Uneingeschränkter Zugang

Antidiabetic agents as potential cytotoxic candidates for cancer therapy

,  und   
10. Juni 2025

Zitieren
COVER HERUNTERLADEN

Dąbrowski M. Diabetes, Antidiabetic Medications and Cancer Risk in Type 2 Diabetes: Focus on SGLT-2 Inhibitors. Int J Mol Sci. 2021 Feb 7;22(4):1680. https://doi.org/10.3390/ijms22041680 DąbrowskiM. Diabetes, Antidiabetic Medications and Cancer Risk in Type 2 Diabetes: Focus on SGLT-2 Inhibitors Int J Mol Sci. 2021 Feb 7 22 4 1680 https://doi.org/10.3390/ijms22041680 Search in Google Scholar

Lancet T. GLOBOCAN 2018: counting the toll of cancer. Vol. 392, Lancet (London, England). 2018. p. 985. LancetT. GLOBOCAN 2018: counting the toll of cancer 392 Lancet (London, England) 2018 985 Search in Google Scholar

Duan W, Shen X, Lei J, Xu Q, Yu Y, Li R, et al. Hyperglycemia, a neglected factor during cancer progression. Biomed Res Int. 2014;2014. DuanW ShenX LeiJ XuQ YuY LiR Hyperglycemia, a neglected factor during cancer progression Biomed Res Int. 2014 2014 Search in Google Scholar

Kotwal A, Cheung YMM, Cromwell G, Drincic A, Leblebjian H, Quandt Z, et al. Patient-Centered Diabetes Care of Cancer Patients. Curr Diab Rep. 2021 Dec 13;21(12):62. https://doi.org/10.1007/s11892-021-01435-y KotwalA CheungYMM CromwellG DrincicA LeblebjianH QuandtZ Patient-Centered Diabetes Care of Cancer Patients Curr Diab Rep. 2021 Dec 13 21 12 62 https://doi.org/10.1007/s11892-021-01435-y Search in Google Scholar

Mouri Mi, Badireddy M. Hyperglycemia [Internet]. StatPearls. 2023. MouriMi BadireddyM Hyperglycemia [Internet] StatPearls 2023 Search in Google Scholar

Ahmed GM, Abed MN, Alassaf FA. Impact of calcium channel blockers and angiotensin receptor blockers on hematological parameters in type 2 diabetic patients. Naunyn Schmiedebergs Arch Pharmacol. 2023 Sep; https://doi.org/10.1007/s00210-023-02731-y AhmedGM AbedMN AlassafFA Impact of calcium channel blockers and angiotensin receptor blockers on hematological parameters in type 2 diabetic patients Naunyn Schmiedebergs Arch Pharmacol 2023 Sep https://doi.org/10.1007/s00210-023-02731-y Search in Google Scholar

ALASSAF FA, JASIM MHM, ALFAHAD M, QAZZAZ ME, ABED MN, THANOON IAJ. Effects of Bee Propolis on FBG, HbA1c, and Insulin Resistance in Healthy Volunteers. Turkish J Pharm Sci. 2021 Sep 1;18(4):405–9. https://doi.org/10.4274/tjps.galenos.2020.50024 ALASSAFFA JASIMMHM ALFAHADM QAZZAZME ABEDMN THANOONIAJ Effects of Bee Propolis on FBG, HbA1c, and Insulin Resistance in Healthy Volunteers Turkish J Pharm Sci. 2021 Sep 1 18 4 405 9 https://doi.org/10.4274/tjps.galenos.2020.50024 Search in Google Scholar

Ramteke P, Deb A, Shepal V, Bhat MK. Hyperglycemia Associated Metabolic and Molecular Alterations in Cancer Risk, Progression, Treatment, and Mortality. Cancers (Basel). 2019 Sep 19;11(9):1402. https://doi.org/10.3390/cancers11091402 RamtekeP DebA ShepalV BhatMK Hyperglycemia Associated Metabolic and Molecular Alterations in Cancer Risk, Progression, Treatment, and Mortality Cancers (Basel) 2019 Sep 19 11 9 1402 https://doi.org/10.3390/cancers11091402 Search in Google Scholar

Alassaf FA, Qazzaz ME, Alfahad M, Abed MN, Jasim MHM, Thanoon IAJ. Effects of bee propolis on thyroid function tests in healthy volunteers. Trop J Pharm Res. 2022 Jan;20(4):859–63. https://doi.org/10.4314/tjpr.v20i4.28 AlassafFA QazzazME AlfahadM AbedMN JasimMHM ThanoonIAJ Effects of bee propolis on thyroid function tests in healthy volunteers Trop J Pharm Res. 2022 Jan 20 4 859 63 https://doi.org/10.4314/tjpr.v20i4.28 Search in Google Scholar

Chandel NS. Glycolysis. Cold Spring Harb Perspect Biol. 2021 May 3;13(5):a040535. https://doi.org/10.1101/cshperspect.a040535 ChandelNS. Glycolysis Cold Spring Harb Perspect Biol. 2021 May 3 13 5 a040535 https://doi.org/10.1101/cshperspect.a040535 Search in Google Scholar

DeBerardinis RJ, Chandel NS. We need to talk about the Warburg effect. Nat Metab. 2020 Feb 3;2(2):127–9. https://doi.org/10.1038/s42255-020-0172-2 DeBerardinisRJ ChandelNS. We need to talk about the Warburg effect Nat Metab. 2020 Feb 3 2 2 127 9 https://doi.org/10.1038/s42255-020-0172-2 Search in Google Scholar

Abed MN, Alassaf FA, Qazzaz ME. Exploring the Interplay between Vitamin D, Insulin Resistance, Obesity and Skeletal Health. J Bone Metab. 2024 May 31;31(2):75–89. https://doi.org/10.11005/jbm.2024.31.2.75 AbedMN AlassafFA QazzazME Exploring the Interplay between Vitamin D, Insulin Resistance, Obesity and Skeletal Health J Bone Metab. 2024 May 31 31 2 75 89 https://doi.org/10.11005/jbm.2024.31.2.75 Search in Google Scholar

Simons A, Mattson D, Dornfeld K, Spitz D. Glucose deprivation-induced metabolic oxidative stress and cancer therapy. J Cancer Res Ther. 2009;5(9):2. https://doi.org/10.4103/0973-1482.55133 SimonsA MattsonD DornfeldK SpitzD Glucose deprivation-induced metabolic oxidative stress and cancer therapy J Cancer Res Ther. 2009 5 9 2 https://doi.org/10.4103/0973-1482.55133 Search in Google Scholar

Alam S, Hasan MK, Neaz S, Hussain N, Hossain MF, Rahman T. Diabetes Mellitus: Insights from Epidemiology, Biochemistry, Risk Factors, Diagnosis, Complications and Comprehensive Management. Diabetology. 2021 Apr 16;2(2):36–50. https://doi.org/10.3390/diabetology2020004 AlamS HasanMK NeazS HussainN HossainMF RahmanT. Diabetes Mellitus: Insights from Epidemiology, Biochemistry, Risk Factors, Diagnosis, Complications and Comprehensive Management Diabetology. 2021 Apr 16 2 2 36 50 https://doi.org/10.3390/diabetology2020004 Search in Google Scholar

Yaribeygi H, Lhaf F, Sathyapalan T, Sahebkar A. Effects of novel antidiabetes agents on apoptotic processes in diabetes and malignancy: Implications for lowering tissue damage. Life Sci. 2019 Aug;231:116538. https://doi.org/10.1016/j.lfs.2019.06.013 YaribeygiH LhafF SathyapalanT SahebkarA Effects of novel antidiabetes agents on apoptotic processes in diabetes and malignancy: Implications for lowering tissue damage Life Sci. 2019 Aug 231 116538 https://doi.org/10.1016/j.lfs.2019.06.013 Search in Google Scholar

Akins NS, Nielson TC, Le H V. Inhibition of Glycolysis and Glutaminolysis: An Emerging Drug Discovery Approach to Combat Cancer. Curr Top Med Chem. 2018 Jun 28;18(6):494–504. https://doi.org/10.2174/1568026618666180523111351 AkinsNS NielsonTC LeH V. Inhibition of Glycolysis and Glutaminolysis: An Emerging Drug Discovery Approach to Combat Cancer Curr Top Med Chem. 2018 Jun 28 18 6 494 504 https://doi.org/10.2174/1568026618666180523111351 Search in Google Scholar

Adeva-Andany MM, Carneiro-Freire N, Seco-Filgueira M, Fernández-Fernández C, Mouriño-Bayolo D. Mitochondrial β-oxidation of saturated fatty acids in humans. Mitochondrion. 2019 May;46:73–90. https://doi.org/10.1016/j.mito.2018.02.009 Adeva-AndanyMM Carneiro-FreireN Seco-FilgueiraM Fernández-FernándezC Mouriño-BayoloD Mitochondrial β-oxidation of saturated fatty acids in humans Mitochondrion 2019 May 46 73 90 https://doi.org/10.1016/j.mito.2018.02.009 Search in Google Scholar

Abdel-Wahab AF, Mahmoud W, Al-Harizy RM. Targeting glucose metabolism to suppress cancer progression: prospective of anti-glycolytic cancer therapy. Pharmacol Res. 2019 Dec;150:104511. https://doi.org/10.1016/j.phrs.2019.104511 Abdel-WahabAF MahmoudW Al-HarizyRM Targeting glucose metabolism to suppress cancer progression: prospective of anti-glycolytic cancer therapy Pharmacol Res. 2019 Dec 150 104511 https://doi.org/10.1016/j.phrs.2019.104511 Search in Google Scholar

Hardie DG. 100 years of the Warburg effect: a historical perspective. Endocr Relat Cancer. 2022 Dec 1;29(12):T1–13. https://doi.org/10.1530/ERC-22-0173 HardieDG. 100 years of the Warburg effect: a historical perspective Endocr Relat Cancer. 2022 Dec 1 29 12 T1 13 https://doi.org/10.1530/ERC-22-0173 Search in Google Scholar

Li X, Yang Y, Zhang B, Lin X, Fu X, An Y, et al. Lactate metabolism in human health and disease. Signal Transduct Target Ther. 2022 Sep 1;7(1):305. https://doi.org/10.1038/s41392-022-01151-3 LiX YangY ZhangB LinX FuX AnY Lactate metabolism in human health and disease Signal Transduct Target Ther. 2022 Sep 1 7 1 305 https://doi.org/10.1038/s41392-022-01151-3 Search in Google Scholar

Paul S, Ghosh S, Kumar S. Tumor glycolysis, an essential sweet tooth of tumor cells. Semin Cancer Biol. 2022 Nov;86:1216–30. https://doi.org/10.1016/j.semcancer.2022.09.007 PaulS GhoshS KumarS Tumor glycolysis, an essential sweet tooth of tumor cells Semin Cancer Biol. 2022 Nov 86 1216 30 https://doi.org/10.1016/j.semcancer.2022.09.007 Search in Google Scholar

Schiliro C, Firestein BL. Mechanisms of Metabolic Reprogramming in Cancer Cells Supporting Enhanced Growth and Proliferation. Cells. 2021 Apr 29;10(5):1056. https://doi.org/10.3390/cells10051056 SchiliroC FiresteinBL. Mechanisms of Metabolic Reprogramming in Cancer Cells Supporting Enhanced Growth and Proliferation Cells. 2021 Apr 29 10 5 1056 https://doi.org/10.3390/cells10051056 Search in Google Scholar

Reiter RJ, Sharma R, Ma Q, Rosales-Corral S, Acuna-Castroviejo D, Escames G. Inhibition of mitochondrial pyruvate dehydrogenase kinase: a proposed mechanism by which melatonin causes cancer cells to overcome cytosolic glycolysis, reduce tumor biomass and reverse insensitivity to chemotherapy. Melatonin Res. 2019 Aug 31;2(3):105–19. https://doi.org/10.32794/mr11250033 ReiterRJ SharmaR MaQ Rosales-CorralS Acuna-CastroviejoD EscamesG. Inhibition of mitochondrial pyruvate dehydrogenase kinase: a proposed mechanism by which melatonin causes cancer cells to overcome cytosolic glycolysis, reduce tumor biomass and reverse insensitivity to chemotherapy Melatonin Res. 2019 Aug 31 2 3 105 19 https://doi.org/10.32794/mr11250033 Search in Google Scholar

García-Jiménez C, García-Martínez JM, Chocarro-Calvo A, De la Vieja A. A new link between diabetes and cancer: enhanced WNT/β-catenin signaling by high glucose. J Mol Endocrinol. 2014 Feb;52(1):R51–66. https://doi.org/10.1530/JME-13-0152 García-JiménezC García-MartínezJM Chocarro-CalvoA De la ViejaA A new link between diabetes and cancer: enhanced WNT/β-catenin signaling by high glucose J Mol Endocrinol. 2014 Feb 52 1 R51 66 https://doi.org/10.1530/JME-13-0152 Search in Google Scholar

Hursting SD, Dunlap SM, Ford NA, Hursting MJ, Lashinger LM. Calorie restriction and cancer prevention: a mechanistic perspective. Cancer Metab. 2013 Dec 7;1(1):10. https://doi.org/10.1186/2049-3002-1-10 HurstingSD DunlapSM FordNA HurstingMJ LashingerLM. Calorie restriction and cancer prevention: a mechanistic perspective Cancer Metab. 2013 Dec 7 1 1 10 https://doi.org/10.1186/2049-3002-1-10 Search in Google Scholar

Zhou H, Zhang B, Zheng J, Yu M, Zhou T, Zhao K, et al. The inhibition of migration and invasion of cancer cells by graphene via the impairment of mitochondrial respiration. Biomaterials. 2014 Feb;35(5):1597–607. https://doi.org/10.1016/j.biomaterials.2013.11.020 ZhouH ZhangB ZhengJ YuM ZhouT ZhaoK The inhibition of migration and invasion of cancer cells by graphene via the impairment of mitochondrial respiration Biomaterials 2014 Feb 35 5 1597 607 https://doi.org/10.1016/j.biomaterials.2013.11.020 Search in Google Scholar

