This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Dąbrowski M. Diabetes, Antidiabetic Medications and Cancer Risk in Type 2 Diabetes: Focus on SGLT-2 Inhibitors. Int J Mol Sci. 2021 Feb 7;22(4):1680. https://doi.org/10.3390/ijms22041680DąbrowskiM.Diabetes, Antidiabetic Medications and Cancer Risk in Type 2 Diabetes: Focus on SGLT-2 InhibitorsInt J Mol Sci.2021Feb72241680https://doi.org/10.3390/ijms22041680Search in Google Scholar
Lancet T. GLOBOCAN 2018: counting the toll of cancer. Vol. 392, Lancet (London, England). 2018. p. 985.LancetT.GLOBOCAN 2018: counting the toll of cancer392Lancet (London, England)2018985Search in Google Scholar
Duan W, Shen X, Lei J, Xu Q, Yu Y, Li R, et al. Hyperglycemia, a neglected factor during cancer progression. Biomed Res Int. 2014;2014.DuanWShenXLeiJXuQYuYLiRHyperglycemia, a neglected factor during cancer progressionBiomed Res Int.20142014Search in Google Scholar
Kotwal A, Cheung YMM, Cromwell G, Drincic A, Leblebjian H, Quandt Z, et al. Patient-Centered Diabetes Care of Cancer Patients. Curr Diab Rep. 2021 Dec 13;21(12):62. https://doi.org/10.1007/s11892-021-01435-yKotwalACheungYMMCromwellGDrincicALeblebjianHQuandtZPatient-Centered Diabetes Care of Cancer PatientsCurr Diab Rep.2021Dec13211262https://doi.org/10.1007/s11892-021-01435-ySearch in Google Scholar
Mouri Mi, Badireddy M. Hyperglycemia [Internet]. StatPearls. 2023.MouriMiBadireddyMHyperglycemia [Internet]StatPearls2023Search in Google Scholar
Ahmed GM, Abed MN, Alassaf FA. Impact of calcium channel blockers and angiotensin receptor blockers on hematological parameters in type 2 diabetic patients. Naunyn Schmiedebergs Arch Pharmacol. 2023 Sep; https://doi.org/10.1007/s00210-023-02731-yAhmedGMAbedMNAlassafFAImpact of calcium channel blockers and angiotensin receptor blockers on hematological parameters in type 2 diabetic patientsNaunyn Schmiedebergs Arch Pharmacol2023Sephttps://doi.org/10.1007/s00210-023-02731-ySearch in Google Scholar
ALASSAF FA, JASIM MHM, ALFAHAD M, QAZZAZ ME, ABED MN, THANOON IAJ. Effects of Bee Propolis on FBG, HbA1c, and Insulin Resistance in Healthy Volunteers. Turkish J Pharm Sci. 2021 Sep 1;18(4):405–9. https://doi.org/10.4274/tjps.galenos.2020.50024ALASSAFFAJASIMMHMALFAHADMQAZZAZMEABEDMNTHANOONIAJEffects of Bee Propolis on FBG, HbA1c, and Insulin Resistance in Healthy VolunteersTurkish J Pharm Sci.2021Sep11844059https://doi.org/10.4274/tjps.galenos.2020.50024Search in Google Scholar
Ramteke P, Deb A, Shepal V, Bhat MK. Hyperglycemia Associated Metabolic and Molecular Alterations in Cancer Risk, Progression, Treatment, and Mortality. Cancers (Basel). 2019 Sep 19;11(9):1402. https://doi.org/10.3390/cancers11091402RamtekePDebAShepalVBhatMKHyperglycemia Associated Metabolic and Molecular Alterations in Cancer Risk, Progression, Treatment, and MortalityCancers (Basel)2019Sep191191402https://doi.org/10.3390/cancers11091402Search in Google Scholar
Alassaf FA, Qazzaz ME, Alfahad M, Abed MN, Jasim MHM, Thanoon IAJ. Effects of bee propolis on thyroid function tests in healthy volunteers. Trop J Pharm Res. 2022 Jan;20(4):859–63. https://doi.org/10.4314/tjpr.v20i4.28AlassafFAQazzazMEAlfahadMAbedMNJasimMHMThanoonIAJEffects of bee propolis on thyroid function tests in healthy volunteersTrop J Pharm Res.2022Jan20485963https://doi.org/10.4314/tjpr.v20i4.28Search in Google Scholar
Chandel NS. Glycolysis. Cold Spring Harb Perspect Biol. 2021 May 3;13(5):a040535. https://doi.org/10.1101/cshperspect.a040535ChandelNS.GlycolysisCold Spring Harb Perspect Biol.2021May3135a040535https://doi.org/10.1101/cshperspect.a040535Search in Google Scholar
DeBerardinis RJ, Chandel NS. We need to talk about the Warburg effect. Nat Metab. 2020 Feb 3;2(2):127–9. https://doi.org/10.1038/s42255-020-0172-2DeBerardinisRJChandelNS.We need to talk about the Warburg effectNat Metab.2020Feb3221279https://doi.org/10.1038/s42255-020-0172-2Search in Google Scholar
Abed MN, Alassaf FA, Qazzaz ME. Exploring the Interplay between Vitamin D, Insulin Resistance, Obesity and Skeletal Health. J Bone Metab. 2024 May 31;31(2):75–89. https://doi.org/10.11005/jbm.2024.31.2.75AbedMNAlassafFAQazzazMEExploring the Interplay between Vitamin D, Insulin Resistance, Obesity and Skeletal HealthJ Bone Metab.2024May313127589https://doi.org/10.11005/jbm.2024.31.2.75Search in Google Scholar
Simons A, Mattson D, Dornfeld K, Spitz D. Glucose deprivation-induced metabolic oxidative stress and cancer therapy. J Cancer Res Ther. 2009;5(9):2. https://doi.org/10.4103/0973-1482.55133SimonsAMattsonDDornfeldKSpitzDGlucose deprivation-induced metabolic oxidative stress and cancer therapyJ Cancer Res Ther.2009592https://doi.org/10.4103/0973-1482.55133Search in Google Scholar
Alam S, Hasan MK, Neaz S, Hussain N, Hossain MF, Rahman T. Diabetes Mellitus: Insights from Epidemiology, Biochemistry, Risk Factors, Diagnosis, Complications and Comprehensive Management. Diabetology. 2021 Apr 16;2(2):36–50. https://doi.org/10.3390/diabetology2020004AlamSHasanMKNeazSHussainNHossainMFRahmanT.Diabetes Mellitus: Insights from Epidemiology, Biochemistry, Risk Factors, Diagnosis, Complications and Comprehensive ManagementDiabetology.2021Apr16223650https://doi.org/10.3390/diabetology2020004Search in Google Scholar
Yaribeygi H, Lhaf F, Sathyapalan T, Sahebkar A. Effects of novel antidiabetes agents on apoptotic processes in diabetes and malignancy: Implications for lowering tissue damage. Life Sci. 2019 Aug;231:116538. https://doi.org/10.1016/j.lfs.2019.06.013YaribeygiHLhafFSathyapalanTSahebkarAEffects of novel antidiabetes agents on apoptotic processes in diabetes and malignancy: Implications for lowering tissue damageLife Sci.2019Aug231116538https://doi.org/10.1016/j.lfs.2019.06.013Search in Google Scholar
Akins NS, Nielson TC, Le H V. Inhibition of Glycolysis and Glutaminolysis: An Emerging Drug Discovery Approach to Combat Cancer. Curr Top Med Chem. 2018 Jun 28;18(6):494–504. https://doi.org/10.2174/1568026618666180523111351AkinsNSNielsonTCLeH V.Inhibition of Glycolysis and Glutaminolysis: An Emerging Drug Discovery Approach to Combat CancerCurr Top Med Chem.2018Jun28186494504https://doi.org/10.2174/1568026618666180523111351Search in Google Scholar
Adeva-Andany MM, Carneiro-Freire N, Seco-Filgueira M, Fernández-Fernández C, Mouriño-Bayolo D. Mitochondrial β-oxidation of saturated fatty acids in humans. Mitochondrion. 2019 May;46:73–90. https://doi.org/10.1016/j.mito.2018.02.009Adeva-AndanyMMCarneiro-FreireNSeco-FilgueiraMFernández-FernándezCMouriño-BayoloDMitochondrial β-oxidation of saturated fatty acids in humansMitochondrion2019May467390https://doi.org/10.1016/j.mito.2018.02.009Search in Google Scholar
Abdel-Wahab AF, Mahmoud W, Al-Harizy RM. Targeting glucose metabolism to suppress cancer progression: prospective of anti-glycolytic cancer therapy. Pharmacol Res. 2019 Dec;150:104511. https://doi.org/10.1016/j.phrs.2019.104511Abdel-WahabAFMahmoudWAl-HarizyRMTargeting glucose metabolism to suppress cancer progression: prospective of anti-glycolytic cancer therapyPharmacol Res.2019Dec150104511https://doi.org/10.1016/j.phrs.2019.104511Search in Google Scholar
Hardie DG. 100 years of the Warburg effect: a historical perspective. Endocr Relat Cancer. 2022 Dec 1;29(12):T1–13. https://doi.org/10.1530/ERC-22-0173HardieDG.100 years of the Warburg effect: a historical perspectiveEndocr Relat Cancer.2022Dec12912T113https://doi.org/10.1530/ERC-22-0173Search in Google Scholar
Li X, Yang Y, Zhang B, Lin X, Fu X, An Y, et al. Lactate metabolism in human health and disease. Signal Transduct Target Ther. 2022 Sep 1;7(1):305. https://doi.org/10.1038/s41392-022-01151-3LiXYangYZhangBLinXFuXAnYLactate metabolism in human health and diseaseSignal Transduct Target Ther.2022Sep171305https://doi.org/10.1038/s41392-022-01151-3Search in Google Scholar
Paul S, Ghosh S, Kumar S. Tumor glycolysis, an essential sweet tooth of tumor cells. Semin Cancer Biol. 2022 Nov;86:1216–30. https://doi.org/10.1016/j.semcancer.2022.09.007PaulSGhoshSKumarSTumor glycolysis, an essential sweet tooth of tumor cellsSemin Cancer Biol.2022Nov86121630https://doi.org/10.1016/j.semcancer.2022.09.007Search in Google Scholar
Schiliro C, Firestein BL. Mechanisms of Metabolic Reprogramming in Cancer Cells Supporting Enhanced Growth and Proliferation. Cells. 2021 Apr 29;10(5):1056. https://doi.org/10.3390/cells10051056SchiliroCFiresteinBL.Mechanisms of Metabolic Reprogramming in Cancer Cells Supporting Enhanced Growth and ProliferationCells.2021Apr291051056https://doi.org/10.3390/cells10051056Search in Google Scholar
Reiter RJ, Sharma R, Ma Q, Rosales-Corral S, Acuna-Castroviejo D, Escames G. Inhibition of mitochondrial pyruvate dehydrogenase kinase: a proposed mechanism by which melatonin causes cancer cells to overcome cytosolic glycolysis, reduce tumor biomass and reverse insensitivity to chemotherapy. Melatonin Res. 2019 Aug 31;2(3):105–19. https://doi.org/10.32794/mr11250033ReiterRJSharmaRMaQRosales-CorralSAcuna-CastroviejoDEscamesG.Inhibition of mitochondrial pyruvate dehydrogenase kinase: a proposed mechanism by which melatonin causes cancer cells to overcome cytosolic glycolysis, reduce tumor biomass and reverse insensitivity to chemotherapyMelatonin Res.2019Aug312310519https://doi.org/10.32794/mr11250033Search in Google Scholar
García-Jiménez C, García-Martínez JM, Chocarro-Calvo A, De la Vieja A. A new link between diabetes and cancer: enhanced WNT/β-catenin signaling by high glucose. J Mol Endocrinol. 2014 Feb;52(1):R51–66. https://doi.org/10.1530/JME-13-0152García-JiménezCGarcía-MartínezJMChocarro-CalvoADe la ViejaAA new link between diabetes and cancer: enhanced WNT/β-catenin signaling by high glucoseJ Mol Endocrinol.2014Feb521R5166https://doi.org/10.1530/JME-13-0152Search in Google Scholar
Hursting SD, Dunlap SM, Ford NA, Hursting MJ, Lashinger LM. Calorie restriction and cancer prevention: a mechanistic perspective. Cancer Metab. 2013 Dec 7;1(1):10. https://doi.org/10.1186/2049-3002-1-10HurstingSDDunlapSMFordNAHurstingMJLashingerLM.Calorie restriction and cancer prevention: a mechanistic perspectiveCancer Metab.2013Dec71110https://doi.org/10.1186/2049-3002-1-10Search in Google Scholar
Zhou H, Zhang B, Zheng J, Yu M, Zhou T, Zhao K, et al. The inhibition of migration and invasion of cancer cells by graphene via the impairment of mitochondrial respiration. Biomaterials. 2014 Feb;35(5):1597–607. https://doi.org/10.1016/j.biomaterials.2013.11.020ZhouHZhangBZhengJYuMZhouTZhaoKThe inhibition of migration and invasion of cancer cells by graphene via the impairment of mitochondrial respirationBiomaterials2014Feb3551597607https://doi.org/10.1016/j.biomaterials.2013.11.020Search in Google Scholar
