Uneingeschränkter Zugang

Annotation-free Generation of Training Data Using Mixed Domains for Segmentation of 3D LiDAR Point Clouds

,  und   
21. Aug. 2025

Zitieren
COVER HERUNTERLADEN

Alonso I., Riazuelo L., Montesano L., and Murillo A. C. Domain adaptation in lidar semantic segmentation by aligning class distributions, 2021. Search in Google Scholar

Arief H. A., Arief M., Zhang G., Liu Z., Bhat M., Indahl U. G., Tveite H., and Zhao D. Sane: smart annotation and evaluation tools for point cloud data. IEEE Access, 8:131848–131858, 2020. Search in Google Scholar

Badrloo S., Varshosaz M., Pirasteh S., and Li J. Image-based obstacle detection methods for the safe navigation of unmanned vehicles: A review. Remote Sensing, 14(15):3824, 2022. Search in Google Scholar

Behley J., Garbade M., Milioto A., Quenzel J., Behnke S., Stachniss C., and Gall J. Semantickitti: A dataset for semantic scene understanding of lidar sequences. In Proceedings of the IEEE/CVF international conference on computer vision, pages 9297–9307, 2019. Search in Google Scholar

Chang A. X., Funkhouser T., Guibas L., Hanrahan P., Huang Q., Li Z., Savarese S., Savva M., Song S., Su H., et al. Shapenet: An information-rich 3d model repository. arXiv preprint arXiv:1512.03012, 2015. Search in Google Scholar

Choi J., Song Y., and Kwak N. Part-aware data augmentation for 3d object detection in point cloud. In 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 3391–3397. IEEE, 2021. Search in Google Scholar

Cop K., Sułek B., and Trzciński T. Towards efficient generation of data using mixed domains for segmentation of 3d lidar point clouds. In Mańdziuk J., Żychowski A., and Małkiński M., editors, Progress in Polish Artificial Intelligence Research 5: Proceedings of the 5th Polish Conference on Artificial Intelligence (PP-RAI’2024), pages 280–286, Warsaw, Poland, 2024. Search in Google Scholar

CVAT. 3d object annotation. https://docs.cvat.ai/docs/manual/basics/3d-object-annotation/. Accessed: 2024-11-28. Search in Google Scholar

Dosovitskiy A., Ros G., Codevilla F., Lopez A., and Koltun V. Carla: An open urban driving simulator. In Conference on robot learning, pages 1–16. PMLR, 2017. Search in Google Scholar

Espadinha J., Lebedev I., Lukic L., and Bernardino A. Lidar data noise models and methodology for sim-to-real domain generalization and adaptation in autonomous driving perception. In 2021 IEEE Intelligent Vehicles Symposium (IV), pages 797–803. IEEE, 2021. Search in Google Scholar

Fang J., Zhou D., Yan F., Zhao T., Zhang F., Ma Y., Wang L., and Yang R. Augmented lidar simulator for autonomous driving. IEEE Robotics and Automation Letters, 5(2):1931–1938, 2020. Search in Google Scholar

Gao B., Pan Y., Li C., Geng S., and Zhao H. Are we hungry for 3d lidar data for semantic segmentation? a survey of datasets and methods. IEEE Transactions on Intelligent Transportation Systems, 23(7):6063–6081, 2021. Search in Google Scholar

Hesai. Pandar64. https://www.hesaitech.com/product/pandar64/. Accessed: 2024-11-28. Search in Google Scholar

Hurl B., Czarnecki K., and Waslander S. Precise synthetic image and lidar (presil) dataset for autonomous vehicle perception. In 2019 IEEE Intelligent Vehicles Symposium (IV), pages 2522–2529. IEEE, 2019. Search in Google Scholar

Ibrahim M., Akhtar N., Wise M., and Mian A. Annotation tool and urban dataset for 3d point cloud semantic segmentation. IEEE Access, 9:35984–35996, 2021. Search in Google Scholar

Koenig S. and Howard A. Gazebo: A reliable and versatile robot simulation framework. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2004), pages 2149–2154. IEEE, 2004. Search in Google Scholar

Kunchev V., Jain L., Ivancevic V., and Finn A. Path planning and obstacle avoidance for autonomous mobile robots: A review. In Knowledge-Based Intelligent Information and Engineering Systems: 10th International Conference, KES 2006, Bournemouth, UK, October 9-11, 2006. Proceedings, Part II 10, pages 537–544. Springer, 2006. Search in Google Scholar

Lai X., Chen Y., Lu F., Liu J., and Jia J. Spherical transformer for lidar-based 3d recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 17545–17555, 2023. Search in Google Scholar

Manivasagam S., Wang S., Wong K., Zeng W., Sazanovich M., Tan S., Yang B., Ma W.-C., and Urtasun R. Lidarsim: Realistic lidar simulation by leveraging the real world. 2020 ieee. In CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 11164–11173, 2020. Search in Google Scholar

Meng Q., Wang W., Zhou T., Shen J., Jia Y., and Van Gool L. Towards a weakly supervised framework for 3d point cloud object detection and annotation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(8):4454–4468, 2021. Search in Google Scholar

Segments.ai. Data labelling - 3d point cloud. https://segments.ai/data-labeling/3d-point-cloud/. Accessed: 2024-11-28. Search in Google Scholar

UnitedRobots. Ur cleaner. https://unitedrobots.co/ur-cleaner/. Accessed: 2024-11-28. Search in Google Scholar

Velodyne. Hdl-64e. https://www.mapix.com/wp-content/uploads/2018/07/63-9194_Rev-J_HDL-64E_S3_Spec-Sheet-Web.pdf. Accessed: 2024-11-28. Search in Google Scholar

Velodyne. Vlp-16. https://www.amtechs.co.jp/product/VLP-16-Puck.pdf. Search in Google Scholar

Wang C., Ma C., Zhu M., and Yang X. Pointaugmenting: Cross-modal augmentation for 3d object detection. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 11794–11803, 2021. Search in Google Scholar

Xiao A., Huang J., Guan D., Zhan F., and Lu S. Transfer learning from synthetic to real lidar point cloud for semantic segmentation. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 36, pages 2795–2803, 2022. Search in Google Scholar

Xiao P., Shao Z., Hao S., Zhang Z., Chai X., Jiao J., Li Z., Wu J., Sun K., Jiang K., et al. Pandaset: Advanced sensor suite dataset for autonomous driving. In 2021 IEEE International Intelligent Transportation Systems Conference (ITSC), pages 3095–3101. IEEE, 2021. Search in Google Scholar

Zhang J., Zhao X., Chen Z., and Lu Z. A review of deep learning-based semantic segmentation for point cloud. IEEE access, 7:179118–179133, 2019. Search in Google Scholar

Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Informatik, Künstliche Intelligenz, Softwareentwicklung