Roesch A, Vultur A, Bogeski I, Wang H, Zimmermann KM, Speicher D, et al. Overcoming Intrinsic Multidrug Resistance in Melanoma by Blocking the Mitochondrial Respiratory Chain of Slow-Cycling JARID1Bhigh Cells. Cancer Cell. 2013 Jun;23(6):811–25. https://doi.org/10.1016/j.ccr.2013.05.003 RoeschA VulturA BogeskiI WangH ZimmermannKM SpeicherD Overcoming Intrinsic Multidrug Resistance in Melanoma by Blocking the Mitochondrial Respiratory Chain of Slow-Cycling JARID1Bhigh Cells Cancer Cell. 2013 Jun 23 6 811 25 https://doi.org/10.1016/j.ccr.2013.05.003 Search in Google Scholar

Maiuri MC, Kroemer G. Essential Role for Oxidative Phosphorylation in Cancer Progression. Cell Metab. 2015 Jan;21(1):11–2. https://doi.org/10.1016/j.cmet.2014.12.013 MaiuriMC KroemerG Essential Role for Oxidative Phosphorylation in Cancer Progression Cell Metab. 2015 Jan 21 1 11 2 https://doi.org/10.1016/j.cmet.2014.12.013 Search in Google Scholar

Aykin-Burns N, Ahmad IM, Zhu Y, Oberley LW, Spitz DR. Increased levels of superoxide and H2O2 mediate the differential susceptibility of cancer cells versus normal cells to glucose deprivation. Biochem J. 2009 Feb 15;418(1):29–37. https://doi.org/10.1042/BJ20081258 Aykin-BurnsN AhmadIM ZhuY OberleyLW SpitzDR. Increased levels of superoxide and H2O2 mediate the differential susceptibility of cancer cells versus normal cells to glucose deprivation Biochem J. 2009 Feb 15 418 1 29 37 https://doi.org/10.1042/BJ20081258 Search in Google Scholar

SPITZ DR, SIM JE, RIDNOUR LA, GALOFORO SS, LEE YJ. Glucose Deprivation-Induced Oxidative Stress in Human Tumor Cells: A Fundamental Defect in Metabolism? Ann N Y Acad Sci. 2000 Jan 25;899(1):349–62. https://doi.org/10.1111/j.1749-6632.2000.tb06199.x SPITZDR SIMJE RIDNOURLA GALOFOROSS LEEYJ Glucose Deprivation-Induced Oxidative Stress in Human Tumor Cells: A Fundamental Defect in Metabolism? Ann N Y Acad Sci. 2000 Jan 25 899 1 349 62 https://doi.org/10.1111/j.1749-6632.2000.tb06199.x Search in Google Scholar

Vincent EE, Sergushichev A, Griss T, Gingras MC, Samborska B, Ntimbane T, et al. Mitochondrial phosphoenolpyruvate carboxykinase regulates metabolic adaptation and enables glucose-independent tumor growth. Mol Cell. 2015;60(2):195–207. VincentEE SergushichevA GrissT GingrasMC SamborskaB NtimbaneT Mitochondrial phosphoenolpyruvate carboxykinase regulates metabolic adaptation and enables glucose-independent tumor growth Mol Cell. 2015 60 2 195 207 Search in Google Scholar

Panieri E, Santoro MM. ROS homeostasis and metabolism: a dangerous liason in cancer cells. Cell Death Dis. 2016;7(6):e2253–e2253. PanieriE SantoroMM ROS homeostasis and metabolism: a dangerous liason in cancer cells Cell Death Dis. 2016 7 6 e2253 e2253 Search in Google Scholar

Marengo B, Nitti M, Furfaro AL, Colla R, Ciucis C De, Marinari UM, et al. Redox homeostasis and cellular antioxidant systems: crucial players in cancer growth and therapy. Oxid Med Cell Longev. 2016;2016. MarengoB NittiM FurfaroAL CollaR CiucisC De MarinariUM Redox homeostasis and cellular antioxidant systems: crucial players in cancer growth and therapy Oxid Med Cell Longev. 2016 2016 Search in Google Scholar

Fruman DA, Rommel C. PI3K and cancer: lessons, challenges and opportunities. Nat Rev Drug Discov. 2014;13(2):140–56. FrumanDA RommelC PI3K and cancer: lessons, challenges and opportunities Nat Rev Drug Discov. 2014 13 2 140 56 Search in Google Scholar

Coloff JL, Mason EF, Altman BJ, Gerriets VA, Liu T, Nichols AN, et al. Akt requires glucose metabolism to suppress puma expression and prevent apoptosis of leukemic T cells. J Biol Chem. 2011;286(7):5921–33. ColoffJL MasonEF AltmanBJ GerrietsVA LiuT NicholsAN Akt requires glucose metabolism to suppress puma expression and prevent apoptosis of leukemic T cells J Biol Chem. 2011 286 7 5921 33 Search in Google Scholar

Los M, Maddika S, Erb B, Schulze-Osthoff K. Switching Akt: from survival signaling to deadly response. BioEssays. 2009 May 9;31(5):492–5. https://doi.org/10.1002/bies.200900005 LosM MaddikaS ErbB Schulze-OsthoffK. Switching Akt: from survival signaling to deadly response BioEssays. 2009 May 9 31 5 492 5 https://doi.org/10.1002/bies.200900005 Search in Google Scholar

Zhao Y, Hu X, Liu Y, Dong S, Wen Z, He W, et al. ROS signaling under metabolic stress: cross-talk between AMPK and AKT pathway. Mol Cancer. 2017 Dec 13;16(1):79. https://doi.org/10.1186/s12943-017-0648-1 ZhaoY HuX LiuY DongS WenZ HeW ROS signaling under metabolic stress: cross-talk between AMPK and AKT pathway Mol Cancer. 2017 Dec 13 16 1 79 https://doi.org/10.1186/s12943-017-0648-1 Search in Google Scholar

Pliszka M, Szablewski L. Glucose Transporters as a Target for Anticancer Therapy. Cancers (Basel). 2021 Aug 20;13(16):4184. https://doi.org/10.3390/cancers13164184 PliszkaM SzablewskiL. Glucose Transporters as a Target for Anticancer Therapy Cancers (Basel). 2021 Aug 20 13 16 4184 https://doi.org/10.3390/cancers13164184 Search in Google Scholar

Pujalte-Martin M, Belaïd A, Bost S, Kahi M, Peraldi P, Rouleau M, et al. Targeting cancer and immune cell metabolism with the complex I inhibitors metformin and IACS-010759. Mol Oncol. 2024 Jan 12; https://doi.org/10.1002/1878-0261.13583 Pujalte-MartinM BelaïdA BostS KahiM PeraldiP RouleauM Targeting cancer and immune cell metabolism with the complex I inhibitors metformin and IACS-010759 Mol Oncol. 2024 Jan 12 https://doi.org/10.1002/1878-0261.13583 Search in Google Scholar

Di Magno L, Di Pastena F, Bordone R, Coni S, Canettieri G. The Mechanism of Action of Biguanides: New Answers to a Complex Question. Cancers (Basel). 2022 Jun 30;14(13):3220. https://doi.org/10.3390/cancers14133220 Di MagnoL Di PastenaF BordoneR ConiS CanettieriG. The Mechanism of Action of Biguanides: New Answers to a Complex Question Cancers (Basel). 2022 Jun 30 14 13 3220 https://doi.org/10.3390/cancers14133220 Search in Google Scholar

Schulten HJ. Pleiotropic Effects of Metformin on Cancer. Int J Mol Sci. 2018 Sep 20;19(10). https://doi.org/10.3390/ijms19102850 SchultenHJ Pleiotropic Effects of Metformin on Cancer Int J Mol Sci. 2018 Sep 20 19 10 https://doi.org/10.3390/ijms19102850 Search in Google Scholar

Wu T, Horowitz M, Rayner CK. New insights into the anti-diabetic actions of metformin: from the liver to the gut. Expert Rev Gastroenterol Hepatol. 2017 Feb 26;11(2):157–66. https://doi.org/10.1080/17474124.2017.1273769 WuT HorowitzM RaynerCK. New insights into the anti-diabetic actions of metformin: from the liver to the gut Expert Rev Gastroenterol Hepatol. 2017 Feb 26 11 2 157 66 https://doi.org/10.1080/17474124.2017.1273769 Search in Google Scholar

Alnaser RI, Alassaf FA, Abed MN. Adulteration of hypoglycemic products: the silent threat. Rom J Med Pract. 2023;18(4):202–5. https://doi.org/10.37897/rjmp.2023.4.4 AlnaserRI AlassafFA AbedMN Adulteration of hypoglycemic products: the silent threat Rom J Med Pract. 2023 18 4 202 5 https://doi.org/10.37897/rjmp.2023.4.4 Search in Google Scholar

Lu CC, Chiang JH, Tsai FJ, Hsu YM, Juan YN, Yang JS, et al. Metformin triggers the intrinsic apoptotic response in human AGS gastric adenocarcinoma cells by activating AMPK and suppressing mTOR/AKT signaling. Int J Oncol. 2019 Jan 30; https://doi.org/10.3892/ijo.2019.4704 LuCC ChiangJH TsaiFJ HsuYM JuanYN YangJS Metformin triggers the intrinsic apoptotic response in human AGS gastric adenocarcinoma cells by activating AMPK and suppressing mTOR/AKT signaling Int J Oncol. 2019 Jan 30 https://doi.org/10.3892/ijo.2019.4704 Search in Google Scholar

Faria J, Negalha G, Azevedo A, Martel F. Metformin and Breast Cancer: Molecular Targets. J Mammary Gland Biol Neoplasia. 2019 Jun 22;24(2):111–23. https://doi.org/10.1007/s10911-019-09429-z FariaJ NegalhaG AzevedoA MartelF. Metformin and Breast Cancer: Molecular Targets J Mammary Gland Biol Neoplasia. 2019 Jun 22 24 2 111 23 https://doi.org/10.1007/s10911-019-09429-z Search in Google Scholar

Kamarudin MNA, Sarker MMR, Zhou JR, Parhar I. Metformin in colorectal cancer: molecular mechanism, preclinical and clinical aspects. J Exp Clin Cancer Res. 2019 Dec 12;38(1):491. https://doi.org/10.1186/s13046-019-1495-2 KamarudinMNA SarkerMMR ZhouJR ParharI. Metformin in colorectal cancer: molecular mechanism, preclinical and clinical aspects J Exp Clin Cancer Res. 2019 Dec 12 38 1 491 https://doi.org/10.1186/s13046-019-1495-2 Search in Google Scholar

Xue J, Li L, Li N, Li F, Qin X, Li T, et al. Metformin suppresses cancer cell growth in endometrial carcinoma by inhibiting PD-L1. Eur J Pharmacol. 2019 Sep;859:172541. https://doi.org/10.1016/j.ejphar.2019.172541 XueJ LiL LiN LiF QinX LiT Metformin suppresses cancer cell growth in endometrial carcinoma by inhibiting PD-L1 Eur J Pharmacol. 2019 Sep 859 172541 https://doi.org/10.1016/j.ejphar.2019.172541 Search in Google Scholar

Kawakita E, Yang F, Kumagai A, Takagaki Y, Kitada M, Yoshitomi Y, et al. Metformin Mitigates DPP-4 Inhibitor-Induced Breast Cancer Metastasis via Suppression of mTOR Signaling. Mol Cancer Res. 2021 Jan 1;19(1):61–73. https://doi.org/10.1158/1541-7786.MCR-20-0115 KawakitaE YangF KumagaiA TakagakiY KitadaM YoshitomiY Metformin Mitigates DPP-4 Inhibitor-Induced Breast Cancer Metastasis via Suppression of mTOR Signaling Mol Cancer Res. 2021 Jan 1 19 1 61 73 https://doi.org/10.1158/1541-7786.MCR-20-0115 Search in Google Scholar

Eikawa S, Nishida M, Mizukami S, Yamazaki C, Nakayama E, Udono H. Immune-mediated antitumor effect by type 2 diabetes drug, metformin. Proc Natl Acad Sci. 2015 Feb 10;112(6):1809–14. https://doi.org/10.1073/pnas.1417636112 EikawaS NishidaM MizukamiS YamazakiC NakayamaE UdonoH. Immune-mediated antitumor effect by type 2 diabetes drug, metformin Proc Natl Acad Sci. 2015 Feb 10 112 6 1809 14 https://doi.org/10.1073/pnas.1417636112 Search in Google Scholar

Wang S, Lin Y, Xiong X, Wang L, Guo Y, Chen Y, et al. Low-Dose Metformin Reprograms the Tumor Immune Microenvironment in Human Esophageal Cancer: Results of a Phase II Clinical Trial. Clin Cancer Res. 2020 Sep 15;26(18):4921–32. https://doi.org/10.1158/1078-0432.CCR-20-0113 WangS LinY XiongX WangL GuoY ChenY Low-Dose Metformin Reprograms the Tumor Immune Microenvironment in Human Esophageal Cancer: Results of a Phase II Clinical Trial Clin Cancer Res. 2020 Sep 15 26 18 4921 32 https://doi.org/10.1158/1078-0432.CCR-20-0113 Search in Google Scholar

Ma Q, Gu JT, Wang B, Feng J, Yang L, Kang XW, et al. PlGF signaling and macrophage repolarization contribute to the anti-neoplastic effect of metformin. Eur J Pharmacol. 2019;863:172696. MaQ GuJT WangB FengJ YangL KangXW PlGF signaling and macrophage repolarization contribute to the anti-neoplastic effect of metformin Eur J Pharmacol. 2019 863 172696 Search in Google Scholar

Skuli SJ, Alomari S, Gaitsch H, Bakayoko A, Skuli N, Tyler BM. Metformin and Cancer, an Ambiguanidous Relationship. Pharmaceuticals. 2022 May 19;15(5):626. https://doi.org/10.3390/ph15050626 SkuliSJ AlomariS GaitschH BakayokoA SkuliN TylerBM. Metformin and Cancer, an Ambiguanidous Relationship Pharmaceuticals. 2022 May 19 15 5 626 https://doi.org/10.3390/ph15050626 Search in Google Scholar

Saengboonmee C, Sanlung T, Wongkham S. Repurposing metformin for cancer treatment: A great challenge of a promising drug. Anticancer Res. 2021;41(12):5913–8. SaengboonmeeC SanlungT WongkhamS Repurposing metformin for cancer treatment: A great challenge of a promising drug Anticancer Res. 2021 41 12 5913 8 Search in Google Scholar