Roesch A, Vultur A, Bogeski I, Wang H, Zimmermann KM, Speicher D, et al. Overcoming Intrinsic Multidrug Resistance in Melanoma by Blocking the Mitochondrial Respiratory Chain of Slow-Cycling JARID1Bhigh Cells. Cancer Cell. 2013 Jun;23(6):811–25. https://doi.org/10.1016/j.ccr.2013.05.003RoeschAVulturABogeskiIWangHZimmermannKMSpeicherDOvercoming Intrinsic Multidrug Resistance in Melanoma by Blocking the Mitochondrial Respiratory Chain of Slow-Cycling JARID1Bhigh CellsCancer Cell.2013Jun23681125https://doi.org/10.1016/j.ccr.2013.05.003Search in Google Scholar
Maiuri MC, Kroemer G. Essential Role for Oxidative Phosphorylation in Cancer Progression. Cell Metab. 2015 Jan;21(1):11–2. https://doi.org/10.1016/j.cmet.2014.12.013MaiuriMCKroemerGEssential Role for Oxidative Phosphorylation in Cancer ProgressionCell Metab.2015Jan211112https://doi.org/10.1016/j.cmet.2014.12.013Search in Google Scholar
Aykin-Burns N, Ahmad IM, Zhu Y, Oberley LW, Spitz DR. Increased levels of superoxide and H2O2 mediate the differential susceptibility of cancer cells versus normal cells to glucose deprivation. Biochem J. 2009 Feb 15;418(1):29–37. https://doi.org/10.1042/BJ20081258Aykin-BurnsNAhmadIMZhuYOberleyLWSpitzDR.Increased levels of superoxide and H2O2 mediate the differential susceptibility of cancer cells versus normal cells to glucose deprivationBiochem J.2009Feb1541812937https://doi.org/10.1042/BJ20081258Search in Google Scholar
SPITZ DR, SIM JE, RIDNOUR LA, GALOFORO SS, LEE YJ. Glucose Deprivation-Induced Oxidative Stress in Human Tumor Cells: A Fundamental Defect in Metabolism? Ann N Y Acad Sci. 2000 Jan 25;899(1):349–62. https://doi.org/10.1111/j.1749-6632.2000.tb06199.xSPITZDRSIMJERIDNOURLAGALOFOROSSLEEYJGlucose Deprivation-Induced Oxidative Stress in Human Tumor Cells: A Fundamental Defect in Metabolism?Ann N Y Acad Sci.2000Jan25899134962https://doi.org/10.1111/j.1749-6632.2000.tb06199.xSearch in Google Scholar
Vincent EE, Sergushichev A, Griss T, Gingras MC, Samborska B, Ntimbane T, et al. Mitochondrial phosphoenolpyruvate carboxykinase regulates metabolic adaptation and enables glucose-independent tumor growth. Mol Cell. 2015;60(2):195–207.VincentEESergushichevAGrissTGingrasMCSamborskaBNtimbaneTMitochondrial phosphoenolpyruvate carboxykinase regulates metabolic adaptation and enables glucose-independent tumor growthMol Cell.2015602195207Search in Google Scholar
Panieri E, Santoro MM. ROS homeostasis and metabolism: a dangerous liason in cancer cells. Cell Death Dis. 2016;7(6):e2253–e2253.PanieriESantoroMMROS homeostasis and metabolism: a dangerous liason in cancer cellsCell Death Dis.201676e2253e2253Search in Google Scholar
Marengo B, Nitti M, Furfaro AL, Colla R, Ciucis C De, Marinari UM, et al. Redox homeostasis and cellular antioxidant systems: crucial players in cancer growth and therapy. Oxid Med Cell Longev. 2016;2016.MarengoBNittiMFurfaroALCollaRCiucisC DeMarinariUMRedox homeostasis and cellular antioxidant systems: crucial players in cancer growth and therapyOxid Med Cell Longev.20162016Search in Google Scholar
Fruman DA, Rommel C. PI3K and cancer: lessons, challenges and opportunities. Nat Rev Drug Discov. 2014;13(2):140–56.FrumanDARommelCPI3K and cancer: lessons, challenges and opportunitiesNat Rev Drug Discov.201413214056Search in Google Scholar
Coloff JL, Mason EF, Altman BJ, Gerriets VA, Liu T, Nichols AN, et al. Akt requires glucose metabolism to suppress puma expression and prevent apoptosis of leukemic T cells. J Biol Chem. 2011;286(7):5921–33.ColoffJLMasonEFAltmanBJGerrietsVALiuTNicholsANAkt requires glucose metabolism to suppress puma expression and prevent apoptosis of leukemic T cellsJ Biol Chem.20112867592133Search in Google Scholar
Los M, Maddika S, Erb B, Schulze-Osthoff K. Switching Akt: from survival signaling to deadly response. BioEssays. 2009 May 9;31(5):492–5. https://doi.org/10.1002/bies.200900005LosMMaddikaSErbBSchulze-OsthoffK.Switching Akt: from survival signaling to deadly responseBioEssays.2009May93154925https://doi.org/10.1002/bies.200900005Search in Google Scholar
Zhao Y, Hu X, Liu Y, Dong S, Wen Z, He W, et al. ROS signaling under metabolic stress: cross-talk between AMPK and AKT pathway. Mol Cancer. 2017 Dec 13;16(1):79. https://doi.org/10.1186/s12943-017-0648-1ZhaoYHuXLiuYDongSWenZHeWROS signaling under metabolic stress: cross-talk between AMPK and AKT pathwayMol Cancer.2017Dec1316179https://doi.org/10.1186/s12943-017-0648-1Search in Google Scholar
Pliszka M, Szablewski L. Glucose Transporters as a Target for Anticancer Therapy. Cancers (Basel). 2021 Aug 20;13(16):4184. https://doi.org/10.3390/cancers13164184PliszkaMSzablewskiL.Glucose Transporters as a Target for Anticancer TherapyCancers (Basel).2021Aug2013164184https://doi.org/10.3390/cancers13164184Search in Google Scholar
Pujalte-Martin M, Belaïd A, Bost S, Kahi M, Peraldi P, Rouleau M, et al. Targeting cancer and immune cell metabolism with the complex I inhibitors metformin and IACS-010759. Mol Oncol. 2024 Jan 12; https://doi.org/10.1002/1878-0261.13583Pujalte-MartinMBelaïdABostSKahiMPeraldiPRouleauMTargeting cancer and immune cell metabolism with the complex I inhibitors metformin and IACS-010759Mol Oncol.2024Jan12https://doi.org/10.1002/1878-0261.13583Search in Google Scholar
Di Magno L, Di Pastena F, Bordone R, Coni S, Canettieri G. The Mechanism of Action of Biguanides: New Answers to a Complex Question. Cancers (Basel). 2022 Jun 30;14(13):3220. https://doi.org/10.3390/cancers14133220Di MagnoLDi PastenaFBordoneRConiSCanettieriG.The Mechanism of Action of Biguanides: New Answers to a Complex QuestionCancers (Basel).2022Jun3014133220https://doi.org/10.3390/cancers14133220Search in Google Scholar
Schulten HJ. Pleiotropic Effects of Metformin on Cancer. Int J Mol Sci. 2018 Sep 20;19(10). https://doi.org/10.3390/ijms19102850SchultenHJPleiotropic Effects of Metformin on CancerInt J Mol Sci.2018Sep201910https://doi.org/10.3390/ijms19102850Search in Google Scholar
Wu T, Horowitz M, Rayner CK. New insights into the anti-diabetic actions of metformin: from the liver to the gut. Expert Rev Gastroenterol Hepatol. 2017 Feb 26;11(2):157–66. https://doi.org/10.1080/17474124.2017.1273769WuTHorowitzMRaynerCK.New insights into the anti-diabetic actions of metformin: from the liver to the gutExpert Rev Gastroenterol Hepatol.2017Feb2611215766https://doi.org/10.1080/17474124.2017.1273769Search in Google Scholar
Alnaser RI, Alassaf FA, Abed MN. Adulteration of hypoglycemic products: the silent threat. Rom J Med Pract. 2023;18(4):202–5. https://doi.org/10.37897/rjmp.2023.4.4AlnaserRIAlassafFAAbedMNAdulteration of hypoglycemic products: the silent threatRom J Med Pract.20231842025https://doi.org/10.37897/rjmp.2023.4.4Search in Google Scholar
Lu CC, Chiang JH, Tsai FJ, Hsu YM, Juan YN, Yang JS, et al. Metformin triggers the intrinsic apoptotic response in human AGS gastric adenocarcinoma cells by activating AMPK and suppressing mTOR/AKT signaling. Int J Oncol. 2019 Jan 30; https://doi.org/10.3892/ijo.2019.4704LuCCChiangJHTsaiFJHsuYMJuanYNYangJSMetformin triggers the intrinsic apoptotic response in human AGS gastric adenocarcinoma cells by activating AMPK and suppressing mTOR/AKT signalingInt J Oncol.2019Jan30https://doi.org/10.3892/ijo.2019.4704Search in Google Scholar
Faria J, Negalha G, Azevedo A, Martel F. Metformin and Breast Cancer: Molecular Targets. J Mammary Gland Biol Neoplasia. 2019 Jun 22;24(2):111–23. https://doi.org/10.1007/s10911-019-09429-zFariaJNegalhaGAzevedoAMartelF.Metformin and Breast Cancer: Molecular TargetsJ Mammary Gland Biol Neoplasia.2019Jun2224211123https://doi.org/10.1007/s10911-019-09429-zSearch in Google Scholar
Kamarudin MNA, Sarker MMR, Zhou JR, Parhar I. Metformin in colorectal cancer: molecular mechanism, preclinical and clinical aspects. J Exp Clin Cancer Res. 2019 Dec 12;38(1):491. https://doi.org/10.1186/s13046-019-1495-2KamarudinMNASarkerMMRZhouJRParharI.Metformin in colorectal cancer: molecular mechanism, preclinical and clinical aspectsJ Exp Clin Cancer Res.2019Dec12381491https://doi.org/10.1186/s13046-019-1495-2Search in Google Scholar
Xue J, Li L, Li N, Li F, Qin X, Li T, et al. Metformin suppresses cancer cell growth in endometrial carcinoma by inhibiting PD-L1. Eur J Pharmacol. 2019 Sep;859:172541. https://doi.org/10.1016/j.ejphar.2019.172541XueJLiLLiNLiFQinXLiTMetformin suppresses cancer cell growth in endometrial carcinoma by inhibiting PD-L1Eur J Pharmacol.2019Sep859172541https://doi.org/10.1016/j.ejphar.2019.172541Search in Google Scholar
Kawakita E, Yang F, Kumagai A, Takagaki Y, Kitada M, Yoshitomi Y, et al. Metformin Mitigates DPP-4 Inhibitor-Induced Breast Cancer Metastasis via Suppression of mTOR Signaling. Mol Cancer Res. 2021 Jan 1;19(1):61–73. https://doi.org/10.1158/1541-7786.MCR-20-0115KawakitaEYangFKumagaiATakagakiYKitadaMYoshitomiYMetformin Mitigates DPP-4 Inhibitor-Induced Breast Cancer Metastasis via Suppression of mTOR SignalingMol Cancer Res.2021Jan11916173https://doi.org/10.1158/1541-7786.MCR-20-0115Search in Google Scholar
Eikawa S, Nishida M, Mizukami S, Yamazaki C, Nakayama E, Udono H. Immune-mediated antitumor effect by type 2 diabetes drug, metformin. Proc Natl Acad Sci. 2015 Feb 10;112(6):1809–14. https://doi.org/10.1073/pnas.1417636112EikawaSNishidaMMizukamiSYamazakiCNakayamaEUdonoH.Immune-mediated antitumor effect by type 2 diabetes drug, metforminProc Natl Acad Sci.2015Feb101126180914https://doi.org/10.1073/pnas.1417636112Search in Google Scholar
Wang S, Lin Y, Xiong X, Wang L, Guo Y, Chen Y, et al. Low-Dose Metformin Reprograms the Tumor Immune Microenvironment in Human Esophageal Cancer: Results of a Phase II Clinical Trial. Clin Cancer Res. 2020 Sep 15;26(18):4921–32. https://doi.org/10.1158/1078-0432.CCR-20-0113WangSLinYXiongXWangLGuoYChenYLow-Dose Metformin Reprograms the Tumor Immune Microenvironment in Human Esophageal Cancer: Results of a Phase II Clinical TrialClin Cancer Res.2020Sep152618492132https://doi.org/10.1158/1078-0432.CCR-20-0113Search in Google Scholar
Ma Q, Gu JT, Wang B, Feng J, Yang L, Kang XW, et al. PlGF signaling and macrophage repolarization contribute to the anti-neoplastic effect of metformin. Eur J Pharmacol. 2019;863:172696.MaQGuJTWangBFengJYangLKangXWPlGF signaling and macrophage repolarization contribute to the anti-neoplastic effect of metforminEur J Pharmacol.2019863172696Search in Google Scholar
Skuli SJ, Alomari S, Gaitsch H, Bakayoko A, Skuli N, Tyler BM. Metformin and Cancer, an Ambiguanidous Relationship. Pharmaceuticals. 2022 May 19;15(5):626. https://doi.org/10.3390/ph15050626SkuliSJAlomariSGaitschHBakayokoASkuliNTylerBM.Metformin and Cancer, an Ambiguanidous RelationshipPharmaceuticals.2022May19155626https://doi.org/10.3390/ph15050626Search in Google Scholar
Saengboonmee C, Sanlung T, Wongkham S. Repurposing metformin for cancer treatment: A great challenge of a promising drug. Anticancer Res. 2021;41(12):5913–8.SaengboonmeeCSanlungTWongkhamSRepurposing metformin for cancer treatment: A great challenge of a promising drugAnticancer Res.2021411259138Search in Google Scholar
