxidative stress and role of antioxidative defense system in growing rice seedlings exposed to toxic concentrations of aluminum. Plant Cell Rep. 26, 2027-2038.10.1007/s00299-007-0416-617653721Search in Google Scholar

Shi H., Chen K., Wei Y., He C., 2016. Fundamental issues of melatonin-mediated stress signaling in plants. Front. Plant Sci. 7, 1124.10.3389/fpls.2016.01124496169727512404Search in Google Scholar

Shi Q., Ding F., Wang X., Wei M., 2007. Exogenous nitric oxides protect cucumber roots against oxidative stress induced by salt stress. Plant Physiol. Biochem. 45, 542-550.10.1016/j.plaphy.2007.05.00517606379Search in Google Scholar

Tan D.X., Hardeland R., Manchester L.C., Rosales-Corral S., Cotomontes A., Boga J.A., Reiter R.J., 2012. Emergence of naturally occurring melatonin isomers and their proposed nomenclature. J. Pineal Res. 53, 113-121.10.1111/j.1600-079X.2012.00979.x22332602Search in Google Scholar

Turk H., Erdal S., Genisel M., Atici O., Demir Y., Yanmis D., 2014. The regulatory effect of melatonin on physiological, biochemical and molecular parameters in cold-stressed wheat seedlings. Plant Growth Regul. 74, 139-152.10.1007/s10725-014-9905-0Search in Google Scholar

Velikova V., Yordanov I., Edreva A., 2000. Oxidative stress and some antioxidant systems in acid rain-treated bean plants. Plant Sci. 151, 59-66.10.1016/S0168-9452(99)00197-1Search in Google Scholar

Wang P., Sun X., Chang C., Feng F.J., Liang D., Cheng L.L., Ma F.W., 2013b. Delay in leaf senescence of Malus hupehensis by long-term melatonin application is associated with its regulation of metabolic status and protein degradation. J. Pineal Res. 55, 424-434.10.1111/jpi.1209124103092Search in Google Scholar

Wang P., Sun X., Li C., Wei Z.W., Liang D., Ma F.W., 2013a. Long-term exogenous application of melatonin delays drought-induced leaf senescence in apple. J. Pineal Res. 54, 292-302.10.1111/jpi.1201723106234Search in Google Scholar

Wei W., Li Q.T., Chu Y.N., Reiter R.J., Yu X.M., Zhu D.H., Zhang W.K., Ma B., Lin Q., Zhang J.S., Chen S.Y., 2015. Melatonin enhances plant growth and abiotic stress tolerance in soybean plants. J. Exp. Bot. 66, 695-707.10.1093/jxb/eru392432153825297548Search in Google Scholar

Wheutherley P.E., 1950. Studies in water relations of cotton plants. The field measurement of water deficit in leaves. New Phytol. 49, 81-87.10.1111/j.1469-8137.1950.tb05146.xSearch in Google Scholar

Wu G.Q., Zhang L.N., Wang Y.Y., 2012. Response of growth and antioxidant enzymes to osmotic stress in two different wheat (Triticum aestivum L.) cultivars seedlings. Plant Soil Environ. 58, 534-539.10.17221/373/2012-PSESearch in Google Scholar

Ye J., Wang S., Deng X., Yin L., Xiong B., Wang X., 2016. Melatonin increased maize (Zea mays L.) seedling drought tolerance by alleviating drought-induced photosynthetic inhibition and oxidative damage. Acta Physiol. Plant. 38, 48.10.1007/s11738-015-2045-ySearch in Google Scholar

Zhang H.J., Zhang N., Yang R.C., Wang L., Sun Q.Q., Li D.B., Cao Y.Y., Weeda S., Zhao B., Ren S., Guo Y.D., 2014. Melatonin promotes seed germination under high salinity by regulating antioxidant systems, ABA and GA4 interaction in cucumber (Cucumis sativus L.). J. Pineal Res. 57(3), 269-279.10.1111/jpi.1216725112973Search in Google Scholar

Zhang N., Zhao B., Zhang H.J., Weeda S., Yang C., Yang Z.C., Ren S., Guo Y.D., 2013. Melatonin promotes water-stress tolerance, lateral root formation, and seed germination in cucumber (Cucumis sativus L.). J. Pineal Res. 54(1), 15-23.10.1111/j.1600-079X.2012.01015.x22747917Search in Google Scholar

Zhang Z., Pang X., Duan X., Ji Z.L., Jiang Y., 2005. Role of peroxidase in anthocyanine degradation in litchi fruit pericarp. Food Chem. 90(1-2), 47-52.10.1016/j.foodchem.2004.03.023Search in Google Scholar

Zhao Y., Qi L.W., Wang W.M., Et Al., 2011. Melatonin improves the survival of cryopreserved callus of Rhodiola crenulata. J. Pineal Res. 50(1), 83-88.10.1111/j.1600-079X.2010.00817.x21073518Search in Google Scholar

eISSN:
2083-5965
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
2 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Biologie, Botanik, Zoologie, Ökologie, andere