Barrios-Bernal P, Zatarain-Barrón ZL, Hernández-Pedro N, Orozco-Morales M, Olivera-Ramírez A, Ávila-Moreno F, et al. Will We Unlock the Benefit of Metformin for Patients with Lung Cancer? Lessons from Current Evidence and New Hypotheses. Pharmaceuticals. 2022 Jun 24;15(7):786. https://doi.org/10.3390/ph15070786 Barrios-BernalP Zatarain-BarrónZL Hernández-PedroN Orozco-MoralesM Olivera-RamírezA Ávila-MorenoF Will We Unlock the Benefit of Metformin for Patients with Lung Cancer? Lessons from Current Evidence and New Hypotheses. Pharmaceuticals. 2022 Jun 24 15 7 786 https://doi.org/10.3390/ph15070786 Search in Google Scholar

Tang Z, Tang N, Jiang S, Bai Y, Guan C, Zhang W, et al. The Chemosensitizing Role of Metformin in Anti-Cancer Therapy. Anticancer Agents Med Chem. 2021 May;21(8):949–62. https://doi.org/10.2174/1871520620666200918102642 TangZ TangN JiangS BaiY GuanC ZhangW The Chemosensitizing Role of Metformin in Anti-Cancer Therapy Anticancer Agents Med Chem. 2021 May 21 8 949 62 https://doi.org/10.2174/1871520620666200918102642 Search in Google Scholar

Martin-Castillo B, Pernas S, Dorca J, Álvarez I, Martínez S, Pérez-Garcia JM, et al. A phase 2 trial of neoadjuvant metformin in combination with trastuzumab and chemotherapy in women with early HER2-positive breast cancer: the METTEN study. Oncotarget. 2018 Nov 2;9(86):35687–704. https://doi.org/10.18632/oncotarget.26286 Martin-CastilloB PernasS DorcaJ ÁlvarezI MartínezS Pérez-GarciaJM A phase 2 trial of neoadjuvant metformin in combination with trastuzumab and chemotherapy in women with early HER2-positive breast cancer: the METTEN study Oncotarget. 2018 Nov 2 9 86 35687 704 https://doi.org/10.18632/oncotarget.26286 Search in Google Scholar

Alghandour R, Ebrahim MA, Elshal AM, Ghobrial F, Elzaafarany M, ELbaiomy MA. Repurposing metformin as anticancer drug: Randomized controlled trial in advanced prostate cancer (MANSMED). Urol Oncol Semin Orig Investig. 2021 Dec;39(12):831.e1–831.e10. https://doi.org/10.1016/j.urolonc.2021.05.020 AlghandourR EbrahimMA ElshalAM GhobrialF ElzaafaranyM ELbaiomyMA Repurposing metformin as anticancer drug: Randomized controlled trial in advanced prostate cancer (MANSMED) Urol Oncol Semin Orig Investig. 2021 Dec 39 12 831.e1 831.e10 https://doi.org/10.1016/j.urolonc.2021.05.020 Search in Google Scholar

Goodwin PJ, Chen BE, Gelmon KA, Whelan TJ, Ennis M, Lemieux J, et al. Effect of Metformin vs Placebo on Invasive Disease–Free Survival in Patients With Breast Cancer. JAMA. 2022 May 24;327(20):1963. https://doi.org/10.1001/jama.2022.6147 GoodwinPJ ChenBE GelmonKA WhelanTJ EnnisM LemieuxJ Effect of Metformin vs Placebo on Invasive Disease–Free Survival in Patients With Breast Cancer JAMA. 2022 May 24 327 20 1963 https://doi.org/10.1001/jama.2022.6147 Search in Google Scholar

Skinner H, Hu C, Tsakiridis T, Santana-Davila R, Lu B, Erasmus JJ, et al. Addition of Metformin to Concurrent Chemoradiation in Patients With Locally Advanced Non–Small Cell Lung Cancer. JAMA Oncol. 2021 Sep 1;7(9):1324. https://doi.org/10.1001/jamaoncol.2021.2318 SkinnerH HuC TsakiridisT Santana-DavilaR LuB ErasmusJJ Addition of Metformin to Concurrent Chemoradiation in Patients With Locally Advanced Non–Small Cell Lung Cancer JAMA Oncol. 2021 Sep 1 7 9 1324 https://doi.org/10.1001/jamaoncol.2021.2318 Search in Google Scholar

Bae-Jump VL, Sill M, Gehrig PA, Moxley K, Hagemann AR, Waggoner SE, et al. A randomized phase II/III study of paclitaxel/carboplatin/metformin versus paclitaxel/carboplatin/placebo as initial therapy for measurable stage III or IVA, stage IVB, or recurrent endometrial cancer: An NRG Oncology/GOG study. Gynecol Oncol. 2020 Oct;159:7. https://doi.org/10.1016/j.ygyno.2020.06.013 Bae-JumpVL SillM GehrigPA MoxleyK HagemannAR WaggonerSE A randomized phase II/III study of paclitaxel/carboplatin/metformin versus paclitaxel/carboplatin/placebo as initial therapy for measurable stage III or IVA, stage IVB, or recurrent endometrial cancer: An NRG Oncology/GOG study Gynecol Oncol. 2020 Oct 159 7 https://doi.org/10.1016/j.ygyno.2020.06.013 Search in Google Scholar

https://clinicaltrials.gov/study/NCT01167738.2015; https://clinicaltrials.gov/study/NCT01167738.2015 Search in Google Scholar

Platts J. Insulin therapy and cancer risk in diabetes mellitus. Clin Med (Northfield Il). 2010 Oct 1;10(5):509–12. https://doi.org/10.7861/clinmedicine.10-5-509 PlattsJ. Insulin therapy and cancer risk in diabetes mellitus Clin Med (Northfield Il). 2010 Oct 1 10 5 509 12 https://doi.org/10.7861/clinmedicine.10-5-509 Search in Google Scholar

Home P. Insulin Therapy and Cancer. Diabetes Care. 2013 Aug 1;36(Supplement_2):S240–4. https://doi.org/10.2337/dcS13-2002 HomeP Insulin Therapy and Cancer Diabetes Care 2013 Aug 1 36 Supplement_2 S240 4 https://doi.org/10.2337/dcS13-2002 Search in Google Scholar

Laskar J, Bhattacharjee K, Sengupta M, Choudhury Y. Anti-Diabetic Drugs: Cure or Risk Factors for Cancer? Pathol Oncol Res. 2018 Oct 13;24(4):745–55. https://doi.org/10.1007/s12253-018-0402-z LaskarJ BhattacharjeeK SenguptaM ChoudhuryY Anti-Diabetic Drugs: Cure or Risk Factors for Cancer? Pathol Oncol Res. 2018 Oct 13 24 4 745 55 https://doi.org/10.1007/s12253-018-0402-z Search in Google Scholar

Tomlinson B, Patil NG, Fok M, Chan P, Lam CWK. The role of sulfonylureas in the treatment of type 2 diabetes. Expert Opin Pharmacother. 2022 Feb 11;23(3):387–403. https://doi.org/10.1080/14656566.2021.1999413 TomlinsonB PatilNG FokM ChanP LamCWK. The role of sulfonylureas in the treatment of type 2 diabetes Expert Opin Pharmacother. 2022 Feb 11 23 3 387 403 https://doi.org/10.1080/14656566.2021.1999413 Search in Google Scholar

Bowker SL, Majumdar SR, Veugelers P, Johnson JA. Increased cancer-related mortality for patients with type 2 diabetes who use sulfonylureas or insulin. Diabetes Care. 2006 Feb;29(2):254–8. https://doi.org/10.2337/diacare.29.02.06.dc05-1558 BowkerSL MajumdarSR VeugelersP JohnsonJA Increased cancer-related mortality for patients with type 2 diabetes who use sulfonylureas or insulin Diabetes Care. 2006 Feb 29 2 254 8 https://doi.org/10.2337/diacare.29.02.06.dc05-1558 Search in Google Scholar

Currie CJ, Poole CD, Gale EAM. The influence of glucose-lowering therapies on cancer risk in type 2 diabetes. Diabetologia. 2009 Sep 2;52(9):1766–77. https://doi.org/10.1007/s00125-009-1440-6 CurrieCJ PooleCD GaleEAM. The influence of glucose-lowering therapies on cancer risk in type 2 diabetes Diabetologia. 2009 Sep 2 52 9 1766 77 https://doi.org/10.1007/s00125-009-1440-6 Search in Google Scholar

Hendriks AM, Schrijnders D, Kleefstra N, de Vries EGE, Bilo HJG, Jalving M, et al. Sulfonylurea derivatives and cancer, friend or foe? Eur J Pharmacol. 2019 Oct;861:172598. https://doi.org/10.1016/j.ejphar.2019.172598 HendriksAM SchrijndersD KleefstraN de VriesEGE BiloHJG JalvingM Sulfonylurea derivatives and cancer, friend or foe? Eur J Pharmacol. 2019 Oct 861 172598 https://doi.org/10.1016/j.ejphar.2019.172598 Search in Google Scholar

Núñez M, Medina V, Cricco G, Croci M, Cocca C, Rivera E, et al. Glibenclamide inhibits cell growth by inducing G0/G1 arrest in the human breast cancer cell line MDA-MB-231. BMC Pharmacol Toxicol. 2013 Dec 11;14(1):6. https://doi.org/10.1186/2050-6511-14-6 NúñezM MedinaV CriccoG CrociM CoccaC RiveraE Glibenclamide inhibits cell growth by inducing G0/G1 arrest in the human breast cancer cell line MDA-MB-231 BMC Pharmacol Toxicol. 2013 Dec 11 14 1 6 https://doi.org/10.1186/2050-6511-14-6 Search in Google Scholar

Kim JA, Kang YS, Lee SH, Lee EH, Yoo BH, Lee YS. Glibenclamide Induces Apoptosis through Inhibition of Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Cl− Channels and Intracellular Ca2+ Release in HepG2 Human Hepatoblastoma Cells. Biochem Biophys Res Commun. 1999 Aug;261(3):682–8. https://doi.org/10.1006/bbrc.1999.1108 KimJA KangYS LeeSH LeeEH YooBH LeeYS Glibenclamide Induces Apoptosis through Inhibition of Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Cl− Channels and Intracellular Ca2+ Release in HepG2 Human Hepatoblastoma Cells Biochem Biophys Res Commun. 1999 Aug 261 3 682 8 https://doi.org/10.1006/bbrc.1999.1108 Search in Google Scholar

Malhi H, Irani AN, Rajvanshi P, Suadicani SO, Spray DC, McDonald T V., et al. KATP Channels Regulate Mitogenically Induced Proliferation in Primary Rat Hepatocytes and Human Liver Cell Lines. J Biol Chem. 2000 Aug;275(34):26050–7. https://doi.org/10.1074/jbc.M001576200 MalhiH IraniAN RajvanshiP SuadicaniSO SprayDC McDonaldT V. KATP Channels Regulate Mitogenically Induced Proliferation in Primary Rat Hepatocytes and Human Liver Cell Lines J Biol Chem. 2000 Aug 275 34 26050 7 https://doi.org/10.1074/jbc.M001576200 Search in Google Scholar

RU Q, TIAN X, WU YX, WU RH, PI MS, LI CY. Voltage-gated and ATP-sensitive K+ channels are associated with cell proliferation and tumorigenesis of human glioma. Oncol Rep. 2014 Feb;31(2):842–8. https://doi.org/10.3892/or.2013.2875 RUQ TIANX WUYX WURH PIMS LICY Voltage-gated and ATP-sensitive K+ channels are associated with cell proliferation and tumorigenesis of human glioma Oncol Rep. 2014 Feb 31 2 842 8 https://doi.org/10.3892/or.2013.2875 Search in Google Scholar

Zhou Q, Kwan HY, Chan HC, Jiang JL, Tam SC, Yao X. Blockage of voltage-gated K+ channels inhibits adhesion and proliferation of hepatocarcinoma cells. Int J Mol Med. 2003 Feb 1; https://doi.org/10.3892/ijmm.11.2.261 ZhouQ KwanHY ChanHC JiangJL TamSC YaoX. Blockage of voltage-gated K+ channels inhibits adhesion and proliferation of hepatocarcinoma cells Int J Mol Med. 2003 Feb 1 https://doi.org/10.3892/ijmm.11.2.261 Search in Google Scholar

Abdul M, Hoosein N. Expression and activity of potassium ion channels in human prostate cancer. Cancer Lett. 2002 Dec;186(1):99–105. https://doi.org/10.1016/S0304-3835(02)00348-8 AbdulM HooseinN Expression and activity of potassium ion channels in human prostate cancer Cancer Lett. 2002 Dec 186 1 99 105 https://doi.org/10.1016/S0304-3835(02)00348-8 Search in Google Scholar

Abdul M, Hoosein N. Voltage-gated potassium ion channels in colon cancer. Oncol Rep. 2002 Sep 1; https://doi.org/10.3892/or.9.5.961 AbdulM HooseinN. Voltage-gated potassium ion channels in colon cancer Oncol Rep. 2002 Sep 1 https://doi.org/10.3892/or.9.5.961 Search in Google Scholar

Qian X, Li J, Ding J, Wang Z, Duan L, Hu G. Glibenclamide exerts an antitumor activity through reactive oxygen species–c-jun NH(2)-terminal kinase pathway in human gastric cancer cell line MGC-803. Biochem Pharmacol. 2008 Dec;76(12):1705–15. https://doi.org/10.1016/j.bcp.2008.09.009 QianX LiJ DingJ WangZ DuanL HuG Glibenclamide exerts an antitumor activity through reactive oxygen species–c-jun NH(2)-terminal kinase pathway in human gastric cancer cell line MGC-803 Biochem Pharmacol. 2008 Dec 76 12 1705 15 https://doi.org/10.1016/j.bcp.2008.09.009 Search in Google Scholar

Wang S, Dougherty EJ, Danner RL. PPARγ signaling and emerging opportunities for improved therapeutics. Pharmacol Res. 2016 Sep;111:76–85. https://doi.org/10.1016/j.phrs.2016.02.028 WangS DoughertyEJ DannerRL PPARγ signaling and emerging opportunities for improved therapeutics Pharmacol Res 2016 Sep 111 76 85 https://doi.org/10.1016/j.phrs.2016.02.028 Search in Google Scholar