Barrios-Bernal P, Zatarain-Barrón ZL, Hernández-Pedro N, Orozco-Morales M, Olivera-Ramírez A, Ávila-Moreno F, et al. Will We Unlock the Benefit of Metformin for Patients with Lung Cancer? Lessons from Current Evidence and New Hypotheses. Pharmaceuticals. 2022 Jun 24;15(7):786. https://doi.org/10.3390/ph15070786Barrios-BernalPZatarain-BarrónZLHernández-PedroNOrozco-MoralesMOlivera-RamírezAÁvila-MorenoFWill We Unlock the Benefit of Metformin for Patients with Lung Cancer?Lessons from Current Evidence and New Hypotheses. Pharmaceuticals.2022Jun24157786https://doi.org/10.3390/ph15070786Search in Google Scholar
Tang Z, Tang N, Jiang S, Bai Y, Guan C, Zhang W, et al. The Chemosensitizing Role of Metformin in Anti-Cancer Therapy. Anticancer Agents Med Chem. 2021 May;21(8):949–62. https://doi.org/10.2174/1871520620666200918102642TangZTangNJiangSBaiYGuanCZhangWThe Chemosensitizing Role of Metformin in Anti-Cancer TherapyAnticancer Agents Med Chem.2021May21894962https://doi.org/10.2174/1871520620666200918102642Search in Google Scholar
Martin-Castillo B, Pernas S, Dorca J, Álvarez I, Martínez S, Pérez-Garcia JM, et al. A phase 2 trial of neoadjuvant metformin in combination with trastuzumab and chemotherapy in women with early HER2-positive breast cancer: the METTEN study. Oncotarget. 2018 Nov 2;9(86):35687–704. https://doi.org/10.18632/oncotarget.26286Martin-CastilloBPernasSDorcaJÁlvarezIMartínezSPérez-GarciaJMA phase 2 trial of neoadjuvant metformin in combination with trastuzumab and chemotherapy in women with early HER2-positive breast cancer: the METTEN studyOncotarget.2018Nov298635687704https://doi.org/10.18632/oncotarget.26286Search in Google Scholar
Alghandour R, Ebrahim MA, Elshal AM, Ghobrial F, Elzaafarany M, ELbaiomy MA. Repurposing metformin as anticancer drug: Randomized controlled trial in advanced prostate cancer (MANSMED). Urol Oncol Semin Orig Investig. 2021 Dec;39(12):831.e1–831.e10. https://doi.org/10.1016/j.urolonc.2021.05.020AlghandourREbrahimMAElshalAMGhobrialFElzaafaranyMELbaiomyMARepurposing metformin as anticancer drug: Randomized controlled trial in advanced prostate cancer (MANSMED)Urol Oncol Semin Orig Investig.2021Dec3912831.e1831.e10https://doi.org/10.1016/j.urolonc.2021.05.020Search in Google Scholar
Goodwin PJ, Chen BE, Gelmon KA, Whelan TJ, Ennis M, Lemieux J, et al. Effect of Metformin vs Placebo on Invasive Disease–Free Survival in Patients With Breast Cancer. JAMA. 2022 May 24;327(20):1963. https://doi.org/10.1001/jama.2022.6147GoodwinPJChenBEGelmonKAWhelanTJEnnisMLemieuxJEffect of Metformin vs Placebo on Invasive Disease–Free Survival in Patients With Breast CancerJAMA.2022May24327201963https://doi.org/10.1001/jama.2022.6147Search in Google Scholar
Skinner H, Hu C, Tsakiridis T, Santana-Davila R, Lu B, Erasmus JJ, et al. Addition of Metformin to Concurrent Chemoradiation in Patients With Locally Advanced Non–Small Cell Lung Cancer. JAMA Oncol. 2021 Sep 1;7(9):1324. https://doi.org/10.1001/jamaoncol.2021.2318SkinnerHHuCTsakiridisTSantana-DavilaRLuBErasmusJJAddition of Metformin to Concurrent Chemoradiation in Patients With Locally Advanced Non–Small Cell Lung CancerJAMA Oncol.2021Sep1791324https://doi.org/10.1001/jamaoncol.2021.2318Search in Google Scholar
Bae-Jump VL, Sill M, Gehrig PA, Moxley K, Hagemann AR, Waggoner SE, et al. A randomized phase II/III study of paclitaxel/carboplatin/metformin versus paclitaxel/carboplatin/placebo as initial therapy for measurable stage III or IVA, stage IVB, or recurrent endometrial cancer: An NRG Oncology/GOG study. Gynecol Oncol. 2020 Oct;159:7. https://doi.org/10.1016/j.ygyno.2020.06.013Bae-JumpVLSillMGehrigPAMoxleyKHagemannARWaggonerSEA randomized phase II/III study of paclitaxel/carboplatin/metformin versus paclitaxel/carboplatin/placebo as initial therapy for measurable stage III or IVA, stage IVB, or recurrent endometrial cancer: An NRG Oncology/GOG studyGynecol Oncol.2020Oct1597https://doi.org/10.1016/j.ygyno.2020.06.013Search in Google Scholar
https://clinicaltrials.gov/study/NCT01167738.2015;https://clinicaltrials.gov/study/NCT01167738.2015Search in Google Scholar
Platts J. Insulin therapy and cancer risk in diabetes mellitus. Clin Med (Northfield Il). 2010 Oct 1;10(5):509–12. https://doi.org/10.7861/clinmedicine.10-5-509PlattsJ.Insulin therapy and cancer risk in diabetes mellitusClin Med (Northfield Il).2010Oct110550912https://doi.org/10.7861/clinmedicine.10-5-509Search in Google Scholar
Home P. Insulin Therapy and Cancer. Diabetes Care. 2013 Aug 1;36(Supplement_2):S240–4. https://doi.org/10.2337/dcS13-2002HomePInsulin Therapy and CancerDiabetes Care2013Aug136Supplement_2S2404https://doi.org/10.2337/dcS13-2002Search in Google Scholar
Laskar J, Bhattacharjee K, Sengupta M, Choudhury Y. Anti-Diabetic Drugs: Cure or Risk Factors for Cancer? Pathol Oncol Res. 2018 Oct 13;24(4):745–55. https://doi.org/10.1007/s12253-018-0402-zLaskarJBhattacharjeeKSenguptaMChoudhuryYAnti-Diabetic Drugs: Cure or Risk Factors for Cancer?Pathol Oncol Res.2018Oct1324474555https://doi.org/10.1007/s12253-018-0402-zSearch in Google Scholar
Tomlinson B, Patil NG, Fok M, Chan P, Lam CWK. The role of sulfonylureas in the treatment of type 2 diabetes. Expert Opin Pharmacother. 2022 Feb 11;23(3):387–403. https://doi.org/10.1080/14656566.2021.1999413TomlinsonBPatilNGFokMChanPLamCWK.The role of sulfonylureas in the treatment of type 2 diabetesExpert Opin Pharmacother.2022Feb11233387403https://doi.org/10.1080/14656566.2021.1999413Search in Google Scholar
Bowker SL, Majumdar SR, Veugelers P, Johnson JA. Increased cancer-related mortality for patients with type 2 diabetes who use sulfonylureas or insulin. Diabetes Care. 2006 Feb;29(2):254–8. https://doi.org/10.2337/diacare.29.02.06.dc05-1558BowkerSLMajumdarSRVeugelersPJohnsonJAIncreased cancer-related mortality for patients with type 2 diabetes who use sulfonylureas or insulinDiabetes Care.2006Feb2922548https://doi.org/10.2337/diacare.29.02.06.dc05-1558Search in Google Scholar
Currie CJ, Poole CD, Gale EAM. The influence of glucose-lowering therapies on cancer risk in type 2 diabetes. Diabetologia. 2009 Sep 2;52(9):1766–77. https://doi.org/10.1007/s00125-009-1440-6CurrieCJPooleCDGaleEAM.The influence of glucose-lowering therapies on cancer risk in type 2 diabetesDiabetologia.2009Sep2529176677https://doi.org/10.1007/s00125-009-1440-6Search in Google Scholar
Hendriks AM, Schrijnders D, Kleefstra N, de Vries EGE, Bilo HJG, Jalving M, et al. Sulfonylurea derivatives and cancer, friend or foe? Eur J Pharmacol. 2019 Oct;861:172598. https://doi.org/10.1016/j.ejphar.2019.172598HendriksAMSchrijndersDKleefstraNde VriesEGEBiloHJGJalvingMSulfonylurea derivatives and cancer, friend or foe?Eur J Pharmacol.2019Oct861172598https://doi.org/10.1016/j.ejphar.2019.172598Search in Google Scholar
Núñez M, Medina V, Cricco G, Croci M, Cocca C, Rivera E, et al. Glibenclamide inhibits cell growth by inducing G0/G1 arrest in the human breast cancer cell line MDA-MB-231. BMC Pharmacol Toxicol. 2013 Dec 11;14(1):6. https://doi.org/10.1186/2050-6511-14-6NúñezMMedinaVCriccoGCrociMCoccaCRiveraEGlibenclamide inhibits cell growth by inducing G0/G1 arrest in the human breast cancer cell line MDA-MB-231BMC Pharmacol Toxicol.2013Dec111416https://doi.org/10.1186/2050-6511-14-6Search in Google Scholar
Kim JA, Kang YS, Lee SH, Lee EH, Yoo BH, Lee YS. Glibenclamide Induces Apoptosis through Inhibition of Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Cl− Channels and Intracellular Ca2+ Release in HepG2 Human Hepatoblastoma Cells. Biochem Biophys Res Commun. 1999 Aug;261(3):682–8. https://doi.org/10.1006/bbrc.1999.1108KimJAKangYSLeeSHLeeEHYooBHLeeYSGlibenclamide Induces Apoptosis through Inhibition of Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Cl− Channels and Intracellular Ca2+ Release in HepG2 Human Hepatoblastoma CellsBiochem Biophys Res Commun.1999Aug26136828https://doi.org/10.1006/bbrc.1999.1108Search in Google Scholar
Malhi H, Irani AN, Rajvanshi P, Suadicani SO, Spray DC, McDonald T V., et al. KATP Channels Regulate Mitogenically Induced Proliferation in Primary Rat Hepatocytes and Human Liver Cell Lines. J Biol Chem. 2000 Aug;275(34):26050–7. https://doi.org/10.1074/jbc.M001576200MalhiHIraniANRajvanshiPSuadicaniSOSprayDCMcDonaldT V.KATP Channels Regulate Mitogenically Induced Proliferation in Primary Rat Hepatocytes and Human Liver Cell LinesJ Biol Chem.2000Aug27534260507https://doi.org/10.1074/jbc.M001576200Search in Google Scholar
RU Q, TIAN X, WU YX, WU RH, PI MS, LI CY. Voltage-gated and ATP-sensitive K+ channels are associated with cell proliferation and tumorigenesis of human glioma. Oncol Rep. 2014 Feb;31(2):842–8. https://doi.org/10.3892/or.2013.2875RUQTIANXWUYXWURHPIMSLICYVoltage-gated and ATP-sensitive K+ channels are associated with cell proliferation and tumorigenesis of human gliomaOncol Rep.2014Feb3128428https://doi.org/10.3892/or.2013.2875Search in Google Scholar
Zhou Q, Kwan HY, Chan HC, Jiang JL, Tam SC, Yao X. Blockage of voltage-gated K+ channels inhibits adhesion and proliferation of hepatocarcinoma cells. Int J Mol Med. 2003 Feb 1; https://doi.org/10.3892/ijmm.11.2.261ZhouQKwanHYChanHCJiangJLTamSCYaoX.Blockage of voltage-gated K+ channels inhibits adhesion and proliferation of hepatocarcinoma cellsInt J Mol Med.2003Feb1https://doi.org/10.3892/ijmm.11.2.261Search in Google Scholar
Abdul M, Hoosein N. Expression and activity of potassium ion channels in human prostate cancer. Cancer Lett. 2002 Dec;186(1):99–105. https://doi.org/10.1016/S0304-3835(02)00348-8AbdulMHooseinNExpression and activity of potassium ion channels in human prostate cancerCancer Lett.2002Dec186199105https://doi.org/10.1016/S0304-3835(02)00348-8Search in Google Scholar
Abdul M, Hoosein N. Voltage-gated potassium ion channels in colon cancer. Oncol Rep. 2002 Sep 1; https://doi.org/10.3892/or.9.5.961AbdulMHooseinN.Voltage-gated potassium ion channels in colon cancerOncol Rep.2002Sep1https://doi.org/10.3892/or.9.5.961Search in Google Scholar
Qian X, Li J, Ding J, Wang Z, Duan L, Hu G. Glibenclamide exerts an antitumor activity through reactive oxygen species–c-jun NH(2)-terminal kinase pathway in human gastric cancer cell line MGC-803. Biochem Pharmacol. 2008 Dec;76(12):1705–15. https://doi.org/10.1016/j.bcp.2008.09.009QianXLiJDingJWangZDuanLHuGGlibenclamide exerts an antitumor activity through reactive oxygen species–c-jun NH(2)-terminal kinase pathway in human gastric cancer cell line MGC-803Biochem Pharmacol.2008Dec7612170515https://doi.org/10.1016/j.bcp.2008.09.009Search in Google Scholar
Wang S, Dougherty EJ, Danner RL. PPARγ signaling and emerging opportunities for improved therapeutics. Pharmacol Res. 2016 Sep;111:76–85. https://doi.org/10.1016/j.phrs.2016.02.028WangSDoughertyEJDannerRLPPARγ signaling and emerging opportunities for improved therapeuticsPharmacol Res2016Sep1117685https://doi.org/10.1016/j.phrs.2016.02.028Search in Google Scholar
Nanjan MJ, Mohammed M, Prashantha Kumar BR, Chandrasekar MJN. Thiazolidinediones as antidiabetic agents: A critical review. Bioorg Chem. 2018 Apr;77:548–67. https://doi.org/10.1016/j.bioorg.2018.02.009NanjanMJMohammedMPrashantha KumarBRChandrasekarMJNThiazolidinediones as antidiabetic agents: A critical reviewBioorg Chem2018Apr7754867https://doi.org/10.1016/j.bioorg.2018.02.009Search in Google Scholar
Okumura T. Mechanisms by which thiazolidinediones induce anti-cancer effects in cancers in digestive organs. J Gastroenterol. 2010 Nov 8;45(11):1097–102. https://doi.org/10.1007/s00535-010-0310-9OkumuraT.Mechanisms by which thiazolidinediones induce anti-cancer effects in cancers in digestive organsJ Gastroenterol.2010Nov845111097102https://doi.org/10.1007/s00535-010-0310-9Search in Google Scholar
Du R, Lin L, Cheng D, Xu Y, Xu M, Chen Y, et al. Thiazolidinedione therapy and breast cancer risk in diabetic women: A systematic review and meta-analysis. Diabetes Metab Res Rev. 2018 Feb;34(2). https://doi.org/10.1002/dmrr.2961DuRLinLChengDXuYXuMChenYThiazolidinedione therapy and breast cancer risk in diabetic women: A systematic review and meta-analysisDiabetes Metab Res Rev.2018Feb342https://doi.org/10.1002/dmrr.2961Search in Google Scholar
Srivastava SP, Goodwin JE. Cancer Biology and Prevention in Diabetes. Cells. 2020 Jun 2;9(6):1380. https://doi.org/10.3390/cells9061380SrivastavaSPGoodwinJE.Cancer Biology and Prevention in DiabetesCells.2020Jun2961380https://doi.org/10.3390/cells9061380Search in Google Scholar
Nagamine M, Okumura T, Tanno S, Sawamukai M, Motomura W, Takahashi N, et al. PPARγ ligand-induced apoptosis through a p53-dependent mechanism in human gastric cancer cells. Cancer Sci. 2003 Apr 19;94(4):338–43. https://doi.org/10.1111/j.1349-7006.2003.tb01443.xNagamineMOkumuraTTannoSSawamukaiMMotomuraWTakahashiNPPARγ ligand-induced apoptosis through a p53-dependent mechanism in human gastric cancer cellsCancer Sci.2003Apr1994433843https://doi.org/10.1111/j.1349-7006.2003.tb01443.xSearch in Google Scholar
Cellai I, Petrangolini G, Tortoreto M, Pratesi G, Luciani P, Deledda C, et al. In vivo effects of rosiglitazone in a human neuroblastoma xenograft. Br J Cancer. 2010 Feb 12;102(4):685–92. https://doi.org/10.1038/sj.bjc.6605506CellaiIPetrangoliniGTortoretoMPratesiGLucianiPDeleddaCIn vivo effects of rosiglitazone in a human neuroblastoma xenograftBr J Cancer.2010Feb12102468592https://doi.org/10.1038/sj.bjc.6605506Search in Google Scholar
Luconi M, Mangoni M, Gelmini S, Poli G, Nesi G, Francalanci M, et al. Rosiglitazone impairs proliferation of human adrenocortical cancer: preclinical study in a xenograft mouse model. Endocr Relat Cancer. 2010 Mar;17(1):169–77. https://doi.org/10.1677/ERC-09-0170LuconiMMangoniMGelminiSPoliGNesiGFrancalanciMRosiglitazone impairs proliferation of human adrenocortical cancer: preclinical study in a xenograft mouse modelEndocr Relat Cancer.2010Mar17116977https://doi.org/10.1677/ERC-09-0170Search in Google Scholar
NINOMIYA I, YAMAZAKI K, OYAMA K, HAYASHI H, TAJIMA H, KITAGAWA H, et al. Pioglitazone inhibits the proliferation and metastasis of human pancreatic cancer cells. Oncol Lett. 2014 Dec;8(6):2709–14. https://doi.org/10.3892/ol.2014.2553NINOMIYAIYAMAZAKIKOYAMAKHAYASHIHTAJIMAHKITAGAWAHPioglitazone inhibits the proliferation and metastasis of human pancreatic cancer cellsOncol Lett.2014Dec86270914https://doi.org/10.3892/ol.2014.2553Search in Google Scholar
Bloomgarden Z, Deacon CF. Physiology and Pharmacology of DPP-4 in Glucose Homeostasis and the Treatment of Type 2 Diabetes. Front Endocrinol | www.frontiersin.org. 2019 [cited 2023 Oct 5];10:80. https://doi.org/10.3389/fendo.2019.00080BloomgardenZDeaconCFPhysiology and Pharmacology of DPP-4 in Glucose Homeostasis and the Treatment of Type 2 DiabetesFront Endocrinol| www.frontiersin.org. 2019 [cited 2023 Oct 5];10:80. https://doi.org/10.3389/fendo.2019.00080Search in Google Scholar
Pantaleão SQ, Philot EA, de Resende-Lara PT, Lima AN, Perahia D, Miteva MA, et al. Structural dynamics of DPP-4 and its influence on the projection of bioactive ligands. Molecules. 2018;23(2):490.PantaleãoSQPhilotEAde Resende-LaraPTLimaANPerahiaDMitevaMAStructural dynamics of DPP-4 and its influence on the projection of bioactive ligandsMolecules2018232490Search in Google Scholar
Busek P, Duke-Cohan JS, Sedo A. Does DPPIV Inhibition Offer New Avenues for Therapeutic Intervention in Malignant Disease? Vol. 14, Cancers. 2022. https://doi.org/10.3390/cancers14092072BusekPDuke-CohanJSSedoADoes DPPIV Inhibition Offer New Avenues for Therapeutic Intervention in Malignant Disease?14Cancers2022https://doi.org/10.3390/cancers14092072Search in Google Scholar
Boer GA, Holst JJ. Incretin hormones and type 2 diabetes—mechanistic insights and therapeutic approaches. Biology (Basel). 2020;9(12):473.BoerGAHolstJJIncretin hormones and type 2 diabetes—mechanistic insights and therapeutic approachesBiology (Basel)2020912473Search in Google Scholar
He Y, Yang G, Yao F, Xian Y, Wang G, Chen L, et al. Sitagliptin inhibits vascular inflammation via the SIRT6-dependent signaling pathway. Int Immunopharmacol. 2019;75:105805.HeYYangGYaoFXianYWangGChenLSitagliptin inhibits vascular inflammation via the SIRT6-dependent signaling pathwayInt Immunopharmacol.201975105805Search in Google Scholar
Barreira da Silva R, Laird ME, Yatim N, Fiette L, Ingersoll MA, Albert ML. Dipeptidylpeptidase 4 inhibition enhances lymphocyte trafficking, improving both naturally occurring tumor immunity and immunotherapy. Nat Immunol. 2015 Aug 15;16(8):850–8. https://doi.org/10.1038/ni.3201Barreira da SilvaRLairdMEYatimNFietteLIngersollMAAlbertMLDipeptidylpeptidase 4 inhibition enhances lymphocyte trafficking, improving both naturally occurring tumor immunity and immunotherapyNat Immunol.2015Aug151688508https://doi.org/10.1038/ni.3201Search in Google Scholar
Almagthali AG, Alkhaldi EH, Alzahrani AS, Alghamdi AK, Alghamdi WY, Kabel AM. Dipeptidyl peptidase-4 inhibitors: Anti-diabetic drugs with potential effects on cancer. Diabetes Metab Syndr Clin Res Rev. 2019 Jan;13(1):36–9. https://doi.org/10.1016/j.dsx.2018.08.012AlmagthaliAGAlkhaldiEHAlzahraniASAlghamdiAKAlghamdiWYKabelAMDipeptidyl peptidase-4 inhibitors: Anti-diabetic drugs with potential effects on cancerDiabetes Metab Syndr Clin Res Rev.2019Jan131369https://doi.org/10.1016/j.dsx.2018.08.012Search in Google Scholar
Lee JJ, Wang TY, Liu CL, Chien MN, Chen MJ, Hsu YC, et al. Dipeptidyl Peptidase IV as a Prognostic Marker and Therapeutic Target in Papillary Thyroid Carcinoma. J Clin Endocrinol Metab. 2017 Aug 1;102(8):2930–40. https://doi.org/10.1210/jc.2017-00346LeeJJWangTYLiuCLChienMNChenMJHsuYCDipeptidyl Peptidase IV as a Prognostic Marker and Therapeutic Target in Papillary Thyroid CarcinomaJ Clin Endocrinol Metab.2017Aug11028293040https://doi.org/10.1210/jc.2017-00346Search in Google Scholar
Wang Q, Lu P, Wang T, Zheng Q, Li Y, Leng SX, et al. Sitagliptin affects gastric cancer cells proliferation by suppressing Melanoma-associated antigen-A3 expression through Yes-associated protein inactivation. Cancer Med. 2020 Jun 30;9(11):3816–28. https://doi.org/10.1002/cam4.3024WangQLuPWangTZhengQLiYLengSXSitagliptin affects gastric cancer cells proliferation by suppressing Melanoma-associated antigen-A3 expression through Yes-associated protein inactivationCancer Med.2020Jun30911381628https://doi.org/10.1002/cam4.3024Search in Google Scholar
Yang X, Zhang X, Wu R, Huang Q, Jiang Y, Qin J, et al. DPPIV promotes endometrial carcinoma cell proliferation, invasion and tumorigenesis. Oncotarget. 2017 Jan 31;8(5):8679–92. https://doi.org/10.18632/oncotarget.14412YangXZhangXWuRHuangQJiangYQinJDPPIV promotes endometrial carcinoma cell proliferation, invasion and tumorigenesisOncotarget.2017Jan3185867992https://doi.org/10.18632/oncotarget.14412Search in Google Scholar
Varela-Calviño R, Rodríguez-Quiroga M, Dias Carvalho P, Martins F, Serra-Roma A, Vázquez-Iglesias L, et al. The mechanism of sitagliptin inhibition of colorectal cancer cell lines’ metastatic functionalities. IUBMB Life. 2021 May 22;73(5):761–73. https://doi.org/10.1002/iub.2454Varela-CalviñoRRodríguez-QuirogaMDias CarvalhoPMartinsFSerra-RomaAVázquez-IglesiasLThe mechanism of sitagliptin inhibition of colorectal cancer cell lines’ metastatic functionalitiesIUBMB Life.2021May2273576173https://doi.org/10.1002/iub.2454Search in Google Scholar
Amritha CA, Kumaravelu P, Chellathai DD. Evaluation of anti cancer effects of DPP-4 inhibitors in colon cancer-an invitro study. J Clin diagnostic Res JCDR. 2015;9(12):FC14.AmrithaCAKumaraveluPChellathaiDDEvaluation of anti cancer effects of DPP-4 inhibitors in colon cancer-an invitro studyJ Clin diagnostic Res JCDR2015912FC14Search in Google Scholar
Choi HJ, Kim JY, Lim S, Kim G, Yun HJ, Choi HS. Dipeptidyl peptidase 4 promotes epithelial cell transformation and breast tumourigenesis via induction of PIN1 gene expression. Br J Pharmacol. 2015 Nov 16;172(21):5096–109. https://doi.org/10.1111/bph.13274ChoiHJKimJYLimSKimGYunHJChoiHS.Dipeptidyl peptidase 4 promotes epithelial cell transformation and breast tumourigenesis via induction of PIN1 gene expressionBr J Pharmacol.2015Nov16172215096109https://doi.org/10.1111/bph.13274Search in Google Scholar
Beckenkamp A, Willig JB, Santana DB, Nascimento J, Paccez JD, Zerbini LF, et al. Differential Expression and Enzymatic Activity of DPPIV/CD26 Affects Migration Ability of Cervical Carcinoma Cells. Consolaro MEL, editor. PLoS One. 2015 Jul 29;10(7):e0134305. https://doi.org/10.1371/journal.pone.0134305BeckenkampAWilligJBSantanaDBNascimentoJPaccezJDZerbiniLFDifferential Expression and Enzymatic Activity of DPPIV/CD26 Affects Migration Ability of Cervical Carcinoma CellsConsolaroMELeditorPLoS One.2015Jul29107e0134305https://doi.org/10.1371/journal.pone.0134305Search in Google Scholar
You F, Li C, Zhang S, Zhang Q, Hu Z, Wang Y, et al. Sitagliptin inhibits the survival, stemness and autophagy of glioma cells, and enhances temozolomide cytotoxicity. Biomed Pharmacother. 2023;162:114555. https://doi.org/https://doi.org/10.1016/j.biopha.2023.114555YouFLiCZhangSZhangQHuZWangYSitagliptin inhibits the survival, stemness and autophagy of glioma cells, and enhances temozolomide cytotoxicityBiomed Pharmacother.2023162114555https://doi.org/https://doi.org/10.1016/j.biopha.2023.114555Search in Google Scholar
Manea AJ, Ray SK. Regulation of autophagy as a therapeutic option in glioblastoma. Apoptosis. 2021;26(11):574–99. https://doi.org/10.1007/s10495-021-01691-zManeaAJRaySKRegulation of autophagy as a therapeutic option in glioblastomaApoptosis.2021261157499https://doi.org/10.1007/s10495-021-01691-zSearch in Google Scholar
Jang JH, Baerts L, Waumans Y, De Meester I, Yamada Y, Limani P, et al. Suppression of lung metastases by the CD26/DPP4 inhibitor Vildagliptin in mice. Clin Exp Metastasis. 2015;32(7):677–87. https://doi.org/10.1007/s10585-015-9736-zJangJHBaertsLWaumansYDe MeesterIYamadaYLimaniPSuppression of lung metastases by the CD26/DPP4 inhibitor Vildagliptin in miceClin Exp Metastasis.201532767787https://doi.org/10.1007/s10585-015-9736-zSearch in Google Scholar