Nanjan MJ, Mohammed M, Prashantha Kumar BR, Chandrasekar MJN. Thiazolidinediones as antidiabetic agents: A critical review. Bioorg Chem. 2018 Apr;77:548–67. https://doi.org/10.1016/j.bioorg.2018.02.009 NanjanMJ MohammedM Prashantha KumarBR ChandrasekarMJN Thiazolidinediones as antidiabetic agents: A critical review Bioorg Chem 2018 Apr 77 548 67 https://doi.org/10.1016/j.bioorg.2018.02.009 Search in Google Scholar

Okumura T. Mechanisms by which thiazolidinediones induce anti-cancer effects in cancers in digestive organs. J Gastroenterol. 2010 Nov 8;45(11):1097–102. https://doi.org/10.1007/s00535-010-0310-9 OkumuraT. Mechanisms by which thiazolidinediones induce anti-cancer effects in cancers in digestive organs J Gastroenterol. 2010 Nov 8 45 11 1097 102 https://doi.org/10.1007/s00535-010-0310-9 Search in Google Scholar

Du R, Lin L, Cheng D, Xu Y, Xu M, Chen Y, et al. Thiazolidinedione therapy and breast cancer risk in diabetic women: A systematic review and meta-analysis. Diabetes Metab Res Rev. 2018 Feb;34(2). https://doi.org/10.1002/dmrr.2961 DuR LinL ChengD XuY XuM ChenY Thiazolidinedione therapy and breast cancer risk in diabetic women: A systematic review and meta-analysis Diabetes Metab Res Rev. 2018 Feb 34 2 https://doi.org/10.1002/dmrr.2961 Search in Google Scholar

Srivastava SP, Goodwin JE. Cancer Biology and Prevention in Diabetes. Cells. 2020 Jun 2;9(6):1380. https://doi.org/10.3390/cells9061380 SrivastavaSP GoodwinJE. Cancer Biology and Prevention in Diabetes Cells. 2020 Jun 2 9 6 1380 https://doi.org/10.3390/cells9061380 Search in Google Scholar

Nagamine M, Okumura T, Tanno S, Sawamukai M, Motomura W, Takahashi N, et al. PPARγ ligand-induced apoptosis through a p53-dependent mechanism in human gastric cancer cells. Cancer Sci. 2003 Apr 19;94(4):338–43. https://doi.org/10.1111/j.1349-7006.2003.tb01443.x NagamineM OkumuraT TannoS SawamukaiM MotomuraW TakahashiN PPARγ ligand-induced apoptosis through a p53-dependent mechanism in human gastric cancer cells Cancer Sci. 2003 Apr 19 94 4 338 43 https://doi.org/10.1111/j.1349-7006.2003.tb01443.x Search in Google Scholar

Cellai I, Petrangolini G, Tortoreto M, Pratesi G, Luciani P, Deledda C, et al. In vivo effects of rosiglitazone in a human neuroblastoma xenograft. Br J Cancer. 2010 Feb 12;102(4):685–92. https://doi.org/10.1038/sj.bjc.6605506 CellaiI PetrangoliniG TortoretoM PratesiG LucianiP DeleddaC In vivo effects of rosiglitazone in a human neuroblastoma xenograft Br J Cancer. 2010 Feb 12 102 4 685 92 https://doi.org/10.1038/sj.bjc.6605506 Search in Google Scholar

Luconi M, Mangoni M, Gelmini S, Poli G, Nesi G, Francalanci M, et al. Rosiglitazone impairs proliferation of human adrenocortical cancer: preclinical study in a xenograft mouse model. Endocr Relat Cancer. 2010 Mar;17(1):169–77. https://doi.org/10.1677/ERC-09-0170 LuconiM MangoniM GelminiS PoliG NesiG FrancalanciM Rosiglitazone impairs proliferation of human adrenocortical cancer: preclinical study in a xenograft mouse model Endocr Relat Cancer. 2010 Mar 17 1 169 77 https://doi.org/10.1677/ERC-09-0170 Search in Google Scholar

NINOMIYA I, YAMAZAKI K, OYAMA K, HAYASHI H, TAJIMA H, KITAGAWA H, et al. Pioglitazone inhibits the proliferation and metastasis of human pancreatic cancer cells. Oncol Lett. 2014 Dec;8(6):2709–14. https://doi.org/10.3892/ol.2014.2553 NINOMIYAI YAMAZAKIK OYAMAK HAYASHIH TAJIMAH KITAGAWAH Pioglitazone inhibits the proliferation and metastasis of human pancreatic cancer cells Oncol Lett. 2014 Dec 8 6 2709 14 https://doi.org/10.3892/ol.2014.2553 Search in Google Scholar

Bloomgarden Z, Deacon CF. Physiology and Pharmacology of DPP-4 in Glucose Homeostasis and the Treatment of Type 2 Diabetes. Front Endocrinol | www.frontiersin.org. 2019 [cited 2023 Oct 5];10:80. https://doi.org/10.3389/fendo.2019.00080 BloomgardenZ DeaconCF Physiology and Pharmacology of DPP-4 in Glucose Homeostasis and the Treatment of Type 2 Diabetes Front Endocrinol | www.frontiersin.org. 2019 [cited 2023 Oct 5];10:80. https://doi.org/10.3389/fendo.2019.00080 Search in Google Scholar

Pantaleão SQ, Philot EA, de Resende-Lara PT, Lima AN, Perahia D, Miteva MA, et al. Structural dynamics of DPP-4 and its influence on the projection of bioactive ligands. Molecules. 2018;23(2):490. PantaleãoSQ PhilotEA de Resende-LaraPT LimaAN PerahiaD MitevaMA Structural dynamics of DPP-4 and its influence on the projection of bioactive ligands Molecules 2018 23 2 490 Search in Google Scholar

Busek P, Duke-Cohan JS, Sedo A. Does DPPIV Inhibition Offer New Avenues for Therapeutic Intervention in Malignant Disease? Vol. 14, Cancers. 2022. https://doi.org/10.3390/cancers14092072 BusekP Duke-CohanJS SedoA Does DPPIV Inhibition Offer New Avenues for Therapeutic Intervention in Malignant Disease? 14 Cancers 2022 https://doi.org/10.3390/cancers14092072 Search in Google Scholar

Boer GA, Holst JJ. Incretin hormones and type 2 diabetes—mechanistic insights and therapeutic approaches. Biology (Basel). 2020;9(12):473. BoerGA HolstJJ Incretin hormones and type 2 diabetes—mechanistic insights and therapeutic approaches Biology (Basel) 2020 9 12 473 Search in Google Scholar

He Y, Yang G, Yao F, Xian Y, Wang G, Chen L, et al. Sitagliptin inhibits vascular inflammation via the SIRT6-dependent signaling pathway. Int Immunopharmacol. 2019;75:105805. HeY YangG YaoF XianY WangG ChenL Sitagliptin inhibits vascular inflammation via the SIRT6-dependent signaling pathway Int Immunopharmacol. 2019 75 105805 Search in Google Scholar

Barreira da Silva R, Laird ME, Yatim N, Fiette L, Ingersoll MA, Albert ML. Dipeptidylpeptidase 4 inhibition enhances lymphocyte trafficking, improving both naturally occurring tumor immunity and immunotherapy. Nat Immunol. 2015 Aug 15;16(8):850–8. https://doi.org/10.1038/ni.3201 Barreira da SilvaR LairdME YatimN FietteL IngersollMA AlbertML Dipeptidylpeptidase 4 inhibition enhances lymphocyte trafficking, improving both naturally occurring tumor immunity and immunotherapy Nat Immunol. 2015 Aug 15 16 8 850 8 https://doi.org/10.1038/ni.3201 Search in Google Scholar

Almagthali AG, Alkhaldi EH, Alzahrani AS, Alghamdi AK, Alghamdi WY, Kabel AM. Dipeptidyl peptidase-4 inhibitors: Anti-diabetic drugs with potential effects on cancer. Diabetes Metab Syndr Clin Res Rev. 2019 Jan;13(1):36–9. https://doi.org/10.1016/j.dsx.2018.08.012 AlmagthaliAG AlkhaldiEH AlzahraniAS AlghamdiAK AlghamdiWY KabelAM Dipeptidyl peptidase-4 inhibitors: Anti-diabetic drugs with potential effects on cancer Diabetes Metab Syndr Clin Res Rev. 2019 Jan 13 1 36 9 https://doi.org/10.1016/j.dsx.2018.08.012 Search in Google Scholar

Lee JJ, Wang TY, Liu CL, Chien MN, Chen MJ, Hsu YC, et al. Dipeptidyl Peptidase IV as a Prognostic Marker and Therapeutic Target in Papillary Thyroid Carcinoma. J Clin Endocrinol Metab. 2017 Aug 1;102(8):2930–40. https://doi.org/10.1210/jc.2017-00346 LeeJJ WangTY LiuCL ChienMN ChenMJ HsuYC Dipeptidyl Peptidase IV as a Prognostic Marker and Therapeutic Target in Papillary Thyroid Carcinoma J Clin Endocrinol Metab. 2017 Aug 1 102 8 2930 40 https://doi.org/10.1210/jc.2017-00346 Search in Google Scholar

Wang Q, Lu P, Wang T, Zheng Q, Li Y, Leng SX, et al. Sitagliptin affects gastric cancer cells proliferation by suppressing Melanoma-associated antigen-A3 expression through Yes-associated protein inactivation. Cancer Med. 2020 Jun 30;9(11):3816–28. https://doi.org/10.1002/cam4.3024 WangQ LuP WangT ZhengQ LiY LengSX Sitagliptin affects gastric cancer cells proliferation by suppressing Melanoma-associated antigen-A3 expression through Yes-associated protein inactivation Cancer Med. 2020 Jun 30 9 11 3816 28 https://doi.org/10.1002/cam4.3024 Search in Google Scholar

Yang X, Zhang X, Wu R, Huang Q, Jiang Y, Qin J, et al. DPPIV promotes endometrial carcinoma cell proliferation, invasion and tumorigenesis. Oncotarget. 2017 Jan 31;8(5):8679–92. https://doi.org/10.18632/oncotarget.14412 YangX ZhangX WuR HuangQ JiangY QinJ DPPIV promotes endometrial carcinoma cell proliferation, invasion and tumorigenesis Oncotarget. 2017 Jan 31 8 5 8679 92 https://doi.org/10.18632/oncotarget.14412 Search in Google Scholar

Varela-Calviño R, Rodríguez-Quiroga M, Dias Carvalho P, Martins F, Serra-Roma A, Vázquez-Iglesias L, et al. The mechanism of sitagliptin inhibition of colorectal cancer cell lines’ metastatic functionalities. IUBMB Life. 2021 May 22;73(5):761–73. https://doi.org/10.1002/iub.2454 Varela-CalviñoR Rodríguez-QuirogaM Dias CarvalhoP MartinsF Serra-RomaA Vázquez-IglesiasL The mechanism of sitagliptin inhibition of colorectal cancer cell lines’ metastatic functionalities IUBMB Life. 2021 May 22 73 5 761 73 https://doi.org/10.1002/iub.2454 Search in Google Scholar

Amritha CA, Kumaravelu P, Chellathai DD. Evaluation of anti cancer effects of DPP-4 inhibitors in colon cancer-an invitro study. J Clin diagnostic Res JCDR. 2015;9(12):FC14. AmrithaCA KumaraveluP ChellathaiDD Evaluation of anti cancer effects of DPP-4 inhibitors in colon cancer-an invitro study J Clin diagnostic Res JCDR 2015 9 12 FC14 Search in Google Scholar

Choi HJ, Kim JY, Lim S, Kim G, Yun HJ, Choi HS. Dipeptidyl peptidase 4 promotes epithelial cell transformation and breast tumourigenesis via induction of PIN1 gene expression. Br J Pharmacol. 2015 Nov 16;172(21):5096–109. https://doi.org/10.1111/bph.13274 ChoiHJ KimJY LimS KimG YunHJ ChoiHS. Dipeptidyl peptidase 4 promotes epithelial cell transformation and breast tumourigenesis via induction of PIN1 gene expression Br J Pharmacol. 2015 Nov 16 172 21 5096 109 https://doi.org/10.1111/bph.13274 Search in Google Scholar

Beckenkamp A, Willig JB, Santana DB, Nascimento J, Paccez JD, Zerbini LF, et al. Differential Expression and Enzymatic Activity of DPPIV/CD26 Affects Migration Ability of Cervical Carcinoma Cells. Consolaro MEL, editor. PLoS One. 2015 Jul 29;10(7):e0134305. https://doi.org/10.1371/journal.pone.0134305 BeckenkampA WilligJB SantanaDB NascimentoJ PaccezJD ZerbiniLF Differential Expression and Enzymatic Activity of DPPIV/CD26 Affects Migration Ability of Cervical Carcinoma Cells ConsolaroMEL editor PLoS One. 2015 Jul 29 10 7 e0134305 https://doi.org/10.1371/journal.pone.0134305 Search in Google Scholar

You F, Li C, Zhang S, Zhang Q, Hu Z, Wang Y, et al. Sitagliptin inhibits the survival, stemness and autophagy of glioma cells, and enhances temozolomide cytotoxicity. Biomed Pharmacother. 2023;162:114555. https://doi.org/https://doi.org/10.1016/j.biopha.2023.114555 YouF LiC ZhangS ZhangQ HuZ WangY Sitagliptin inhibits the survival, stemness and autophagy of glioma cells, and enhances temozolomide cytotoxicity Biomed Pharmacother. 2023 162 114555 https://doi.org/https://doi.org/10.1016/j.biopha.2023.114555 Search in Google Scholar

Manea AJ, Ray SK. Regulation of autophagy as a therapeutic option in glioblastoma. Apoptosis. 2021;26(11):574–99. https://doi.org/10.1007/s10495-021-01691-z ManeaAJ RaySK Regulation of autophagy as a therapeutic option in glioblastoma Apoptosis. 2021 26 11 574 99 https://doi.org/10.1007/s10495-021-01691-z Search in Google Scholar

Jang JH, Baerts L, Waumans Y, De Meester I, Yamada Y, Limani P, et al. Suppression of lung metastases by the CD26/DPP4 inhibitor Vildagliptin in mice. Clin Exp Metastasis. 2015;32(7):677–87. https://doi.org/10.1007/s10585-015-9736-z JangJH BaertsL WaumansY De MeesterI YamadaY LimaniP Suppression of lung metastases by the CD26/DPP4 inhibitor Vildagliptin in mice Clin Exp Metastasis. 2015 32 7 677 87 https://doi.org/10.1007/s10585-015-9736-z Search in Google Scholar

Jang JH, Janker F, De Meester I, Arni S, Borgeaud N, Yamada Y, et al. The CD26/DPP4-inhibitor vildagliptin suppresses lung cancer growth via macrophage-mediated NK cell activity. Carcinogenesis. 2019 Apr 29;40(2):324–34. https://doi.org/10.1093/carcin/bgz009 JangJH JankerF De MeesterI ArniS BorgeaudN YamadaY The CD26/DPP4-inhibitor vildagliptin suppresses lung cancer growth via macrophage-mediated NK cell activity Carcinogenesis. 2019 Apr 29 40 2 324 34 https://doi.org/10.1093/carcin/bgz009 Search in Google Scholar

Kim SH, Kang JG, Kim CS, Ihm SH, Choi MG, Yoo HJ, et al. Synergistic cytotoxicity of the dipeptidyl peptidase-IV inhibitor gemigliptin with metformin in thyroid carcinoma cells. Endocrine. 2018;59:383–94. KimSH KangJG KimCS IhmSH ChoiMG YooHJ Synergistic cytotoxicity of the dipeptidyl peptidase-IV inhibitor gemigliptin with metformin in thyroid carcinoma cells Endocrine 2018 59 383 94 Search in Google Scholar

Kim SH, Kang JG, Kim CS, Ihm SH, Choi MG, Yoo HJ, et al. The dipeptidyl peptidase-IV inhibitor gemigliptin alone or in combination with NVP-AUY922 has a cytotoxic activity in thyroid carcinoma cells. Tumor Biol. 2017;39(10):1010428317722068. KimSH KangJG KimCS IhmSH ChoiMG YooHJ The dipeptidyl peptidase-IV inhibitor gemigliptin alone or in combination with NVP-AUY922 has a cytotoxic activity in thyroid carcinoma cells Tumor Biol. 2017 39 10 1010428317722068 Search in Google Scholar

Herrmann H, Sadovnik I, Cerny-Reiterer S, Rülicke T, Stefanzl G, Willmann M, et al. Dipeptidylpeptidase IV (CD26) defines leukemic stem cells (LSC) in chronic myeloid leukemia. Blood. 2014 Jun 19;123(25):3951–62. https://doi.org/10.1182/blood-2013-10-536078 HerrmannH SadovnikI Cerny-ReitererS RülickeT StefanzlG WillmannM Dipeptidylpeptidase IV (CD26) defines leukemic stem cells (LSC) in chronic myeloid leukemia Blood. 2014 Jun 19 123 25 3951 62 https://doi.org/10.1182/blood-2013-10-536078 Search in Google Scholar

Willmann M, Sadovnik I, Eisenwort G, Entner M, Bernthaler T, Stefanzl G, et al. Evaluation of cooperative antileukemic effects of nilotinib and vildagliptin in Ph+ chronic myeloid leukemia. Exp Hematol. 2018 Jan;57:50–59.e6. https://doi.org/10.1016/j.exphem.2017.09.012 WillmannM SadovnikI EisenwortG EntnerM BernthalerT StefanzlG Evaluation of cooperative antileukemic effects of nilotinib and vildagliptin in Ph+ chronic myeloid leukemia Exp Hematol. 2018 Jan 57 50 59.e6 https://doi.org/10.1016/j.exphem.2017.09.012 Search in Google Scholar

Tomas A, Jones B, Leech C. New Insights into Beta-Cell GLP-1 Receptor and cAMP Signaling. J Mol Biol. 2020;432(5):1347–66. https://doi.org/https://doi.org/10.1016/j.jmb.2019.08.009 TomasA JonesB LeechC New Insights into Beta-Cell GLP-1 Receptor and cAMP Signaling J Mol Biol. 2020 432 5 1347 66 https://doi.org/https://doi.org/10.1016/j.jmb.2019.08.009 Search in Google Scholar

Nakatani Y, Maeda M, Matsumura M, Shimizu R, Banba N, Aso Y, et al. Effect of GLP-1 receptor agonist on gastrointestinal tract motility and residue rates as evaluated by capsule endoscopy. Diabetes Metab. 2017;43(5):430–7. https://doi.org/https://doi.org/10.1016/j.diabet.2017.05.009 NakataniY MaedaM MatsumuraM ShimizuR BanbaN AsoY Effect of GLP-1 receptor agonist on gastrointestinal tract motility and residue rates as evaluated by capsule endoscopy Diabetes Metab. 2017 43 5 430 7 https://doi.org/https://doi.org/10.1016/j.diabet.2017.05.009 Search in Google Scholar

Wheeler MB, Lu M, Dillon JS, Leng XH, Chen C, Boyd AE. Functional expression of the rat glucagon-like peptide-I receptor, evidence for coupling to both adenylyl cyclase and phospholipase-C. Endocrinology. 1993 Jul;133(1):57–62. https://doi.org/10.1210/endo.133.1.8391428 WheelerMB LuM DillonJS LengXH ChenC BoydAE Functional expression of the rat glucagon-like peptide-I receptor, evidence for coupling to both adenylyl cyclase and phospholipase-C Endocrinology 1993 Jul 133 1 57 62 https://doi.org/10.1210/endo.133.1.8391428 Search in Google Scholar

Campos R V, Lee YC, Drucker DJ. Divergent tissue-specific and developmental expression of receptors for glucagon and glucagon-like peptide-1 in the mouse. Endocrinology. 1994 May;134(5):2156–64. https://doi.org/10.1210/endo.134.5.8156917 CamposR V LeeYC DruckerDJ Divergent tissue-specific and developmental expression of receptors for glucagon and glucagon-like peptide-1 in the mouse Endocrinology 1994 May 134 5 2156 64 https://doi.org/10.1210/endo.134.5.8156917 Search in Google Scholar

Arvanitakis K, Koufakis T, Kotsa K, Germanidis G. How Far beyond Diabetes Can the Benefits of Glucagon-like Peptide-1 Receptor Agonists Go? A Review of the Evidence on Their Effects on Hepatocellular Carcinoma. Cancers (Basel). 2022 Sep 24;14(19):4651. https://doi.org/10.3390/cancers14194651 ArvanitakisK KoufakisT KotsaK GermanidisG. How Far beyond Diabetes Can the Benefits of Glucagon-like Peptide-1 Receptor Agonists Go? A Review of the Evidence on Their Effects on Hepatocellular Carcinoma Cancers (Basel). 2022 Sep 24 14 19 4651 https://doi.org/10.3390/cancers14194651 Search in Google Scholar

Zhou M, Mok MTS, Sun H, Chan AW, Huang Y, Cheng ASL, et al. The anti-diabetic drug exenatide, a glucagon-like peptide-1 receptor agonist, counteracts hepatocarcinogenesis through cAMP–PKA–EGFR–STAT3 axis. Oncogene. 2017 Jul 20;36(29):4135–49. https://doi.org/10.1038/onc.2017.38 ZhouM MokMTS SunH ChanAW HuangY ChengASL The anti-diabetic drug exenatide, a glucagon-like peptide-1 receptor agonist, counteracts hepatocarcinogenesis through cAMP–PKA–EGFR–STAT3 axis Oncogene. 2017 Jul 20 36 29 4135 49 https://doi.org/10.1038/onc.2017.38 Search in Google Scholar

Iwaya C, Nomiyama T, Komatsu S, Kawanami T, Tsutsumi Y, Hamaguchi Y, et al. Exendin-4, a Glucagonlike Peptide-1 Receptor Agonist, Attenuates Breast Cancer Growth by Inhibiting NF-κB Activation. Endocrinology. 2017 Dec 1;158(12):4218–32. https://doi.org/10.1210/en.2017-00461 IwayaC NomiyamaT KomatsuS KawanamiT TsutsumiY HamaguchiY Exendin-4, a Glucagonlike Peptide-1 Receptor Agonist, Attenuates Breast Cancer Growth by Inhibiting NF-κB Activation Endocrinology. 2017 Dec 1 158 12 4218 32 https://doi.org/10.1210/en.2017-00461 Search in Google Scholar

Nomiyama T, Kawanami T, Irie S, Hamaguchi Y, Terawaki Y, Murase K, et al. Exendin-4, a GLP-1 Receptor Agonist, Attenuates Prostate Cancer Growth. Diabetes. 2014 Nov 1;63(11):3891–905. https://doi.org/10.2337/db13-1169 NomiyamaT KawanamiT IrieS HamaguchiY TerawakiY MuraseK Exendin-4, a GLP-1 Receptor Agonist, Attenuates Prostate Cancer Growth Diabetes. 2014 Nov 1 63 11 3891 905 https://doi.org/10.2337/db13-1169 Search in Google Scholar

Kanda R, Hiraike H, Wada-Hiraike O, Ichinose T, Nagasaka K, Sasajima Y, et al. Expression of the glucagon-like peptide-1 receptor and its role in regulating autophagy in endometrial cancer. BMC Cancer. 2018;18(1):657. https://doi.org/10.1186/s12885-018-4570-8 KandaR HiraikeH Wada-HiraikeO IchinoseT NagasakaK SasajimaY Expression of the glucagon-like peptide-1 receptor and its role in regulating autophagy in endometrial cancer BMC Cancer 2018 18 1 657 https://doi.org/10.1186/s12885-018-4570-8 Search in Google Scholar

Samaan E, Ramadan NM, Abdulaziz HMM, Ibrahim D, El-Sherbiny M, ElBayar R, et al. DPP-4i versus SGLT2i as modulators of PHD3/HIF-2α pathway in the diabetic kidney. Biomed Pharmacother. 2023 Nov;167:115629. https://doi.org/10.1016/j.biopha.2023.115629 SamaanE RamadanNM AbdulazizHMM IbrahimD El-SherbinyM ElBayarR DPP-4i versus SGLT2i as modulators of PHD3/HIF-2α pathway in the diabetic kidney Biomed Pharmacother 2023 Nov 167 115629 https://doi.org/10.1016/j.biopha.2023.115629 Search in Google Scholar

Madunić IV, Madunić J, Breljak D, Karaica D, Sabolić I. Sodium-glucose cotransporters: new targets of cancer therapy? Arch Ind Hyg Toxicol. 2018 Dec 1;69(4):278–85. https://doi.org/10.2478/aiht-2018-69-3204 MadunićIV MadunićJ BreljakD KaraicaD SabolićI Sodium-glucose cotransporters: new targets of cancer therapy? Arch Ind Hyg Toxicol. 2018 Dec 1 69 4 278 85 https://doi.org/10.2478/aiht-2018-69-3204 Search in Google Scholar

Helmke BM, Reisser C, Idzkoe M, Dyckhoff G, Herold-Mende C. Expression of SGLT-1 in preneoplastic and neoplastic lesions of the head and neck. Oral Oncol. 2004 Jan;40(1):28–35. https://doi.org/10.1016/S1368-8375(03)00129-5 HelmkeBM ReisserC IdzkoeM DyckhoffG Herold-MendeC Expression of SGLT-1 in preneoplastic and neoplastic lesions of the head and neck Oral Oncol. 2004 Jan 40 1 28 35 https://doi.org/10.1016/S1368-8375(03)00129-5 Search in Google Scholar

Blessing A. Sodium/Glucose Co-transporter 1 Expression Increases in Human Diseased Prostate. J Cancer Sci Ther. 2012;04(09). https://doi.org/10.4172/1948-5956.1000159 BlessingA Sodium/Glucose Co-transporter 1 Expression Increases in Human Diseased Prostate J Cancer Sci Ther. 2012 04 09 https://doi.org/10.4172/1948-5956.1000159 Search in Google Scholar

Lai B, Xiao Y, Pu H, Cao Q, Jing H, Liu X. Overexpression of SGLT1 is correlated with tumor development and poor prognosis of ovarian carcinoma. Arch Gynecol Obstet. 2012 May 10;285(5):1455–61. https://doi.org/10.1007/s00404-011-2166-5 LaiB XiaoY PuH CaoQ JingH LiuX. Overexpression of SGLT1 is correlated with tumor development and poor prognosis of ovarian carcinoma Arch Gynecol Obstet. 2012 May 10 285 5 1455 61 https://doi.org/10.1007/s00404-011-2166-5 Search in Google Scholar

Kepe V, Scafoglio C, Liu J, Yong WH, Bergsneider M, Huang SC, et al. Positron emission tomography of sodium glucose cotransport activity in high grade astrocytomas. J Neurooncol. 2018 Jul 10;138(3):557–69. https://doi.org/10.1007/s11060-018-2823-7 KepeV ScafoglioC LiuJ YongWH BergsneiderM HuangSC Positron emission tomography of sodium glucose cotransport activity in high grade astrocytomas J Neurooncol. 2018 Jul 10 138 3 557 69 https://doi.org/10.1007/s11060-018-2823-7 Search in Google Scholar

Scafoglio C, Hirayama BA, Kepe V, Liu J, Ghezzi C, Satyamurthy N, et al. Functional expression of sodium-glucose transporters in cancer. Proc Natl Acad Sci. 2015 Jul 28;112(30). https://doi.org/10.1073/pnas.1511698112 ScafoglioC HirayamaBA KepeV LiuJ GhezziC SatyamurthyN Functional expression of sodium-glucose transporters in cancer Proc Natl Acad Sci. 2015 Jul 28 112 30 https://doi.org/10.1073/pnas.1511698112 Search in Google Scholar

Ishikawa N, Oguri T, Isobe T, Fujitaka K, Kohno N. SGLT Gene Expression in Primary Lung Cancers and Their Metastatic Lesions. Japanese J Cancer Res. 2001 Aug 23;92(8):874–9. https://doi.org/10.1111/j.1349-7006.2001.tb01175.x IshikawaN OguriT IsobeT FujitakaK KohnoN. SGLT Gene Expression in Primary Lung Cancers and Their Metastatic Lesions Japanese J Cancer Res. 2001 Aug 23 92 8 874 9 https://doi.org/10.1111/j.1349-7006.2001.tb01175.x Search in Google Scholar

Scafoglio CR, Villegas B, Abdelhady G, Bailey ST, Liu J, Shirali AS, et al. Sodium-glucose transporter 2 is a diagnostic and therapeutic target for early-stage lung adenocarcinoma. Sci Transl Med. 2018 Nov 14;10(467). https://doi.org/10.1126/scitranslmed.aat5933 ScafoglioCR VillegasB AbdelhadyG BaileyST LiuJ ShiraliAS Sodium-glucose transporter 2 is a diagnostic and therapeutic target for early-stage lung adenocarcinoma Sci Transl Med. 2018 Nov 14 10 467 https://doi.org/10.1126/scitranslmed.aat5933 Search in Google Scholar