Jang JH, Janker F, De Meester I, Arni S, Borgeaud N, Yamada Y, et al. The CD26/DPP4-inhibitor vildagliptin suppresses lung cancer growth via macrophage-mediated NK cell activity. Carcinogenesis. 2019 Apr 29;40(2):324–34. https://doi.org/10.1093/carcin/bgz009JangJHJankerFDe MeesterIArniSBorgeaudNYamadaYThe CD26/DPP4-inhibitor vildagliptin suppresses lung cancer growth via macrophage-mediated NK cell activityCarcinogenesis.2019Apr2940232434https://doi.org/10.1093/carcin/bgz009Search in Google Scholar
Kim SH, Kang JG, Kim CS, Ihm SH, Choi MG, Yoo HJ, et al. Synergistic cytotoxicity of the dipeptidyl peptidase-IV inhibitor gemigliptin with metformin in thyroid carcinoma cells. Endocrine. 2018;59:383–94.KimSHKangJGKimCSIhmSHChoiMGYooHJSynergistic cytotoxicity of the dipeptidyl peptidase-IV inhibitor gemigliptin with metformin in thyroid carcinoma cellsEndocrine20185938394Search in Google Scholar
Kim SH, Kang JG, Kim CS, Ihm SH, Choi MG, Yoo HJ, et al. The dipeptidyl peptidase-IV inhibitor gemigliptin alone or in combination with NVP-AUY922 has a cytotoxic activity in thyroid carcinoma cells. Tumor Biol. 2017;39(10):1010428317722068.KimSHKangJGKimCSIhmSHChoiMGYooHJThe dipeptidyl peptidase-IV inhibitor gemigliptin alone or in combination with NVP-AUY922 has a cytotoxic activity in thyroid carcinoma cellsTumor Biol.201739101010428317722068Search in Google Scholar
Herrmann H, Sadovnik I, Cerny-Reiterer S, Rülicke T, Stefanzl G, Willmann M, et al. Dipeptidylpeptidase IV (CD26) defines leukemic stem cells (LSC) in chronic myeloid leukemia. Blood. 2014 Jun 19;123(25):3951–62. https://doi.org/10.1182/blood-2013-10-536078HerrmannHSadovnikICerny-ReitererSRülickeTStefanzlGWillmannMDipeptidylpeptidase IV (CD26) defines leukemic stem cells (LSC) in chronic myeloid leukemiaBlood.2014Jun1912325395162https://doi.org/10.1182/blood-2013-10-536078Search in Google Scholar
Willmann M, Sadovnik I, Eisenwort G, Entner M, Bernthaler T, Stefanzl G, et al. Evaluation of cooperative antileukemic effects of nilotinib and vildagliptin in Ph+ chronic myeloid leukemia. Exp Hematol. 2018 Jan;57:50–59.e6. https://doi.org/10.1016/j.exphem.2017.09.012WillmannMSadovnikIEisenwortGEntnerMBernthalerTStefanzlGEvaluation of cooperative antileukemic effects of nilotinib and vildagliptin in Ph+ chronic myeloid leukemiaExp Hematol.2018Jan575059.e6https://doi.org/10.1016/j.exphem.2017.09.012Search in Google Scholar
Tomas A, Jones B, Leech C. New Insights into Beta-Cell GLP-1 Receptor and cAMP Signaling. J Mol Biol. 2020;432(5):1347–66. https://doi.org/https://doi.org/10.1016/j.jmb.2019.08.009TomasAJonesBLeechCNew Insights into Beta-Cell GLP-1 Receptor and cAMP SignalingJ Mol Biol.20204325134766https://doi.org/https://doi.org/10.1016/j.jmb.2019.08.009Search in Google Scholar
Nakatani Y, Maeda M, Matsumura M, Shimizu R, Banba N, Aso Y, et al. Effect of GLP-1 receptor agonist on gastrointestinal tract motility and residue rates as evaluated by capsule endoscopy. Diabetes Metab. 2017;43(5):430–7. https://doi.org/https://doi.org/10.1016/j.diabet.2017.05.009NakataniYMaedaMMatsumuraMShimizuRBanbaNAsoYEffect of GLP-1 receptor agonist on gastrointestinal tract motility and residue rates as evaluated by capsule endoscopyDiabetes Metab.20174354307https://doi.org/https://doi.org/10.1016/j.diabet.2017.05.009Search in Google Scholar
Wheeler MB, Lu M, Dillon JS, Leng XH, Chen C, Boyd AE. Functional expression of the rat glucagon-like peptide-I receptor, evidence for coupling to both adenylyl cyclase and phospholipase-C. Endocrinology. 1993 Jul;133(1):57–62. https://doi.org/10.1210/endo.133.1.8391428WheelerMBLuMDillonJSLengXHChenCBoydAEFunctional expression of the rat glucagon-like peptide-I receptor, evidence for coupling to both adenylyl cyclase and phospholipase-CEndocrinology1993Jul13315762https://doi.org/10.1210/endo.133.1.8391428Search in Google Scholar
Campos R V, Lee YC, Drucker DJ. Divergent tissue-specific and developmental expression of receptors for glucagon and glucagon-like peptide-1 in the mouse. Endocrinology. 1994 May;134(5):2156–64. https://doi.org/10.1210/endo.134.5.8156917CamposR VLeeYCDruckerDJDivergent tissue-specific and developmental expression of receptors for glucagon and glucagon-like peptide-1 in the mouseEndocrinology1994May1345215664https://doi.org/10.1210/endo.134.5.8156917Search in Google Scholar
Arvanitakis K, Koufakis T, Kotsa K, Germanidis G. How Far beyond Diabetes Can the Benefits of Glucagon-like Peptide-1 Receptor Agonists Go? A Review of the Evidence on Their Effects on Hepatocellular Carcinoma. Cancers (Basel). 2022 Sep 24;14(19):4651. https://doi.org/10.3390/cancers14194651ArvanitakisKKoufakisTKotsaKGermanidisG.How Far beyond Diabetes Can the Benefits of Glucagon-like Peptide-1 Receptor Agonists Go? A Review of the Evidence on Their Effects on Hepatocellular CarcinomaCancers (Basel).2022Sep2414194651https://doi.org/10.3390/cancers14194651Search in Google Scholar
Zhou M, Mok MTS, Sun H, Chan AW, Huang Y, Cheng ASL, et al. The anti-diabetic drug exenatide, a glucagon-like peptide-1 receptor agonist, counteracts hepatocarcinogenesis through cAMP–PKA–EGFR–STAT3 axis. Oncogene. 2017 Jul 20;36(29):4135–49. https://doi.org/10.1038/onc.2017.38ZhouMMokMTSSunHChanAWHuangYChengASLThe anti-diabetic drug exenatide, a glucagon-like peptide-1 receptor agonist, counteracts hepatocarcinogenesis through cAMP–PKA–EGFR–STAT3 axisOncogene.2017Jul203629413549https://doi.org/10.1038/onc.2017.38Search in Google Scholar
Iwaya C, Nomiyama T, Komatsu S, Kawanami T, Tsutsumi Y, Hamaguchi Y, et al. Exendin-4, a Glucagonlike Peptide-1 Receptor Agonist, Attenuates Breast Cancer Growth by Inhibiting NF-κB Activation. Endocrinology. 2017 Dec 1;158(12):4218–32. https://doi.org/10.1210/en.2017-00461IwayaCNomiyamaTKomatsuSKawanamiTTsutsumiYHamaguchiYExendin-4, a Glucagonlike Peptide-1 Receptor Agonist, Attenuates Breast Cancer Growth by Inhibiting NF-κB ActivationEndocrinology.2017Dec115812421832https://doi.org/10.1210/en.2017-00461Search in Google Scholar
Nomiyama T, Kawanami T, Irie S, Hamaguchi Y, Terawaki Y, Murase K, et al. Exendin-4, a GLP-1 Receptor Agonist, Attenuates Prostate Cancer Growth. Diabetes. 2014 Nov 1;63(11):3891–905. https://doi.org/10.2337/db13-1169NomiyamaTKawanamiTIrieSHamaguchiYTerawakiYMuraseKExendin-4, a GLP-1 Receptor Agonist, Attenuates Prostate Cancer GrowthDiabetes.2014Nov163113891905https://doi.org/10.2337/db13-1169Search in Google Scholar
Kanda R, Hiraike H, Wada-Hiraike O, Ichinose T, Nagasaka K, Sasajima Y, et al. Expression of the glucagon-like peptide-1 receptor and its role in regulating autophagy in endometrial cancer. BMC Cancer. 2018;18(1):657. https://doi.org/10.1186/s12885-018-4570-8KandaRHiraikeHWada-HiraikeOIchinoseTNagasakaKSasajimaYExpression of the glucagon-like peptide-1 receptor and its role in regulating autophagy in endometrial cancerBMC Cancer2018181657https://doi.org/10.1186/s12885-018-4570-8Search in Google Scholar
Samaan E, Ramadan NM, Abdulaziz HMM, Ibrahim D, El-Sherbiny M, ElBayar R, et al. DPP-4i versus SGLT2i as modulators of PHD3/HIF-2α pathway in the diabetic kidney. Biomed Pharmacother. 2023 Nov;167:115629. https://doi.org/10.1016/j.biopha.2023.115629SamaanERamadanNMAbdulazizHMMIbrahimDEl-SherbinyMElBayarRDPP-4i versus SGLT2i as modulators of PHD3/HIF-2α pathway in the diabetic kidneyBiomed Pharmacother2023Nov167115629https://doi.org/10.1016/j.biopha.2023.115629Search in Google Scholar
Madunić IV, Madunić J, Breljak D, Karaica D, Sabolić I. Sodium-glucose cotransporters: new targets of cancer therapy? Arch Ind Hyg Toxicol. 2018 Dec 1;69(4):278–85. https://doi.org/10.2478/aiht-2018-69-3204MadunićIVMadunićJBreljakDKaraicaDSabolićISodium-glucose cotransporters: new targets of cancer therapy?Arch Ind Hyg Toxicol.2018Dec169427885https://doi.org/10.2478/aiht-2018-69-3204Search in Google Scholar
Helmke BM, Reisser C, Idzkoe M, Dyckhoff G, Herold-Mende C. Expression of SGLT-1 in preneoplastic and neoplastic lesions of the head and neck. Oral Oncol. 2004 Jan;40(1):28–35. https://doi.org/10.1016/S1368-8375(03)00129-5HelmkeBMReisserCIdzkoeMDyckhoffGHerold-MendeCExpression of SGLT-1 in preneoplastic and neoplastic lesions of the head and neckOral Oncol.2004Jan4012835https://doi.org/10.1016/S1368-8375(03)00129-5Search in Google Scholar
Blessing A. Sodium/Glucose Co-transporter 1 Expression Increases in Human Diseased Prostate. J Cancer Sci Ther. 2012;04(09). https://doi.org/10.4172/1948-5956.1000159BlessingASodium/Glucose Co-transporter 1 Expression Increases in Human Diseased ProstateJ Cancer Sci Ther.20120409https://doi.org/10.4172/1948-5956.1000159Search in Google Scholar
Lai B, Xiao Y, Pu H, Cao Q, Jing H, Liu X. Overexpression of SGLT1 is correlated with tumor development and poor prognosis of ovarian carcinoma. Arch Gynecol Obstet. 2012 May 10;285(5):1455–61. https://doi.org/10.1007/s00404-011-2166-5LaiBXiaoYPuHCaoQJingHLiuX.Overexpression of SGLT1 is correlated with tumor development and poor prognosis of ovarian carcinomaArch Gynecol Obstet.2012May102855145561https://doi.org/10.1007/s00404-011-2166-5Search in Google Scholar
Kepe V, Scafoglio C, Liu J, Yong WH, Bergsneider M, Huang SC, et al. Positron emission tomography of sodium glucose cotransport activity in high grade astrocytomas. J Neurooncol. 2018 Jul 10;138(3):557–69. https://doi.org/10.1007/s11060-018-2823-7KepeVScafoglioCLiuJYongWHBergsneiderMHuangSCPositron emission tomography of sodium glucose cotransport activity in high grade astrocytomasJ Neurooncol.2018Jul10138355769https://doi.org/10.1007/s11060-018-2823-7Search in Google Scholar
Scafoglio C, Hirayama BA, Kepe V, Liu J, Ghezzi C, Satyamurthy N, et al. Functional expression of sodium-glucose transporters in cancer. Proc Natl Acad Sci. 2015 Jul 28;112(30). https://doi.org/10.1073/pnas.1511698112ScafoglioCHirayamaBAKepeVLiuJGhezziCSatyamurthyNFunctional expression of sodium-glucose transporters in cancerProc Natl Acad Sci.2015Jul2811230https://doi.org/10.1073/pnas.1511698112Search in Google Scholar
Ishikawa N, Oguri T, Isobe T, Fujitaka K, Kohno N. SGLT Gene Expression in Primary Lung Cancers and Their Metastatic Lesions. Japanese J Cancer Res. 2001 Aug 23;92(8):874–9. https://doi.org/10.1111/j.1349-7006.2001.tb01175.xIshikawaNOguriTIsobeTFujitakaKKohnoN.SGLT Gene Expression in Primary Lung Cancers and Their Metastatic LesionsJapanese J Cancer Res.2001Aug239288749https://doi.org/10.1111/j.1349-7006.2001.tb01175.xSearch in Google Scholar
Scafoglio CR, Villegas B, Abdelhady G, Bailey ST, Liu J, Shirali AS, et al. Sodium-glucose transporter 2 is a diagnostic and therapeutic target for early-stage lung adenocarcinoma. Sci Transl Med. 2018 Nov 14;10(467). https://doi.org/10.1126/scitranslmed.aat5933ScafoglioCRVillegasBAbdelhadyGBaileySTLiuJShiraliASSodium-glucose transporter 2 is a diagnostic and therapeutic target for early-stage lung adenocarcinomaSci Transl Med.2018Nov1410467https://doi.org/10.1126/scitranslmed.aat5933Search in Google Scholar