Nipon Chattipakorn MD. Dapagliflozin, a sodium-glucose co-transporter-2 inhibitor, slows the progression of renal complications through the suppression of renal inflammation, endoplasmic reticulum stress and apoptosis in prediabetic rats. Nipon ChattipakornMD Dapagliflozin, a sodium-glucose co-transporter-2 inhibitor, slows the progression of renal complications through the suppression of renal inflammation, endoplasmic reticulum stress and apoptosis in prediabetic rats Search in Google Scholar

Sa-nguanmoo P, Tanajak P, Kerdphoo S, Jaiwongkam T, Pratchayasakul W, Chattipakorn N, et al. SGLT2-inhibitor and DPP-4 inhibitor improve brain function via attenuating mitochondrial dysfunction, insulin resistance, inflammation, and apoptosis in HFD-induced obese rats. Toxicol Appl Pharmacol. 2017 Oct;333:43–50. https://doi.org/10.1016/j.taap.2017.08.005 Sa-nguanmooP TanajakP KerdphooS JaiwongkamT PratchayasakulW ChattipakornN SGLT2-inhibitor and DPP-4 inhibitor improve brain function via attenuating mitochondrial dysfunction, insulin resistance, inflammation, and apoptosis in HFD-induced obese rats Toxicol Appl Pharmacol. 2017 Oct 333 43 50 https://doi.org/10.1016/j.taap.2017.08.005 Search in Google Scholar

Komatsu S, Nomiyama T, Numata T, Kawanami T, Hamaguchi Y, Tanaka T, et al. SGLT2 inhibitor ipragliflozin induces breast cancer apoptosis via membrane hyperpolarization and mitochondria dysfunction. Diabetes. 2018;67(Supplement_1). KomatsuS NomiyamaT NumataT KawanamiT HamaguchiY TanakaT SGLT2 inhibitor ipragliflozin induces breast cancer apoptosis via membrane hyperpolarization and mitochondria dysfunction Diabetes 2018 67 Supplement_1 Search in Google Scholar

Kuang H, Liao L, Chen H, Kang Q, Shu X, Wang Y. Therapeutic effect of sodium glucose co-transporter 2 inhibitor dapagliflozin on renal cell carcinoma. Med Sci Monit Int Med J Exp Clin Res. 2017;23:3737. KuangH LiaoL ChenH KangQ ShuX WangY Therapeutic effect of sodium glucose co-transporter 2 inhibitor dapagliflozin on renal cell carcinoma Med Sci Monit Int Med J Exp Clin Res. 2017 23 3737 Search in Google Scholar

Kaji K, Nishimura N, Seki K, Sato S, Saikawa S, Nakanishi K, et al. Sodium glucose cotransporter 2 inhibitor canagliflozin attenuates liver cancer cell growth and angiogenic activity by inhibiting glucose uptake. Int J cancer. 2018;142(8):1712–22. KajiK NishimuraN SekiK SatoS SaikawaS NakanishiK Sodium glucose cotransporter 2 inhibitor canagliflozin attenuates liver cancer cell growth and angiogenic activity by inhibiting glucose uptake Int J cancer. 2018 142 8 1712 22 Search in Google Scholar

Wang Y, Yang L, Mao L, Zhang L, Zhu Y, Xu Y, et al. SGLT2 inhibition restrains thyroid cancer growth via G1/S phase transition arrest and apoptosis mediated by DNA damage response signaling pathways. Cancer Cell Int. 2022 Dec 11;22(1):74. https://doi.org/10.1186/s12935-022-02496-z WangY YangL MaoL ZhangL ZhuY XuY SGLT2 inhibition restrains thyroid cancer growth via G1/S phase transition arrest and apoptosis mediated by DNA damage response signaling pathways Cancer Cell Int. 2022 Dec 11 22 1 74 https://doi.org/10.1186/s12935-022-02496-z Search in Google Scholar

Dutka M, Bobiński R, Francuz T, Garczorz W, Zimmer K, Ilczak T, et al. SGLT-2 Inhibitors in Cancer Treatment—Mechanisms of Action and Emerging New Perspectives. Cancers (Basel). 2022 Nov 25;14(23):5811. https://doi.org/10.3390/cancers14235811 DutkaM BobińskiR FrancuzT GarczorzW ZimmerK IlczakT SGLT-2 Inhibitors in Cancer Treatment—Mechanisms of Action and Emerging New Perspectives Cancers (Basel). 2022 Nov 25 14 23 5811 https://doi.org/10.3390/cancers14235811 Search in Google Scholar

Zhang Z, Xu W, Fang L, Guo S. Correlation of various lipid-lowering and hypoglycemic drugs with the risk of gastric cancer in elderly population. Trop J Pharm Res. 2023 Aug 19;22(7):1503–10. https://doi.org/10.4314/tjpr.v22i7.21 ZhangZ XuW FangL GuoS. Correlation of various lipid-lowering and hypoglycemic drugs with the risk of gastric cancer in elderly population Trop J Pharm Res. 2023 Aug 19 22 7 1503 10 https://doi.org/10.4314/tjpr.v22i7.21 Search in Google Scholar

Tseng CH. The Relationship between Diabetes Mellitus and Gastric Cancer and the Potential Benefits of Metformin: An Extensive Review of the Literature. Biomolecules. 2021 Jul 13;11(7):1022. https://doi.org/10.3390/biom11071022 TsengCH. The Relationship between Diabetes Mellitus and Gastric Cancer and the Potential Benefits of Metformin: An Extensive Review of the Literature Biomolecules. 2021 Jul 13 11 7 1022 https://doi.org/10.3390/biom11071022 Search in Google Scholar

Shuai Y, Li C, Zhou X. The effect of metformin on gastric cancer in patients with type 2 diabetes: a systematic review and meta-analysis. Clin Transl Oncol. 2020 Sep 14;22(9):1580–90. https://doi.org/10.1007/s12094-020-02304-y ShuaiY LiC ZhouX. The effect of metformin on gastric cancer in patients with type 2 diabetes: a systematic review and meta-analysis Clin Transl Oncol. 2020 Sep 14 22 9 1580 90 https://doi.org/10.1007/s12094-020-02304-y Search in Google Scholar

Zhao Z, He X, Sun Y. Hypoglycemic agents and incidence of pancreatic cancer in diabetic patients: a meta-analysis. Front Pharmacol. 2023 Jul 11;14. https://doi.org/10.3389/fphar.2023.1193610 ZhaoZ HeX SunY. Hypoglycemic agents and incidence of pancreatic cancer in diabetic patients: a meta-analysis Front Pharmacol. 2023 Jul 11 14https://doi.org/10.3389/fphar.2023.1193610 Search in Google Scholar

But A, De Bruin ML, Bazelier MT, Hjellvik V, Andersen M, Auvinen A, et al. Cancer risk among insulin users: comparing analogues with human insulin in the CARING five-country cohort study. Diabetologia. 2017 Sep 1;60(9):1691–703. https://doi.org/10.1007/s00125-017-4312-5 ButA De BruinML BazelierMT HjellvikV AndersenM AuvinenA Cancer risk among insulin users: comparing analogues with human insulin in the CARING five-country cohort study Diabetologia. 2017 Sep 1 60 9 1691 703 https://doi.org/10.1007/s00125-017-4312-5 Search in Google Scholar

Colmers IN, Bowker SL, Tjosvold LA, Johnson JA. Insulin use and cancer risk in patients with type 2 diabetes: A systematic review and meta-analysis of observational studies. Diabetes Metab. 2012 Dec;38(6):485–506. https://doi.org/10.1016/j.diabet.2012.08.011 ColmersIN BowkerSL TjosvoldLA JohnsonJA Insulin use and cancer risk in patients with type 2 diabetes: A systematic review and meta-analysis of observational studies Diabetes Metab. 2012 Dec 38 6 485 506 https://doi.org/10.1016/j.diabet.2012.08.011 Search in Google Scholar

Tang X, Yang L, He Z, Liu J. Insulin Glargine and Cancer Risk in Patients with Diabetes: A Meta-Analysis. Baradaran HR, editor. PLoS One. 2012 Dec 19;7(12):e51814. https://doi.org/10.1371/journal.pone.0051814 TangX YangL HeZ LiuJ Insulin Glargine and Cancer Risk in Patients with Diabetes: A Meta-Analysis BaradaranHR editor PLoS One 2012 Dec 19 7 12 e51814 https://doi.org/10.1371/journal.pone.0051814 Search in Google Scholar

Du X, Zhang R, Xue Y, Li D, Cai J, Zhou S, et al. Insulin Glargine and Risk of Cancer: A Meta-Analysis. Int J Biol Markers. 2012 Jul 15;27(3):241–6. https://doi.org/10.5301/JBM.2012.9349 DuX ZhangR XueY LiD CaiJ ZhouS Insulin Glargine and Risk of Cancer: A Meta-Analysis Int J Biol Markers. 2012 Jul 15 27 3 241 6 https://doi.org/10.5301/JBM.2012.9349 Search in Google Scholar

Chang CH, Toh S, Lin JW, Chen ST, Kuo CW, Chuang LM, et al. Cancer Risk Associated with Insulin Glargine among Adult Type 2 Diabetes Patients – A Nationwide Cohort Study. Federici M, editor. PLoS One. 2011 Jun 27;6(6):e21368. https://doi.org/10.1371/journal.pone.0021368 ChangCH TohS LinJW ChenST KuoCW ChuangLM Cancer Risk Associated with Insulin Glargine among Adult Type 2 Diabetes Patients – A Nationwide Cohort Study Federici M editor PLoS One. 2011 Jun 27 6 6 e21368 https://doi.org/10.1371/journal.pone.0021368 Search in Google Scholar

Dąbrowski M, Szymańska-Garbacz E, Miszczyszyn Z, Dereziński T, Czupryniak L. Risk factors for cancer development in type 2 diabetes: A retrospective case-control study. BMC Cancer. 2016 Dec 10;16(1):785. https://doi.org/10.1186/s12885-016-2836-6 DąbrowskiM Szymańska-GarbaczE MiszczyszynZ DerezińskiT CzupryniakL. Risk factors for cancer development in type 2 diabetes: A retrospective case-control study BMC Cancer. 2016 Dec 10 16 1 785 https://doi.org/10.1186/s12885-016-2836-6 Search in Google Scholar

Chen Y, Du L, Li L, Ma J, Geng X, Yao X, et al. Cancer risk of sulfonylureas in patients with type 2 diabetes mellitus: A systematic review. J Diabetes. 2017 May 9;9(5):482–94. https://doi.org/10.1111/1753-0407.12435 ChenY DuL LiL MaJ GengX YaoX Cancer risk of sulfonylureas in patients with type 2 diabetes mellitus: A systematic review J Diabetes. 2017 May 9 9 5 482 94 https://doi.org/10.1111/1753-0407.12435 Search in Google Scholar

Zhao H, Liu Z, Zhuo L, Shen P, Lin H, Sun Y, et al. Sulfonylurea and Cancer Risk Among Patients With Type 2 Diabetes: A Population-Based Cohort Study. Front Endocrinol (Lausanne). 2022 Jun 30;13. https://doi.org/10.3389/fendo.2022.874344 ZhaoH LiuZ ZhuoL ShenP LinH SunY Sulfonylurea and Cancer Risk Among Patients With Type 2 Diabetes: A Population-Based Cohort Study Front Endocrinol (Lausanne). 2022 Jun 30 13https://doi.org/10.3389/fendo.2022.874344 Search in Google Scholar

Olatunde A, Nigam M, Singh RK, Panwar AS, Lasisi A, Alhumaydhi FA, et al. Cancer and diabetes: the interlinking metabolic pathways and repurposing actions of antidiabetic drugs. Cancer Cell Int. 2021 Sep 17;21(1):499. https://doi.org/10.1186/s12935-021-02202-5 OlatundeA NigamM SinghRK PanwarAS LasisiA AlhumaydhiFA Cancer and diabetes: the interlinking metabolic pathways and repurposing actions of antidiabetic drugs Cancer Cell Int. 2021 Sep 17 21 1 499 https://doi.org/10.1186/s12935-021-02202-5 Search in Google Scholar

Bosetti C, Rosato V, Buniato D, Zambon A, La Vecchia C, Corrao G. Cancer Risk for Patients Using Thiazolidinediones for Type 2 Diabetes: A Meta-Analysis. Oncologist. 2013 Feb 1;18(2):148–56. https://doi.org/10.1634/theoncologist.2012-0302 BosettiC RosatoV BuniatoD ZambonA La VecchiaC CorraoG. Cancer Risk for Patients Using Thiazolidinediones for Type 2 Diabetes: A Meta-Analysis Oncologist. 2013 Feb 1 18 2 148 56 https://doi.org/10.1634/theoncologist.2012-0302 Search in Google Scholar

Tang H, Shi W, Fu S, Wang T, Zhai S, Song Y, et al. Pioglitazone and bladder cancer risk: a systematic review and meta-analysis. Cancer Med. 2018 Apr 24;7(4):1070–80. https://doi.org/10.1002/cam4.1354 TangH ShiW FuS WangT ZhaiS SongY Pioglitazone and bladder cancer risk: a systematic review and meta-analysis Cancer Med. 2018 Apr 24 7 4 1070 80 https://doi.org/10.1002/cam4.1354 Search in Google Scholar

Busek P, Vanickova Z, Hrabal P, Brabec M, Fric P, Zavoral M, et al. Increased tissue and circulating levels of dipeptidyl peptidase-IV enzymatic activity in patients with pancreatic ductal adenocarcinoma. Pancreatology. 2016 Sep;16(5):829–38. https://doi.org/10.1016/j.pan.2016.06.001 BusekP VanickovaZ HrabalP BrabecM FricP ZavoralM Increased tissue and circulating levels of dipeptidyl peptidase-IV enzymatic activity in patients with pancreatic ductal adenocarcinoma Pancreatology 2016 Sep 16 5 829 38 https://doi.org/10.1016/j.pan.2016.06.001 Search in Google Scholar