Nipon Chattipakorn MD. Dapagliflozin, a sodium-glucose co-transporter-2 inhibitor, slows the progression of renal complications through the suppression of renal inflammation, endoplasmic reticulum stress and apoptosis in prediabetic rats.Nipon ChattipakornMDDapagliflozin, a sodium-glucose co-transporter-2 inhibitor, slows the progression of renal complications through the suppression of renal inflammation, endoplasmic reticulum stress and apoptosis in prediabetic ratsSearch in Google Scholar
Sa-nguanmoo P, Tanajak P, Kerdphoo S, Jaiwongkam T, Pratchayasakul W, Chattipakorn N, et al. SGLT2-inhibitor and DPP-4 inhibitor improve brain function via attenuating mitochondrial dysfunction, insulin resistance, inflammation, and apoptosis in HFD-induced obese rats. Toxicol Appl Pharmacol. 2017 Oct;333:43–50. https://doi.org/10.1016/j.taap.2017.08.005Sa-nguanmooPTanajakPKerdphooSJaiwongkamTPratchayasakulWChattipakornNSGLT2-inhibitor and DPP-4 inhibitor improve brain function via attenuating mitochondrial dysfunction, insulin resistance, inflammation, and apoptosis in HFD-induced obese ratsToxicol Appl Pharmacol.2017Oct3334350https://doi.org/10.1016/j.taap.2017.08.005Search in Google Scholar
Komatsu S, Nomiyama T, Numata T, Kawanami T, Hamaguchi Y, Tanaka T, et al. SGLT2 inhibitor ipragliflozin induces breast cancer apoptosis via membrane hyperpolarization and mitochondria dysfunction. Diabetes. 2018;67(Supplement_1).KomatsuSNomiyamaTNumataTKawanamiTHamaguchiYTanakaTSGLT2 inhibitor ipragliflozin induces breast cancer apoptosis via membrane hyperpolarization and mitochondria dysfunctionDiabetes201867Supplement_1Search in Google Scholar
Kuang H, Liao L, Chen H, Kang Q, Shu X, Wang Y. Therapeutic effect of sodium glucose co-transporter 2 inhibitor dapagliflozin on renal cell carcinoma. Med Sci Monit Int Med J Exp Clin Res. 2017;23:3737.KuangHLiaoLChenHKangQShuXWangYTherapeutic effect of sodium glucose co-transporter 2 inhibitor dapagliflozin on renal cell carcinomaMed Sci Monit Int Med J Exp Clin Res.2017233737Search in Google Scholar
Kaji K, Nishimura N, Seki K, Sato S, Saikawa S, Nakanishi K, et al. Sodium glucose cotransporter 2 inhibitor canagliflozin attenuates liver cancer cell growth and angiogenic activity by inhibiting glucose uptake. Int J cancer. 2018;142(8):1712–22.KajiKNishimuraNSekiKSatoSSaikawaSNakanishiKSodium glucose cotransporter 2 inhibitor canagliflozin attenuates liver cancer cell growth and angiogenic activity by inhibiting glucose uptakeInt J cancer.20181428171222Search in Google Scholar
Wang Y, Yang L, Mao L, Zhang L, Zhu Y, Xu Y, et al. SGLT2 inhibition restrains thyroid cancer growth via G1/S phase transition arrest and apoptosis mediated by DNA damage response signaling pathways. Cancer Cell Int. 2022 Dec 11;22(1):74. https://doi.org/10.1186/s12935-022-02496-zWangYYangLMaoLZhangLZhuYXuYSGLT2 inhibition restrains thyroid cancer growth via G1/S phase transition arrest and apoptosis mediated by DNA damage response signaling pathwaysCancer Cell Int.2022Dec1122174https://doi.org/10.1186/s12935-022-02496-zSearch in Google Scholar
Dutka M, Bobiński R, Francuz T, Garczorz W, Zimmer K, Ilczak T, et al. SGLT-2 Inhibitors in Cancer Treatment—Mechanisms of Action and Emerging New Perspectives. Cancers (Basel). 2022 Nov 25;14(23):5811. https://doi.org/10.3390/cancers14235811DutkaMBobińskiRFrancuzTGarczorzWZimmerKIlczakTSGLT-2 Inhibitors in Cancer Treatment—Mechanisms of Action and Emerging New PerspectivesCancers (Basel).2022Nov2514235811https://doi.org/10.3390/cancers14235811Search in Google Scholar
Zhang Z, Xu W, Fang L, Guo S. Correlation of various lipid-lowering and hypoglycemic drugs with the risk of gastric cancer in elderly population. Trop J Pharm Res. 2023 Aug 19;22(7):1503–10. https://doi.org/10.4314/tjpr.v22i7.21ZhangZXuWFangLGuoS.Correlation of various lipid-lowering and hypoglycemic drugs with the risk of gastric cancer in elderly populationTrop J Pharm Res.2023Aug19227150310https://doi.org/10.4314/tjpr.v22i7.21Search in Google Scholar
Tseng CH. The Relationship between Diabetes Mellitus and Gastric Cancer and the Potential Benefits of Metformin: An Extensive Review of the Literature. Biomolecules. 2021 Jul 13;11(7):1022. https://doi.org/10.3390/biom11071022TsengCH.The Relationship between Diabetes Mellitus and Gastric Cancer and the Potential Benefits of Metformin: An Extensive Review of the LiteratureBiomolecules.2021Jul131171022https://doi.org/10.3390/biom11071022Search in Google Scholar
Shuai Y, Li C, Zhou X. The effect of metformin on gastric cancer in patients with type 2 diabetes: a systematic review and meta-analysis. Clin Transl Oncol. 2020 Sep 14;22(9):1580–90. https://doi.org/10.1007/s12094-020-02304-yShuaiYLiCZhouX.The effect of metformin on gastric cancer in patients with type 2 diabetes: a systematic review and meta-analysisClin Transl Oncol.2020Sep14229158090https://doi.org/10.1007/s12094-020-02304-ySearch in Google Scholar
Zhao Z, He X, Sun Y. Hypoglycemic agents and incidence of pancreatic cancer in diabetic patients: a meta-analysis. Front Pharmacol. 2023 Jul 11;14. https://doi.org/10.3389/fphar.2023.1193610ZhaoZHeXSunY.Hypoglycemic agents and incidence of pancreatic cancer in diabetic patients: a meta-analysisFront Pharmacol.2023Jul1114https://doi.org/10.3389/fphar.2023.1193610Search in Google Scholar
But A, De Bruin ML, Bazelier MT, Hjellvik V, Andersen M, Auvinen A, et al. Cancer risk among insulin users: comparing analogues with human insulin in the CARING five-country cohort study. Diabetologia. 2017 Sep 1;60(9):1691–703. https://doi.org/10.1007/s00125-017-4312-5ButADe BruinMLBazelierMTHjellvikVAndersenMAuvinenACancer risk among insulin users: comparing analogues with human insulin in the CARING five-country cohort studyDiabetologia.2017Sep16091691703https://doi.org/10.1007/s00125-017-4312-5Search in Google Scholar
Colmers IN, Bowker SL, Tjosvold LA, Johnson JA. Insulin use and cancer risk in patients with type 2 diabetes: A systematic review and meta-analysis of observational studies. Diabetes Metab. 2012 Dec;38(6):485–506. https://doi.org/10.1016/j.diabet.2012.08.011ColmersINBowkerSLTjosvoldLAJohnsonJAInsulin use and cancer risk in patients with type 2 diabetes: A systematic review and meta-analysis of observational studiesDiabetes Metab.2012Dec386485506https://doi.org/10.1016/j.diabet.2012.08.011Search in Google Scholar
Tang X, Yang L, He Z, Liu J. Insulin Glargine and Cancer Risk in Patients with Diabetes: A Meta-Analysis. Baradaran HR, editor. PLoS One. 2012 Dec 19;7(12):e51814. https://doi.org/10.1371/journal.pone.0051814TangXYangLHeZLiuJInsulin Glargine and Cancer Risk in Patients with Diabetes: A Meta-AnalysisBaradaranHReditorPLoS One2012Dec19712e51814https://doi.org/10.1371/journal.pone.0051814Search in Google Scholar
Du X, Zhang R, Xue Y, Li D, Cai J, Zhou S, et al. Insulin Glargine and Risk of Cancer: A Meta-Analysis. Int J Biol Markers. 2012 Jul 15;27(3):241–6. https://doi.org/10.5301/JBM.2012.9349DuXZhangRXueYLiDCaiJZhouSInsulin Glargine and Risk of Cancer: A Meta-AnalysisInt J Biol Markers.2012Jul152732416https://doi.org/10.5301/JBM.2012.9349Search in Google Scholar
Chang CH, Toh S, Lin JW, Chen ST, Kuo CW, Chuang LM, et al. Cancer Risk Associated with Insulin Glargine among Adult Type 2 Diabetes Patients – A Nationwide Cohort Study. Federici M, editor. PLoS One. 2011 Jun 27;6(6):e21368. https://doi.org/10.1371/journal.pone.0021368ChangCHTohSLinJWChenSTKuoCWChuangLMCancer Risk Associated with Insulin Glargine among Adult Type 2 Diabetes Patients – A Nationwide Cohort StudyFedericiMeditorPLoS One.2011Jun2766e21368https://doi.org/10.1371/journal.pone.0021368Search in Google Scholar
Dąbrowski M, Szymańska-Garbacz E, Miszczyszyn Z, Dereziński T, Czupryniak L. Risk factors for cancer development in type 2 diabetes: A retrospective case-control study. BMC Cancer. 2016 Dec 10;16(1):785. https://doi.org/10.1186/s12885-016-2836-6DąbrowskiMSzymańska-GarbaczEMiszczyszynZDerezińskiTCzupryniakL.Risk factors for cancer development in type 2 diabetes: A retrospective case-control studyBMC Cancer.2016Dec10161785https://doi.org/10.1186/s12885-016-2836-6Search in Google Scholar
Chen Y, Du L, Li L, Ma J, Geng X, Yao X, et al. Cancer risk of sulfonylureas in patients with type 2 diabetes mellitus: A systematic review. J Diabetes. 2017 May 9;9(5):482–94. https://doi.org/10.1111/1753-0407.12435ChenYDuLLiLMaJGengXYaoXCancer risk of sulfonylureas in patients with type 2 diabetes mellitus: A systematic reviewJ Diabetes.2017May99548294https://doi.org/10.1111/1753-0407.12435Search in Google Scholar
Zhao H, Liu Z, Zhuo L, Shen P, Lin H, Sun Y, et al. Sulfonylurea and Cancer Risk Among Patients With Type 2 Diabetes: A Population-Based Cohort Study. Front Endocrinol (Lausanne). 2022 Jun 30;13. https://doi.org/10.3389/fendo.2022.874344ZhaoHLiuZZhuoLShenPLinHSunYSulfonylurea and Cancer Risk Among Patients With Type 2 Diabetes: A Population-Based Cohort StudyFront Endocrinol (Lausanne).2022Jun3013https://doi.org/10.3389/fendo.2022.874344Search in Google Scholar
Olatunde A, Nigam M, Singh RK, Panwar AS, Lasisi A, Alhumaydhi FA, et al. Cancer and diabetes: the interlinking metabolic pathways and repurposing actions of antidiabetic drugs. Cancer Cell Int. 2021 Sep 17;21(1):499. https://doi.org/10.1186/s12935-021-02202-5OlatundeANigamMSinghRKPanwarASLasisiAAlhumaydhiFACancer and diabetes: the interlinking metabolic pathways and repurposing actions of antidiabetic drugsCancer Cell Int.2021Sep17211499https://doi.org/10.1186/s12935-021-02202-5Search in Google Scholar
Bosetti C, Rosato V, Buniato D, Zambon A, La Vecchia C, Corrao G. Cancer Risk for Patients Using Thiazolidinediones for Type 2 Diabetes: A Meta-Analysis. Oncologist. 2013 Feb 1;18(2):148–56. https://doi.org/10.1634/theoncologist.2012-0302BosettiCRosatoVBuniatoDZambonALa VecchiaCCorraoG.Cancer Risk for Patients Using Thiazolidinediones for Type 2 Diabetes: A Meta-AnalysisOncologist.2013Feb118214856https://doi.org/10.1634/theoncologist.2012-0302Search in Google Scholar
Tang H, Shi W, Fu S, Wang T, Zhai S, Song Y, et al. Pioglitazone and bladder cancer risk: a systematic review and meta-analysis. Cancer Med. 2018 Apr 24;7(4):1070–80. https://doi.org/10.1002/cam4.1354TangHShiWFuSWangTZhaiSSongYPioglitazone and bladder cancer risk: a systematic review and meta-analysisCancer Med.2018Apr2474107080https://doi.org/10.1002/cam4.1354Search in Google Scholar
Busek P, Vanickova Z, Hrabal P, Brabec M, Fric P, Zavoral M, et al. Increased tissue and circulating levels of dipeptidyl peptidase-IV enzymatic activity in patients with pancreatic ductal adenocarcinoma. Pancreatology. 2016 Sep;16(5):829–38. https://doi.org/10.1016/j.pan.2016.06.001BusekPVanickovaZHrabalPBrabecMFricPZavoralMIncreased tissue and circulating levels of dipeptidyl peptidase-IV enzymatic activity in patients with pancreatic ductal adenocarcinomaPancreatology2016Sep16582938https://doi.org/10.1016/j.pan.2016.06.001Search in Google Scholar