Butler AE, Campbell-Thompson M, Gurlo T, Dawson DW, Atkinson M, Butler PC. Marked Expansion of Exocrine and Endocrine Pancreas With Incretin Therapy in Humans With Increased Exocrine Pancreas Dysplasia and the Potential for Glucagon-Producing Neuroendocrine Tumors. Diabetes. 2013 Jul 1;62(7):2595–604. https://doi.org/10.2337/db12-1686 ButlerAE Campbell-ThompsonM GurloT DawsonDW AtkinsonM ButlerPC. Marked Expansion of Exocrine and Endocrine Pancreas With Incretin Therapy in Humans With Increased Exocrine Pancreas Dysplasia and the Potential for Glucagon-Producing Neuroendocrine Tumors Diabetes. 2013 Jul 1 62 7 2595 604 https://doi.org/10.2337/db12-1686 Search in Google Scholar

Ueberberg S, Jütte H, Uhl W, Schmidt W, Nauck M, Montanya E, et al. Histological changes in endocrine and exocrine pancreatic tissue from patients exposed to incretin-based therapies. Diabetes, Obes Metab. 2016 Dec 26;18(12):1253–62. https://doi.org/10.1111/dom.12766 UeberbergS JütteH UhlW SchmidtW NauckM MontanyaE Histological changes in endocrine and exocrine pancreatic tissue from patients exposed to incretin-based therapies Diabetes, Obes Metab. 2016 Dec 26 18 12 1253 62 https://doi.org/10.1111/dom.12766 Search in Google Scholar

Cox AR, Lam CJ, Rankin MM, Rios JS, Chavez J, Bonnyman CW, et al. Incretin Therapies Do Not Expand β-Cell Mass or Alter Pancreatic Histology in Young Male Mice. Endocrinology. 2017 Jun 1;158(6):1701–14. https://doi.org/10.1210/en.2017-00027 CoxAR LamCJ RankinMM RiosJS ChavezJ BonnymanCW Incretin Therapies Do Not Expand β-Cell Mass or Alter Pancreatic Histology in Young Male Mice Endocrinology. 2017 Jun 1 158 6 1701 14 https://doi.org/10.1210/en.2017-00027 Search in Google Scholar

Abd El Aziz M, Cahyadi O, Meier JJ, Schmidt WE, Nauck MA. Incretin-based glucose-lowering medications and the risk of acute pancreatitis and malignancies: a meta-analysis based on cardiovascular outcomes trials. Diabetes, Obes Metab. 2020 Apr 11;22(4):699–704. https://doi.org/10.1111/dom.13924 Abd El AzizM CahyadiO MeierJJ SchmidtWE NauckMA. Incretin-based glucose-lowering medications and the risk of acute pancreatitis and malignancies: a meta-analysis based on cardiovascular outcomes trials Diabetes, Obes Metab. 2020 Apr 11 22 4 699 704 https://doi.org/10.1111/dom.13924 Search in Google Scholar

Dicembrini I, Montereggi C, Nreu B, Mannucci E, Monami M. Pancreatitis and pancreatic cancer in patientes treated with Dipeptidyl Peptidase-4 inhibitors: An extensive and updated meta-analysis of randomized controlled trials. Diabetes Res Clin Pract. 2020 Jan;159:107981. https://doi.org/10.1016/j.diabres.2019.107981 DicembriniI MontereggiC NreuB MannucciE MonamiM Pancreatitis and pancreatic cancer in patientes treated with Dipeptidyl Peptidase-4 inhibitors: An extensive and updated meta-analysis of randomized controlled trials Diabetes Res Clin Pract. 2020 Jan 159 107981 https://doi.org/10.1016/j.diabres.2019.107981 Search in Google Scholar

Dicembrini I, Nreu B, Montereggi C, Mannucci E, Monami M. Risk of cancer in patients treated with dipeptidyl peptidase-4 inhibitors: an extensive meta-analysis of randomized controlled trials. Acta Diabetol. 2020 Jun 18;57(6):689–96. https://doi.org/10.1007/s00592-020-01479-8 DicembriniI NreuB MontereggiC MannucciE MonamiM. Risk of cancer in patients treated with dipeptidyl peptidase-4 inhibitors: an extensive meta-analysis of randomized controlled trials Acta Diabetol. 2020 Jun 18 57 6 689 96 https://doi.org/10.1007/s00592-020-01479-8 Search in Google Scholar

Boniol M, Franchi M, Bota M, Leclercq A, Guillaume J, van Damme N, et al. Incretin-Based Therapies and the Short-term Risk of Pancreatic Cancer: Results From Two Retrospective Cohort Studies. Diabetes Care. 2018 Feb 1;41(2):286–92. https://doi.org/10.2337/dc17-0280 BoniolM FranchiM BotaM LeclercqA GuillaumeJ van DammeN Incretin-Based Therapies and the Short-term Risk of Pancreatic Cancer: Results From Two Retrospective Cohort Studies Diabetes Care. 2018 Feb 1 41 2 286 92 https://doi.org/10.2337/dc17-0280 Search in Google Scholar

Lee M, Sun J, Han M, Cho Y, Lee JY, Nam CM, et al. Nationwide Trends in Pancreatitis and Pancreatic Cancer Risk Among Patients With Newly Diagnosed Type 2 Diabetes Receiving Dipeptidyl Peptidase 4 Inhibitors. Diabetes Care. 2019 Nov 1;42(11):2057–64. https://doi.org/10.2337/dc18-2195 LeeM SunJ HanM ChoY LeeJY NamCM Nationwide Trends in Pancreatitis and Pancreatic Cancer Risk Among Patients With Newly Diagnosed Type 2 Diabetes Receiving Dipeptidyl Peptidase 4 Inhibitors Diabetes Care. 2019 Nov 1 42 11 2057 64 https://doi.org/10.2337/dc18-2195 Search in Google Scholar

Abrahami D, Douros A, Yin H, Yu OH, Faillie JL, Montastruc F, et al. Incretin based drugs and risk of cholangiocarcinoma among patients with type 2 diabetes: population based cohort study. BMJ. 2018 Dec 5;k4880. https://doi.org/10.1136/bmj.k4880 AbrahamiD DourosA YinH YuOH FaillieJL MontastrucF Incretin based drugs and risk of cholangiocarcinoma among patients with type 2 diabetes: population based cohort study BMJ 2018 Dec 5 k4880 https://doi.org/10.1136/bmj.k4880 Search in Google Scholar

Pech V, Abusaada K, Alemany C. Dipeptidyl Peptidase-4 Inhibition May Stimulate Progression of Carcinoid Tumor. Case Rep Endocrinol. 2015;2015:1–3. https://doi.org/10.1155/2015/952019 PechV AbusaadaK AlemanyC Dipeptidyl Peptidase-4 Inhibition May Stimulate Progression of Carcinoid Tumor Case Rep Endocrinol. 2015 2015 1 3 https://doi.org/10.1155/2015/952019 Search in Google Scholar

Yang F, Takagaki Y, Yoshitomi Y, Ikeda T, Li J, Kitada M, et al. Inhibition of Dipeptidyl Peptidase-4 Accelerates Epithelial–Mesenchymal Transition and Breast Cancer Metastasis via the CXCL12/CXCR4/mTOR Axis. Cancer Res. 2019 Feb 15;79(4):735–46. https://doi.org/10.1158/0008-5472.CAN-18-0620 YangF TakagakiY YoshitomiY IkedaT LiJ KitadaM Inhibition of Dipeptidyl Peptidase-4 Accelerates Epithelial–Mesenchymal Transition and Breast Cancer Metastasis via the CXCL12/CXCR4/mTOR Axis Cancer Res. 2019 Feb 15 79 4 735 46 https://doi.org/10.1158/0008-5472.CAN-18-0620 Search in Google Scholar

Kim KR, Rhee SD, Hee Youn Kim, Won Hoon Jung, Yang SD, Sung Soo Kim, et al. KR-62436, 6-{2-[2-(5-cyano-4,5-dihydropyrazol-1-yl)-2-oxoethylamino]ethylamino}nicotinonitrile, is a novel dipeptidyl peptidase-IV (DPP-IV) inhibitor with anti-hyperglycemic activity. Eur J Pharmacol. 2005 Jul;518(1):63–70. https://doi.org/10.1016/j.ejphar.2005.05.030 KimKR RheeSD HeeYoun Kim WonHoon Jung YangSD Sung SooKim KR-62436, 6-{2-[2-(5-cyano-4,5-dihydropyrazol-1-yl)-2-oxoethylamino]ethylamino}nicotinonitrile, is a novel dipeptidyl peptidase-IV (DPP-IV) inhibitor with anti-hyperglycemic activity Eur J Pharmacol. 2005 Jul 518 1 63 70 https://doi.org/10.1016/j.ejphar.2005.05.030 Search in Google Scholar

Russo JW, Gao C, Bhasin SS, Voznesensky OS, Calagua C, Arai S, et al. Downregulation of Dipeptidyl Peptidase 4 Accelerates Progression to Castration-Resistant Prostate Cancer. Cancer Res. 2018 Nov 15;78(22):6354–62. https://doi.org/10.1158/0008-5472.CAN-18-0687 RussoJW GaoC BhasinSS VoznesenskyOS CalaguaC AraiS Downregulation of Dipeptidyl Peptidase 4 Accelerates Progression to Castration-Resistant Prostate Cancer Cancer Res. 2018 Nov 15 78 22 6354 62 https://doi.org/10.1158/0008-5472.CAN-18-0687 Search in Google Scholar

He L, Zhang T, Sun W, Qin Y, Wang Z, Dong W, et al. The DPP-IV inhibitor saxagliptin promotes the migration and invasion of papillary thyroid carcinoma cells via the NRF2/HO1 pathway. Med Oncol. 2020 Nov 1;37(11):97. https://doi.org/10.1007/s12032-020-01419-0 HeL ZhangT SunW QinY WangZ DongW The DPP-IV inhibitor saxagliptin promotes the migration and invasion of papillary thyroid carcinoma cells via the NRF2/HO1 pathway Med Oncol. 2020 Nov 1 37 11 97 https://doi.org/10.1007/s12032-020-01419-0 Search in Google Scholar

Wang H, Liu X, Long M, Huang Y, Zhang L, Zhang R, et al. NRF2 activation by antioxidant antidiabetic agents accelerates tumor metastasis. Sci Transl Med. 2016 Apr 13;8(334). https://doi.org/10.1126/scitranslmed.aad6095 WangH LiuX LongM HuangY ZhangL ZhangR NRF2 activation by antioxidant antidiabetic agents accelerates tumor metastasis Sci Transl Med. 2016 Apr 13 8 334 https://doi.org/10.1126/scitranslmed.aad6095 Search in Google Scholar

Tseng CH. Sitagliptin May Reduce Breast Cancer Risk in Women With Type 2 Diabetes. Clin Breast Cancer. 2017 Jun;17(3):211–8. https://doi.org/10.1016/j.clbc.2016.11.002 TsengCH Sitagliptin May Reduce Breast Cancer Risk in Women With Type 2 Diabetes Clin Breast Cancer. 2017 Jun 17 3 211 8 https://doi.org/10.1016/j.clbc.2016.11.002 Search in Google Scholar

Hsu WH, Sue SP, Liang HL, Tseng CW, Lin HC, Wen WL, et al. Dipeptidyl Peptidase 4 Inhibitors Decrease the Risk of Hepatocellular Carcinoma in Patients With Chronic Hepatitis C Infection and Type 2 Diabetes Mellitus: A Nationwide Study in Taiwan. Front Public Heal. 2021 Sep 17;9. https://doi.org/10.3389/fpubh.2021.711723 HsuWH SueSP LiangHL TsengCW LinHC WenWL Dipeptidyl Peptidase 4 Inhibitors Decrease the Risk of Hepatocellular Carcinoma in Patients With Chronic Hepatitis C Infection and Type 2 Diabetes Mellitus: A Nationwide Study in Taiwan Front Public Heal. 2021 Sep 17 9https://doi.org/10.3389/fpubh.2021.711723 Search in Google Scholar

Busek P, Duke-Cohan JS, Sedo A. Does DPPIV Inhibition Offer New Avenues for Therapeutic Intervention in Malignant Disease? Cancers (Basel). 2022 Apr 21;14(9):2072. https://doi.org/10.3390/cancers14092072 BusekP Duke-CohanJS SedoA Does DPPIV Inhibition Offer New Avenues for Therapeutic Intervention in Malignant Disease? Cancers (Basel) 2022 Apr 21 14 9 2072 https://doi.org/10.3390/cancers14092072 Search in Google Scholar

Bjerre Knudsen L, Madsen LW, Andersen S, Almholt K, de Boer AS, Drucker DJ, et al. Glucagon-Like Peptide-1 Receptor Agonists Activate Rodent Thyroid C-Cells Causing Calcitonin Release and C-Cell Proliferation. Endocrinology. 2010 Apr 1;151(4):1473–86. https://doi.org/10.1210/en.2009-1272 Bjerre KnudsenL MadsenLW AndersenS AlmholtK de BoerAS DruckerDJ Glucagon-Like Peptide-1 Receptor Agonists Activate Rodent Thyroid C-Cells Causing Calcitonin Release and C-Cell Proliferation Endocrinology. 2010 Apr 1 151 4 1473 86 https://doi.org/10.1210/en.2009-1272 Search in Google Scholar

Bezin J, Gouverneur A, Pénichon M, Mathieu C, Garrel R, Hillaire-Buys D, et al. GLP-1 Receptor Agonists and the Risk of Thyroid Cancer. Diabetes Care. 2023 Feb 1;46(2):384–90. https://doi.org/10.2337/dc22-1148 BezinJ GouverneurA PénichonM MathieuC GarrelR Hillaire-BuysD GLP-1 Receptor Agonists and the Risk of Thyroid Cancer Diabetes Care. 2023 Feb 1 46 2 384 90 https://doi.org/10.2337/dc22-1148 Search in Google Scholar

Knapen LM, van Dalem J, Keulemans YC, van Erp NP, Bazelier MT, De Bruin ML, et al. Use of incretin agents and risk of pancreatic cancer: a population-based cohort study. Diabetes, Obes Metab. 2016 Mar 8;18(3):258–65. https://doi.org/10.1111/dom.12605 KnapenLM van DalemJ KeulemansYC van ErpNP BazelierMT De BruinML Use of incretin agents and risk of pancreatic cancer: a population-based cohort study Diabetes, Obes Metab. 2016 Mar 8 18 3 258 65 https://doi.org/10.1111/dom.12605 Search in Google Scholar