Butler AE, Campbell-Thompson M, Gurlo T, Dawson DW, Atkinson M, Butler PC. Marked Expansion of Exocrine and Endocrine Pancreas With Incretin Therapy in Humans With Increased Exocrine Pancreas Dysplasia and the Potential for Glucagon-Producing Neuroendocrine Tumors. Diabetes. 2013 Jul 1;62(7):2595–604. https://doi.org/10.2337/db12-1686ButlerAECampbell-ThompsonMGurloTDawsonDWAtkinsonMButlerPC.Marked Expansion of Exocrine and Endocrine Pancreas With Incretin Therapy in Humans With Increased Exocrine Pancreas Dysplasia and the Potential for Glucagon-Producing Neuroendocrine TumorsDiabetes.2013Jul16272595604https://doi.org/10.2337/db12-1686Search in Google Scholar
Ueberberg S, Jütte H, Uhl W, Schmidt W, Nauck M, Montanya E, et al. Histological changes in endocrine and exocrine pancreatic tissue from patients exposed to incretin-based therapies. Diabetes, Obes Metab. 2016 Dec 26;18(12):1253–62. https://doi.org/10.1111/dom.12766UeberbergSJütteHUhlWSchmidtWNauckMMontanyaEHistological changes in endocrine and exocrine pancreatic tissue from patients exposed to incretin-based therapiesDiabetes, Obes Metab.2016Dec261812125362https://doi.org/10.1111/dom.12766Search in Google Scholar
Cox AR, Lam CJ, Rankin MM, Rios JS, Chavez J, Bonnyman CW, et al. Incretin Therapies Do Not Expand β-Cell Mass or Alter Pancreatic Histology in Young Male Mice. Endocrinology. 2017 Jun 1;158(6):1701–14. https://doi.org/10.1210/en.2017-00027CoxARLamCJRankinMMRiosJSChavezJBonnymanCWIncretin Therapies Do Not Expand β-Cell Mass or Alter Pancreatic Histology in Young Male MiceEndocrinology.2017Jun11586170114https://doi.org/10.1210/en.2017-00027Search in Google Scholar
Abd El Aziz M, Cahyadi O, Meier JJ, Schmidt WE, Nauck MA. Incretin-based glucose-lowering medications and the risk of acute pancreatitis and malignancies: a meta-analysis based on cardiovascular outcomes trials. Diabetes, Obes Metab. 2020 Apr 11;22(4):699–704. https://doi.org/10.1111/dom.13924Abd El AzizMCahyadiOMeierJJSchmidtWENauckMA.Incretin-based glucose-lowering medications and the risk of acute pancreatitis and malignancies: a meta-analysis based on cardiovascular outcomes trialsDiabetes, Obes Metab.2020Apr11224699704https://doi.org/10.1111/dom.13924Search in Google Scholar
Dicembrini I, Montereggi C, Nreu B, Mannucci E, Monami M. Pancreatitis and pancreatic cancer in patientes treated with Dipeptidyl Peptidase-4 inhibitors: An extensive and updated meta-analysis of randomized controlled trials. Diabetes Res Clin Pract. 2020 Jan;159:107981. https://doi.org/10.1016/j.diabres.2019.107981DicembriniIMontereggiCNreuBMannucciEMonamiMPancreatitis and pancreatic cancer in patientes treated with Dipeptidyl Peptidase-4 inhibitors: An extensive and updated meta-analysis of randomized controlled trialsDiabetes Res Clin Pract.2020Jan159107981https://doi.org/10.1016/j.diabres.2019.107981Search in Google Scholar
Dicembrini I, Nreu B, Montereggi C, Mannucci E, Monami M. Risk of cancer in patients treated with dipeptidyl peptidase-4 inhibitors: an extensive meta-analysis of randomized controlled trials. Acta Diabetol. 2020 Jun 18;57(6):689–96. https://doi.org/10.1007/s00592-020-01479-8DicembriniINreuBMontereggiCMannucciEMonamiM.Risk of cancer in patients treated with dipeptidyl peptidase-4 inhibitors: an extensive meta-analysis of randomized controlled trialsActa Diabetol.2020Jun1857668996https://doi.org/10.1007/s00592-020-01479-8Search in Google Scholar
Boniol M, Franchi M, Bota M, Leclercq A, Guillaume J, van Damme N, et al. Incretin-Based Therapies and the Short-term Risk of Pancreatic Cancer: Results From Two Retrospective Cohort Studies. Diabetes Care. 2018 Feb 1;41(2):286–92. https://doi.org/10.2337/dc17-0280BoniolMFranchiMBotaMLeclercqAGuillaumeJvan DammeNIncretin-Based Therapies and the Short-term Risk of Pancreatic Cancer: Results From Two Retrospective Cohort StudiesDiabetes Care.2018Feb141228692https://doi.org/10.2337/dc17-0280Search in Google Scholar
Lee M, Sun J, Han M, Cho Y, Lee JY, Nam CM, et al. Nationwide Trends in Pancreatitis and Pancreatic Cancer Risk Among Patients With Newly Diagnosed Type 2 Diabetes Receiving Dipeptidyl Peptidase 4 Inhibitors. Diabetes Care. 2019 Nov 1;42(11):2057–64. https://doi.org/10.2337/dc18-2195LeeMSunJHanMChoYLeeJYNamCMNationwide Trends in Pancreatitis and Pancreatic Cancer Risk Among Patients With Newly Diagnosed Type 2 Diabetes Receiving Dipeptidyl Peptidase 4 InhibitorsDiabetes Care.2019Nov14211205764https://doi.org/10.2337/dc18-2195Search in Google Scholar
Abrahami D, Douros A, Yin H, Yu OH, Faillie JL, Montastruc F, et al. Incretin based drugs and risk of cholangiocarcinoma among patients with type 2 diabetes: population based cohort study. BMJ. 2018 Dec 5;k4880. https://doi.org/10.1136/bmj.k4880AbrahamiDDourosAYinHYuOHFaillieJLMontastrucFIncretin based drugs and risk of cholangiocarcinoma among patients with type 2 diabetes: population based cohort studyBMJ2018Dec5k4880https://doi.org/10.1136/bmj.k4880Search in Google Scholar
Pech V, Abusaada K, Alemany C. Dipeptidyl Peptidase-4 Inhibition May Stimulate Progression of Carcinoid Tumor. Case Rep Endocrinol. 2015;2015:1–3. https://doi.org/10.1155/2015/952019PechVAbusaadaKAlemanyCDipeptidyl Peptidase-4 Inhibition May Stimulate Progression of Carcinoid TumorCase Rep Endocrinol.2015201513https://doi.org/10.1155/2015/952019Search in Google Scholar
Yang F, Takagaki Y, Yoshitomi Y, Ikeda T, Li J, Kitada M, et al. Inhibition of Dipeptidyl Peptidase-4 Accelerates Epithelial–Mesenchymal Transition and Breast Cancer Metastasis via the CXCL12/CXCR4/mTOR Axis. Cancer Res. 2019 Feb 15;79(4):735–46. https://doi.org/10.1158/0008-5472.CAN-18-0620YangFTakagakiYYoshitomiYIkedaTLiJKitadaMInhibition of Dipeptidyl Peptidase-4 Accelerates Epithelial–Mesenchymal Transition and Breast Cancer Metastasis via the CXCL12/CXCR4/mTOR AxisCancer Res.2019Feb1579473546https://doi.org/10.1158/0008-5472.CAN-18-0620Search in Google Scholar
Kim KR, Rhee SD, Hee Youn Kim, Won Hoon Jung, Yang SD, Sung Soo Kim, et al. KR-62436, 6-{2-[2-(5-cyano-4,5-dihydropyrazol-1-yl)-2-oxoethylamino]ethylamino}nicotinonitrile, is a novel dipeptidyl peptidase-IV (DPP-IV) inhibitor with anti-hyperglycemic activity. Eur J Pharmacol. 2005 Jul;518(1):63–70. https://doi.org/10.1016/j.ejphar.2005.05.030KimKRRheeSDHeeYoun KimWonHoon JungYangSDSung SooKimKR-62436, 6-{2-[2-(5-cyano-4,5-dihydropyrazol-1-yl)-2-oxoethylamino]ethylamino}nicotinonitrile, is a novel dipeptidyl peptidase-IV (DPP-IV) inhibitor with anti-hyperglycemic activityEur J Pharmacol.2005Jul51816370https://doi.org/10.1016/j.ejphar.2005.05.030Search in Google Scholar
Russo JW, Gao C, Bhasin SS, Voznesensky OS, Calagua C, Arai S, et al. Downregulation of Dipeptidyl Peptidase 4 Accelerates Progression to Castration-Resistant Prostate Cancer. Cancer Res. 2018 Nov 15;78(22):6354–62. https://doi.org/10.1158/0008-5472.CAN-18-0687RussoJWGaoCBhasinSSVoznesenskyOSCalaguaCAraiSDownregulation of Dipeptidyl Peptidase 4 Accelerates Progression to Castration-Resistant Prostate CancerCancer Res.2018Nov157822635462https://doi.org/10.1158/0008-5472.CAN-18-0687Search in Google Scholar
He L, Zhang T, Sun W, Qin Y, Wang Z, Dong W, et al. The DPP-IV inhibitor saxagliptin promotes the migration and invasion of papillary thyroid carcinoma cells via the NRF2/HO1 pathway. Med Oncol. 2020 Nov 1;37(11):97. https://doi.org/10.1007/s12032-020-01419-0HeLZhangTSunWQinYWangZDongWThe DPP-IV inhibitor saxagliptin promotes the migration and invasion of papillary thyroid carcinoma cells via the NRF2/HO1 pathwayMed Oncol.2020Nov1371197https://doi.org/10.1007/s12032-020-01419-0Search in Google Scholar
Wang H, Liu X, Long M, Huang Y, Zhang L, Zhang R, et al. NRF2 activation by antioxidant antidiabetic agents accelerates tumor metastasis. Sci Transl Med. 2016 Apr 13;8(334). https://doi.org/10.1126/scitranslmed.aad6095WangHLiuXLongMHuangYZhangLZhangRNRF2 activation by antioxidant antidiabetic agents accelerates tumor metastasisSci Transl Med.2016Apr138334https://doi.org/10.1126/scitranslmed.aad6095Search in Google Scholar
Tseng CH. Sitagliptin May Reduce Breast Cancer Risk in Women With Type 2 Diabetes. Clin Breast Cancer. 2017 Jun;17(3):211–8. https://doi.org/10.1016/j.clbc.2016.11.002TsengCHSitagliptin May Reduce Breast Cancer Risk in Women With Type 2 DiabetesClin Breast Cancer.2017Jun1732118https://doi.org/10.1016/j.clbc.2016.11.002Search in Google Scholar
Hsu WH, Sue SP, Liang HL, Tseng CW, Lin HC, Wen WL, et al. Dipeptidyl Peptidase 4 Inhibitors Decrease the Risk of Hepatocellular Carcinoma in Patients With Chronic Hepatitis C Infection and Type 2 Diabetes Mellitus: A Nationwide Study in Taiwan. Front Public Heal. 2021 Sep 17;9. https://doi.org/10.3389/fpubh.2021.711723HsuWHSueSPLiangHLTsengCWLinHCWenWLDipeptidyl Peptidase 4 Inhibitors Decrease the Risk of Hepatocellular Carcinoma in Patients With Chronic Hepatitis C Infection and Type 2 Diabetes Mellitus: A Nationwide Study in TaiwanFront Public Heal.2021Sep179https://doi.org/10.3389/fpubh.2021.711723Search in Google Scholar
Busek P, Duke-Cohan JS, Sedo A. Does DPPIV Inhibition Offer New Avenues for Therapeutic Intervention in Malignant Disease? Cancers (Basel). 2022 Apr 21;14(9):2072. https://doi.org/10.3390/cancers14092072BusekPDuke-CohanJSSedoADoes DPPIV Inhibition Offer New Avenues for Therapeutic Intervention in Malignant Disease?Cancers (Basel)2022Apr211492072https://doi.org/10.3390/cancers14092072Search in Google Scholar
Bjerre Knudsen L, Madsen LW, Andersen S, Almholt K, de Boer AS, Drucker DJ, et al. Glucagon-Like Peptide-1 Receptor Agonists Activate Rodent Thyroid C-Cells Causing Calcitonin Release and C-Cell Proliferation. Endocrinology. 2010 Apr 1;151(4):1473–86. https://doi.org/10.1210/en.2009-1272Bjerre KnudsenLMadsenLWAndersenSAlmholtKde BoerASDruckerDJGlucagon-Like Peptide-1 Receptor Agonists Activate Rodent Thyroid C-Cells Causing Calcitonin Release and C-Cell ProliferationEndocrinology.2010Apr11514147386https://doi.org/10.1210/en.2009-1272Search in Google Scholar
Bezin J, Gouverneur A, Pénichon M, Mathieu C, Garrel R, Hillaire-Buys D, et al. GLP-1 Receptor Agonists and the Risk of Thyroid Cancer. Diabetes Care. 2023 Feb 1;46(2):384–90. https://doi.org/10.2337/dc22-1148BezinJGouverneurAPénichonMMathieuCGarrelRHillaire-BuysDGLP-1 Receptor Agonists and the Risk of Thyroid CancerDiabetes Care.2023Feb146238490https://doi.org/10.2337/dc22-1148Search in Google Scholar
Knapen LM, van Dalem J, Keulemans YC, van Erp NP, Bazelier MT, De Bruin ML, et al. Use of incretin agents and risk of pancreatic cancer: a population-based cohort study. Diabetes, Obes Metab. 2016 Mar 8;18(3):258–65. https://doi.org/10.1111/dom.12605KnapenLMvan DalemJKeulemansYCvan ErpNPBazelierMTDe BruinMLUse of incretin agents and risk of pancreatic cancer: a population-based cohort studyDiabetes, Obes Metab.2016Mar818325865https://doi.org/10.1111/dom.12605Search in Google Scholar
Vasilakou D, Karagiannis T, Athanasiadou E, Mainou M, Liakos A, Bekiari E, et al. Sodium–glucose cotransporter 2 inhibitors for type 2 diabetes: a systematic review and meta-analysis. Ann Intern Med. 2013;159(4):262–74.VasilakouDKaragiannisTAthanasiadouEMainouMLiakosABekiariESodium–glucose cotransporter 2 inhibitors for type 2 diabetes: a systematic review and meta-analysisAnn Intern Med.2013159426274Search in Google Scholar
Tang H, Dai Q, Shi W, Zhai S, Song Y, Han J. SGLT2 inhibitors and risk of cancer in type 2 diabetes: a systematic review and meta-analysis of randomised controlled trials. Diabetologia. 2017;60(10):1862–72. https://doi.org/10.1007/s00125-017-4370-8TangHDaiQShiWZhaiSSongYHanJSGLT2 inhibitors and risk of cancer in type 2 diabetes: a systematic review and meta-analysis of randomised controlled trialsDiabetologia20176010186272https://doi.org/10.1007/s00125-017-4370-8Search in Google Scholar
Dicembrini I, Nreu B, Mannucci E, Monami M. Sodium-glucose co-transporter-2 (SGLT-2) inhibitors and cancer: a meta-analysis of randomized controlled trials. Diabetes, Obes Metab. 2019;21(8):1871–7.DicembriniINreuBMannucciEMonamiMSodium-glucose co-transporter-2 (SGLT-2) inhibitors and cancer: a meta-analysis of randomized controlled trialsDiabetes, Obes Metab.201921818717Search in Google Scholar
Liu YC, Nguyen PA, Humayun A, Chien SC, Yang HC, Asdary RN, et al. Does long-term use of antidiabetic drugs changes cancer risk? Medicine (Baltimore). 2019 Oct;98(40):e17461. https://doi.org/10.1097/MD.0000000000017461LiuYCNguyenPAHumayunAChienSCYangHCAsdaryRNDoes long-term use of antidiabetic drugs changes cancer risk?Medicine (Baltimore)2019Oct9840e17461https://doi.org/10.1097/MD.0000000000017461Search in Google Scholar
Gales L, Forsea L, Mitrea D, Stefanica I, Stanculescu I, Mitrica R, et al. Antidiabetics, Anthelmintics, Statins, and Beta-Blockers as Co-Adjuvant Drugs in Cancer Therapy. Medicina (B Aires). 2022 Sep 7;58(9):1239. https://doi.org/10.3390/medicina58091239GalesLForseaLMitreaDStefanicaIStanculescuIMitricaRAntidiabetics, Anthelmintics, Statins, and Beta-Blockers as Co-Adjuvant Drugs in Cancer TherapyMedicina (B Aires).2022Sep75891239https://doi.org/10.3390/medicina58091239Search in Google Scholar
Morale MG, Tamura RE, Rubio IGS. Metformin and Cancer Hallmarks: Molecular Mechanisms in Thyroid, Prostate and Head and Neck Cancer Models. Biomolecules. 2022 Feb 24;12(3):357. https://doi.org/10.3390/biom12030357MoraleMGTamuraRERubioIGSMetformin and Cancer Hallmarks: Molecular Mechanisms in Thyroid, Prostate and Head and Neck Cancer ModelsBiomolecules2022Feb24153357https://doi.org/10.3390/biom12030357Search in Google Scholar
Kim SH, Kang JG, Kim CS, Ihm SH, Choi MG, Yoo HJ, et al. Synergistic cytotoxicity of the dipeptidyl peptidase-IV inhibitor gemigliptin with metformin in thyroid carcinoma cells. Endocrine. 2018 Feb 28;59(2):383–94. https://doi.org/10.1007/s12020-017-1503-2KimSHKangJGKimCSIhmSHChoiMGYooHJSynergistic cytotoxicity of the dipeptidyl peptidase-IV inhibitor gemigliptin with metformin in thyroid carcinoma cellsEndocrine.2018Feb2859238394https://doi.org/10.1007/s12020-017-1503-2Search in Google Scholar
Ozdemir Kutbay N, Biray Avci C, Sarer Yurekli B, Caliskan Kurt C, Shademan B, Gunduz C, et al. Effects of metformin and pioglitazone combination on apoptosis and AMPK/mTOR signaling pathway in human anaplastic thyroid cancer cells. J Biochem Mol Toxicol. 2020 Oct 26;34(10). https://doi.org/10.1002/jbt.22547Ozdemir KutbayNBiray AvciCSarer YurekliBCaliskan KurtCShademanBGunduzCEffects of metformin and pioglitazone combination on apoptosis and AMPK/mTOR signaling pathway in human anaplastic thyroid cancer cellsJ Biochem Mol Toxicol.2020Oct263410https://doi.org/10.1002/jbt.22547Search in Google Scholar
Zheng J, Xie SH, Santoni G, Lagergren J. Metformin use and risk of gastric adenocarcinoma in a Swedish population-based cohort study. Br J Cancer. 2019 Nov 12;121(10):877–82. https://doi.org/10.1038/s41416-019-0598-zZhengJXieSHSantoniGLagergrenJ.Metformin use and risk of gastric adenocarcinoma in a Swedish population-based cohort studyBr J Cancer.2019Nov121211087782https://doi.org/10.1038/s41416-019-0598-zSearch in Google Scholar
Rothermundt C, Hayoz S, Templeton AJ, Winterhalder R, Strebel RT, Bärtschi D, et al. Metformin in Chemotherapy-naive Castration-resistant Prostate Cancer: A Multicenter Phase 2 Trial (SAKK 08/09). Eur Urol. 2014 Sep;66(3):468–74. https://doi.org/10.1016/j.eururo.2013.12.057RothermundtCHayozSTempletonAJWinterhalderRStrebelRTBärtschiDMetformin in Chemotherapy-naive Castration-resistant Prostate Cancer: A Multicenter Phase 2 Trial (SAKK 08/09)Eur Urol.2014Sep66346874https://doi.org/10.1016/j.eururo.2013.12.057Search in Google Scholar
Handelsman Y, LeRoith D, Bloomgarden ZT, Dagogo-Jack S, Einhorn D, Garber AJ, et al. Diabetes and Cancer—An AACE/ACE Consensus Statement. Endocr Pract. 2013 Jul;19(4):675–93. https://doi.org/10.4158/EP13248.CSHandelsmanYLeRoithDBloomgardenZTDagogo-JackSEinhornDGarberAJDiabetes and Cancer—An AACE/ACE Consensus StatementEndocr Pract.2013Jul19467593https://doi.org/10.4158/EP13248.CSSearch in Google Scholar
Scharping NE, Menk A V., Whetstone RD, Zeng X, Delgoffe GM. Efficacy of PD-1 Blockade Is Potentiated by Metformin-Induced Reduction of Tumor Hypoxia. Cancer Immunol Res. 2017 Jan 1;5(1):9–16. https://doi.org/10.1158/2326-6066.CIR-16-0103ScharpingNEMenkA V.WhetstoneRDZengXDelgoffeGM.Efficacy of PD-1 Blockade Is Potentiated by Metformin-Induced Reduction of Tumor HypoxiaCancer Immunol Res.2017Jan151916https://doi.org/10.1158/2326-6066.CIR-16-0103Search in Google Scholar
Zhan ZT, Liu L, Cheng MZ, Gao Y, Zhou WJ. The Effects of 6 Common Antidiabetic Drugs on Anti-PD1 Immune Checkpoint Inhibitor in Tumor Treatment. Xu B, editor. J Immunol Res. 2022 Aug 18;2022:1–24. https://doi.org/10.1155/2022/2651790ZhanZTLiuLChengMZGaoYZhouWJThe Effects of 6 Common Antidiabetic Drugs on Anti-PD1 Immune Checkpoint Inhibitor in Tumor TreatmentXuBeditorJ Immunol Res2022Aug182022124https://doi.org/10.1155/2022/2651790Search in Google Scholar
Brown JR, Chan DK, Shank JJ, Griffith KA, Fan H, Szulawski R, et al. Phase II clinical trial of metformin as a cancer stem cell–targeting agent in ovarian cancer. JCI insight. 2020;5(11).BrownJRChanDKShankJJGriffithKAFanHSzulawskiRPhase II clinical trial of metformin as a cancer stem cell–targeting agent in ovarian cancerJCI insight2020511Search in Google Scholar
Curry JM, Johnson J, Mollaee M, Tassone P, Amin D, Knops A, et al. Metformin clinical trial in HPV+ and HPV–head and neck squamous cell carcinoma: impact on cancer cell apoptosis and immune infiltrate. Front Oncol. 2018;8:436.CurryJMJohnsonJMollaeeMTassonePAminDKnopsAMetformin clinical trial in HPV+ and HPV–head and neck squamous cell carcinoma: impact on cancer cell apoptosis and immune infiltrateFront Oncol20188436Search in Google Scholar
Gutkind JS, Molinolo AA, Wu X, Wang Z, Nachmanson D, Harismendy O, et al. Inhibition of mTOR signaling and clinical activity of metformin in oral premalignant lesions. JCI insight. 2021;6(17).GutkindJSMolinoloAAWuXWangZNachmansonDHarismendyOInhibition of mTOR signaling and clinical activity of metformin in oral premalignant lesionsJCI insight2021617Search in Google Scholar
Durai L, Ravindran S, Arvind K, Karunagaran D, Vijayalakshmi R. Synergistic effect of metformin and vemurufenib (PLX4032) as a molecular targeted therapy in anaplastic thyroid cancer: an in vitro study. Mol Biol Rep. 2021 Nov 30;48(11):7443–56. https://doi.org/10.1007/s11033-021-06762-7DuraiLRavindranSArvindKKarunagaranDVijayalakshmiR.Synergistic effect of metformin and vemurufenib (PLX4032) as a molecular targeted therapy in anaplastic thyroid cancer: an in vitro studyMol Biol Rep.2021Nov304811744356https://doi.org/10.1007/s11033-021-06762-7Search in Google Scholar
Eibl G, Rozengurt E. Metformin: review of epidemiology and mechanisms of action in pancreatic cancer. Cancer Metastasis Rev. 2021 Sep 17;40(3):865–78. https://doi.org/10.1007/s10555-021-09977-zEiblGRozengurtE.Metformin: review of epidemiology and mechanisms of action in pancreatic cancerCancer Metastasis Rev.2021Sep1740386578https://doi.org/10.1007/s10555-021-09977-zSearch in Google Scholar
Jang J, Lee TJ, Sung EG, Song IH, Kim JY. Dapagliflozin induces apoptosis by downregulating cFILP L and increasing cFILP S instability in Caki-1 cells. Oncol Lett. 2022 Sep 22;24(5):401. https://doi.org/10.3892/ol.2022.13521JangJLeeTJSungEGSongIHKimJY.Dapagliflozin induces apoptosis by downregulating cFILP L and increasing cFILP S instability in Caki-1 cellsOncol Lett.2022Sep22245401https://doi.org/10.3892/ol.2022.13521Search in Google Scholar
Xu D, Zhou Y, Xie X, He L, Ding J, Pang S, et al. Inhibitory effects of canagliflozin on pancreatic cancer are mediated via the downregulation of glucose transporter-1 and lactate dehydrogenase A. Int J Oncol. 2020 Sep 8; https://doi.org/10.3892/ijo.2020.5120XuDZhouYXieXHeLDingJPangSInhibitory effects of canagliflozin on pancreatic cancer are mediated via the downregulation of glucose transporter-1 and lactate dehydrogenase AInt J Oncol.2020Sep8https://doi.org/10.3892/ijo.2020.5120Search in Google Scholar
Li H, Tong CWS, Leung Y, Wong MH, To KKW, Leung KS. Identification of Clinically Approved Drugs Indacaterol and Canagliflozin for Repurposing to Treat Epidermal Growth Factor Tyrosine Kinase Inhibitor-Resistant Lung Cancer. Front Oncol. 2017 Nov 29;7. https://doi.org/10.3389/fonc.2017.00288LiHTongCWSLeungYWongMHToKKWLeungKS.Identification of Clinically Approved Drugs Indacaterol and Canagliflozin for Repurposing to Treat Epidermal Growth Factor Tyrosine Kinase Inhibitor-Resistant Lung CancerFront Oncol.2017Nov297https://doi.org/10.3389/fonc.2017.00288Search in Google Scholar
Zhou J, Zhu J, Yu SJ, Ma HL, Chen J, Ding XF, et al. Sodium-glucose co-transporter-2 (SGLT-2) inhibition reduces glucose uptake to induce breast cancer cell growth arrest through AMPK/mTOR pathway. Biomed Pharmacother. 2020 Dec;132:110821. https://doi.org/10.1016/j.biopha.2020.110821ZhouJZhuJYuSJMaHLChenJDingXFSodium-glucose co-transporter-2 (SGLT-2) inhibition reduces glucose uptake to induce breast cancer cell growth arrest through AMPK/mTOR pathwayBiomed Pharmacother2020Dec132110821https://doi.org/10.1016/j.biopha.2020.110821Search in Google Scholar
Ali A, Mekhaeil B, Biziotis OD, Tsakiridis EE, Ahmadi E, Wu J, et al. The SGLT2 inhibitor canagliflozin suppresses growth and enhances prostate cancer response to radiotherapy. Commun Biol. 2023 Sep 8;6(1):919. https://doi.org/10.1038/s42003-023-05289-wAliAMekhaeilBBiziotisODTsakiridisEEAhmadiEWuJThe SGLT2 inhibitor canagliflozin suppresses growth and enhances prostate cancer response to radiotherapyCommun Biol.2023Sep861919https://doi.org/10.1038/s42003-023-05289-wSearch in Google Scholar