Vasilakou D, Karagiannis T, Athanasiadou E, Mainou M, Liakos A, Bekiari E, et al. Sodium–glucose cotransporter 2 inhibitors for type 2 diabetes: a systematic review and meta-analysis. Ann Intern Med. 2013;159(4):262–74. VasilakouD KaragiannisT AthanasiadouE MainouM LiakosA BekiariE Sodium–glucose cotransporter 2 inhibitors for type 2 diabetes: a systematic review and meta-analysis Ann Intern Med. 2013 159 4 262 74 Search in Google Scholar

Tang H, Dai Q, Shi W, Zhai S, Song Y, Han J. SGLT2 inhibitors and risk of cancer in type 2 diabetes: a systematic review and meta-analysis of randomised controlled trials. Diabetologia. 2017;60(10):1862–72. https://doi.org/10.1007/s00125-017-4370-8 TangH DaiQ ShiW ZhaiS SongY HanJ SGLT2 inhibitors and risk of cancer in type 2 diabetes: a systematic review and meta-analysis of randomised controlled trials Diabetologia 2017 60 10 1862 72 https://doi.org/10.1007/s00125-017-4370-8 Search in Google Scholar

Dicembrini I, Nreu B, Mannucci E, Monami M. Sodium-glucose co-transporter-2 (SGLT-2) inhibitors and cancer: a meta-analysis of randomized controlled trials. Diabetes, Obes Metab. 2019;21(8):1871–7. DicembriniI NreuB MannucciE MonamiM Sodium-glucose co-transporter-2 (SGLT-2) inhibitors and cancer: a meta-analysis of randomized controlled trials Diabetes, Obes Metab. 2019 21 8 1871 7 Search in Google Scholar

Liu YC, Nguyen PA, Humayun A, Chien SC, Yang HC, Asdary RN, et al. Does long-term use of antidiabetic drugs changes cancer risk? Medicine (Baltimore). 2019 Oct;98(40):e17461. https://doi.org/10.1097/MD.0000000000017461 LiuYC NguyenPA HumayunA ChienSC YangHC AsdaryRN Does long-term use of antidiabetic drugs changes cancer risk? Medicine (Baltimore) 2019 Oct 98 40 e17461 https://doi.org/10.1097/MD.0000000000017461 Search in Google Scholar

Gales L, Forsea L, Mitrea D, Stefanica I, Stanculescu I, Mitrica R, et al. Antidiabetics, Anthelmintics, Statins, and Beta-Blockers as Co-Adjuvant Drugs in Cancer Therapy. Medicina (B Aires). 2022 Sep 7;58(9):1239. https://doi.org/10.3390/medicina58091239 GalesL ForseaL MitreaD StefanicaI StanculescuI MitricaR Antidiabetics, Anthelmintics, Statins, and Beta-Blockers as Co-Adjuvant Drugs in Cancer Therapy Medicina (B Aires). 2022 Sep 7 58 9 1239 https://doi.org/10.3390/medicina58091239 Search in Google Scholar

Morale MG, Tamura RE, Rubio IGS. Metformin and Cancer Hallmarks: Molecular Mechanisms in Thyroid, Prostate and Head and Neck Cancer Models. Biomolecules. 2022 Feb 24;12(3):357. https://doi.org/10.3390/biom12030357 MoraleMG TamuraRE RubioIGS Metformin and Cancer Hallmarks: Molecular Mechanisms in Thyroid, Prostate and Head and Neck Cancer Models Biomolecules 2022 Feb 24 15 3 357 https://doi.org/10.3390/biom12030357 Search in Google Scholar

Kim SH, Kang JG, Kim CS, Ihm SH, Choi MG, Yoo HJ, et al. Synergistic cytotoxicity of the dipeptidyl peptidase-IV inhibitor gemigliptin with metformin in thyroid carcinoma cells. Endocrine. 2018 Feb 28;59(2):383–94. https://doi.org/10.1007/s12020-017-1503-2 KimSH KangJG KimCS IhmSH ChoiMG YooHJ Synergistic cytotoxicity of the dipeptidyl peptidase-IV inhibitor gemigliptin with metformin in thyroid carcinoma cells Endocrine. 2018 Feb 28 59 2 383 94 https://doi.org/10.1007/s12020-017-1503-2 Search in Google Scholar

Ozdemir Kutbay N, Biray Avci C, Sarer Yurekli B, Caliskan Kurt C, Shademan B, Gunduz C, et al. Effects of metformin and pioglitazone combination on apoptosis and AMPK/mTOR signaling pathway in human anaplastic thyroid cancer cells. J Biochem Mol Toxicol. 2020 Oct 26;34(10). https://doi.org/10.1002/jbt.22547 Ozdemir KutbayN Biray AvciC Sarer YurekliB Caliskan KurtC ShademanB GunduzC Effects of metformin and pioglitazone combination on apoptosis and AMPK/mTOR signaling pathway in human anaplastic thyroid cancer cells J Biochem Mol Toxicol. 2020 Oct 26 34 10 https://doi.org/10.1002/jbt.22547 Search in Google Scholar

Zheng J, Xie SH, Santoni G, Lagergren J. Metformin use and risk of gastric adenocarcinoma in a Swedish population-based cohort study. Br J Cancer. 2019 Nov 12;121(10):877–82. https://doi.org/10.1038/s41416-019-0598-z ZhengJ XieSH SantoniG LagergrenJ. Metformin use and risk of gastric adenocarcinoma in a Swedish population-based cohort study Br J Cancer. 2019 Nov 12 121 10 877 82 https://doi.org/10.1038/s41416-019-0598-z Search in Google Scholar

Rothermundt C, Hayoz S, Templeton AJ, Winterhalder R, Strebel RT, Bärtschi D, et al. Metformin in Chemotherapy-naive Castration-resistant Prostate Cancer: A Multicenter Phase 2 Trial (SAKK 08/09). Eur Urol. 2014 Sep;66(3):468–74. https://doi.org/10.1016/j.eururo.2013.12.057 RothermundtC HayozS TempletonAJ WinterhalderR StrebelRT BärtschiD Metformin in Chemotherapy-naive Castration-resistant Prostate Cancer: A Multicenter Phase 2 Trial (SAKK 08/09) Eur Urol. 2014 Sep 66 3 468 74 https://doi.org/10.1016/j.eururo.2013.12.057 Search in Google Scholar

Handelsman Y, LeRoith D, Bloomgarden ZT, Dagogo-Jack S, Einhorn D, Garber AJ, et al. Diabetes and Cancer—An AACE/ACE Consensus Statement. Endocr Pract. 2013 Jul;19(4):675–93. https://doi.org/10.4158/EP13248.CS HandelsmanY LeRoithD BloomgardenZT Dagogo-JackS EinhornD GarberAJ Diabetes and Cancer—An AACE/ACE Consensus Statement Endocr Pract. 2013 Jul 19 4 675 93 https://doi.org/10.4158/EP13248.CS Search in Google Scholar

Scharping NE, Menk A V., Whetstone RD, Zeng X, Delgoffe GM. Efficacy of PD-1 Blockade Is Potentiated by Metformin-Induced Reduction of Tumor Hypoxia. Cancer Immunol Res. 2017 Jan 1;5(1):9–16. https://doi.org/10.1158/2326-6066.CIR-16-0103 ScharpingNE MenkA V. WhetstoneRD ZengX DelgoffeGM. Efficacy of PD-1 Blockade Is Potentiated by Metformin-Induced Reduction of Tumor Hypoxia Cancer Immunol Res. 2017 Jan 1 5 1 9 16 https://doi.org/10.1158/2326-6066.CIR-16-0103 Search in Google Scholar

Zhan ZT, Liu L, Cheng MZ, Gao Y, Zhou WJ. The Effects of 6 Common Antidiabetic Drugs on Anti-PD1 Immune Checkpoint Inhibitor in Tumor Treatment. Xu B, editor. J Immunol Res. 2022 Aug 18;2022:1–24. https://doi.org/10.1155/2022/2651790 ZhanZT LiuL ChengMZ GaoY ZhouWJ The Effects of 6 Common Antidiabetic Drugs on Anti-PD1 Immune Checkpoint Inhibitor in Tumor Treatment XuB editor J Immunol Res 2022 Aug 18 2022 1 24 https://doi.org/10.1155/2022/2651790 Search in Google Scholar

Brown JR, Chan DK, Shank JJ, Griffith KA, Fan H, Szulawski R, et al. Phase II clinical trial of metformin as a cancer stem cell–targeting agent in ovarian cancer. JCI insight. 2020;5(11). BrownJR ChanDK ShankJJ GriffithKA FanH SzulawskiR Phase II clinical trial of metformin as a cancer stem cell–targeting agent in ovarian cancer JCI insight 2020 5 11 Search in Google Scholar

Curry JM, Johnson J, Mollaee M, Tassone P, Amin D, Knops A, et al. Metformin clinical trial in HPV+ and HPV–head and neck squamous cell carcinoma: impact on cancer cell apoptosis and immune infiltrate. Front Oncol. 2018;8:436. CurryJM JohnsonJ MollaeeM TassoneP AminD KnopsA Metformin clinical trial in HPV+ and HPV–head and neck squamous cell carcinoma: impact on cancer cell apoptosis and immune infiltrate Front Oncol 2018 8 436 Search in Google Scholar

Gutkind JS, Molinolo AA, Wu X, Wang Z, Nachmanson D, Harismendy O, et al. Inhibition of mTOR signaling and clinical activity of metformin in oral premalignant lesions. JCI insight. 2021;6(17). GutkindJS MolinoloAA WuX WangZ NachmansonD HarismendyO Inhibition of mTOR signaling and clinical activity of metformin in oral premalignant lesions JCI insight 2021 6 17 Search in Google Scholar

Durai L, Ravindran S, Arvind K, Karunagaran D, Vijayalakshmi R. Synergistic effect of metformin and vemurufenib (PLX4032) as a molecular targeted therapy in anaplastic thyroid cancer: an in vitro study. Mol Biol Rep. 2021 Nov 30;48(11):7443–56. https://doi.org/10.1007/s11033-021-06762-7 DuraiL RavindranS ArvindK KarunagaranD VijayalakshmiR. Synergistic effect of metformin and vemurufenib (PLX4032) as a molecular targeted therapy in anaplastic thyroid cancer: an in vitro study Mol Biol Rep. 2021 Nov 30 48 11 7443 56 https://doi.org/10.1007/s11033-021-06762-7 Search in Google Scholar

Eibl G, Rozengurt E. Metformin: review of epidemiology and mechanisms of action in pancreatic cancer. Cancer Metastasis Rev. 2021 Sep 17;40(3):865–78. https://doi.org/10.1007/s10555-021-09977-z EiblG RozengurtE. Metformin: review of epidemiology and mechanisms of action in pancreatic cancer Cancer Metastasis Rev. 2021 Sep 17 40 3 865 78 https://doi.org/10.1007/s10555-021-09977-z Search in Google Scholar

Jang J, Lee TJ, Sung EG, Song IH, Kim JY. Dapagliflozin induces apoptosis by downregulating cFILP L and increasing cFILP S instability in Caki-1 cells. Oncol Lett. 2022 Sep 22;24(5):401. https://doi.org/10.3892/ol.2022.13521 JangJ LeeTJ SungEG SongIH KimJY. Dapagliflozin induces apoptosis by downregulating cFILP L and increasing cFILP S instability in Caki-1 cells Oncol Lett. 2022 Sep 22 24 5 401 https://doi.org/10.3892/ol.2022.13521 Search in Google Scholar

Xu D, Zhou Y, Xie X, He L, Ding J, Pang S, et al. Inhibitory effects of canagliflozin on pancreatic cancer are mediated via the downregulation of glucose transporter-1 and lactate dehydrogenase A. Int J Oncol. 2020 Sep 8; https://doi.org/10.3892/ijo.2020.5120 XuD ZhouY XieX HeL DingJ PangS Inhibitory effects of canagliflozin on pancreatic cancer are mediated via the downregulation of glucose transporter-1 and lactate dehydrogenase A Int J Oncol. 2020 Sep 8 https://doi.org/10.3892/ijo.2020.5120 Search in Google Scholar

Li H, Tong CWS, Leung Y, Wong MH, To KKW, Leung KS. Identification of Clinically Approved Drugs Indacaterol and Canagliflozin for Repurposing to Treat Epidermal Growth Factor Tyrosine Kinase Inhibitor-Resistant Lung Cancer. Front Oncol. 2017 Nov 29;7. https://doi.org/10.3389/fonc.2017.00288 LiH TongCWS LeungY WongMH ToKKW LeungKS. Identification of Clinically Approved Drugs Indacaterol and Canagliflozin for Repurposing to Treat Epidermal Growth Factor Tyrosine Kinase Inhibitor-Resistant Lung Cancer Front Oncol. 2017 Nov 29 7https://doi.org/10.3389/fonc.2017.00288 Search in Google Scholar

Zhou J, Zhu J, Yu SJ, Ma HL, Chen J, Ding XF, et al. Sodium-glucose co-transporter-2 (SGLT-2) inhibition reduces glucose uptake to induce breast cancer cell growth arrest through AMPK/mTOR pathway. Biomed Pharmacother. 2020 Dec;132:110821. https://doi.org/10.1016/j.biopha.2020.110821 ZhouJ ZhuJ YuSJ MaHL ChenJ DingXF Sodium-glucose co-transporter-2 (SGLT-2) inhibition reduces glucose uptake to induce breast cancer cell growth arrest through AMPK/mTOR pathway Biomed Pharmacother 2020 Dec 132 110821 https://doi.org/10.1016/j.biopha.2020.110821 Search in Google Scholar

Ali A, Mekhaeil B, Biziotis OD, Tsakiridis EE, Ahmadi E, Wu J, et al. The SGLT2 inhibitor canagliflozin suppresses growth and enhances prostate cancer response to radiotherapy. Commun Biol. 2023 Sep 8;6(1):919. https://doi.org/10.1038/s42003-023-05289-w AliA MekhaeilB BiziotisOD TsakiridisEE AhmadiE WuJ The SGLT2 inhibitor canagliflozin suppresses growth and enhances prostate cancer response to radiotherapy Commun Biol. 2023 Sep 8 6 1 919 https://doi.org/10.1038/s42003-023-05289-w Search in Google Scholar

Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
2 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Medizin, Klinische Medizin, Allgemeinmedizin, Innere Medizin, Hämatologie, Onkologie