Uneingeschränkter Zugang

Laser Powder Bed Fusion and Selective Laser Melted Components Investigated with Highly Penetrating Radiation


Zitieren

[1] 3D Systems. (2022). Our story. Retrieved 2022-02-14, from https://es.3dsystems.com/our-story. Search in Google Scholar

[2] International Organization for Standardization. (2021). ISO/ASTM 52900(en), Additive manufacturing — General principles — Terminology. https://www.iso.org/obp/ui/#iso:std:iso-astm:52900:dis:ed-2:v1:en Search in Google Scholar

[3] Savolainen, J. and Collan, M. (2020). How Additive Manufacturing Technology Changes Business Models? – Review of Literature. Additive Manufacturing, vol. 32, p. 101070. DOI: 10.1016/j.addma.2020.101070. Open DOISearch in Google Scholar

[4] Withers, P.J., Turski, M., Edwards, L., Bouchard, P.J. and Buttle, D.J. (2007). Recent advances in residual stress measurement. International Journal of Pressure Vessels and Piping, vol. 85(3), pp. 118–127. DOI: 10.1016/j.ijpvp.2007.10.007. Open DOISearch in Google Scholar

[5] Strantza, M. et al. (2018). Coupled experimental and computational study of residual stresses in additively manufactured Ti-6Al-4V components. Materials Letters, vol. 231, pp. 221–224. DOI: 10.1016/j.matlet.2018.07.141. Open DOISearch in Google Scholar

[6] Mishurova, T., Artzt, K., Haubrich, J., Requena, G. and Bruno, G. (2019). Exploring the Correlation between Subsurface Residual Stresses and Manufacturing Parameters in Laser Powder Bed Fused Ti-6Al-4V. Metals, vol. 9 (2), p. 261. DOI: 10.3390/met 9020261. Open DOISearch in Google Scholar

[7] Ganeriwala, R.K. et al. (2019). Evaluation of a thermomechanical model for prediction of residual stress during laser powder bed fusion of Ti-6Al-4V. Additive Manufacturing, vol. 27, pp. 489–502. DOI: 10.1016/j.addma.2019.03.034. Open DOISearch in Google Scholar

[8] Bodner, S. C. et al. (2020). Inconel-steel multilayers by liquid dispersed metal powder bed fusion: Microstructure, residual stress and property gradients. Additive Manufacturing, vol. 32, p. 101027. DOI: 10.1016/j.addma.2019.101027. Open DOISearch in Google Scholar

[9] Mishurova, T. et al. (2020). Connecting Diffraction-Based Strain with Macroscopic Stresses in Laser Powder Bed Fused Ti-6Al-4V. Metallurgical and Materials Transactions A, vol. 51(6), pp. 3194–3204. DOI: 10.1007/s11661-020-05711-6. Open DOISearch in Google Scholar

[10] Serrano-Munoz, I. et al. (2021). On the interplay of microstructure and residual stress in LPBF IN718. Journal of Materials Science, vol. 56(9), pp. 5845–5867. DOI: 10.1007/s10853-020-05553-y. Open DOISearch in Google Scholar

[11] Reuss, A. (1929). Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle. Journal of Applied Mathematics and Mechanics / Zeitschrift Angewandte Mathematik und Mechanik. DOI: 10.1002/zamm.19290090104. Open DOISearch in Google Scholar

[12] Kröner, E. (1958). Berechnung der elastischen Konstanten des Vielkristalls aus den Konstanten des Einkristalls. Z. Physik, vol. 151(4), pp. 504–518. DOI: 10.1007/BF01337948. Open DOISearch in Google Scholar

[13] Artzt, K. et al. (2020). Pandora’s Box–Influence of Contour Parameters on Roughness and Subsurface Residual Stresses in Laser Powder Bed Fusion of Ti-6Al-4V. Materials, vol. 13(15), p. 3348. DOI: 10.3390/ma13153348.743601932731434 Open DOISearch in Google Scholar

[14] Calta, N.P. et al. (2020). Cooling dynamics of two titanium alloys during laser powder bed fusion probed with in situ X-ray imaging and diffraction. Materials & Design, vol. 195, p. 108987. DOI: 10.1016/j.matdes.2020.108987. Open DOISearch in Google Scholar

[15] Aminforoughi, B., Degener, S., Richter, J., Liehr, A. and Niendorf, T. (2021). A Novel Approach to Robustly Determine Residual Stress in Additively Manufactured Microstructures Using Synchrotron Radiation. Advanced Engineering Materials, vol. 23(11), p. 2100184. DOI: 10.1002/adem.202100184. Open DOISearch in Google Scholar

[16] Mishurova, T. et al. (2017). An Assessment of Subsurface Residual Stress Analysis in SLM Ti-6Al-4V. Materials, vol. 10(4), p. 348. DOI: 10.3390/ma10040348.550695828772706 Open DOISearch in Google Scholar

[17] Mishurova, T. et al. (2018). The Influence of the Support Structure on Residual Stress and Distortion in SLM Inconel 718 Parts. Metallurgical and Materials Transactions A, vol. 49(7), pp. 3038–3046. DOI: 10.1007/s11661-018-4653-9. Open DOISearch in Google Scholar

[18] Mishurova, T. et al. (2019). New aspects about the search for the most relevant parameters optimizing SLM materials. Additive Manufacturing, vol. 25, pp. 325–334. DOI: 10.1016 /j.addma.2018.11.023. Open DOISearch in Google Scholar

[19] Hocine, S. et al. (2020). Operando X-ray diffraction during laser 3D printing. Materials Today, vol. 34, pp. 30–40. DOI: 10.1016/j.mattod.2019.10.001. Open DOISearch in Google Scholar

[20] Wu, A.S., Brown, D.W., Kumar, M., Gallegos, G.F. and King, W.E. (2014). An Experimental Investigation into Additive Manufacturing-Induced Residual Stresses in 316L Stainless Steel. Metallurgical and Materials Transactions A, vol. 45(13), pp. 6260–6270. DOI: 10.1007/s11661-014-2549-x. Open DOISearch in Google Scholar

[21] An, K., Yuan, L., Dial, L., Spinelli, I., Stoica, A.D. and Gao, Y. (2017). Neutron residual stress measurement and numerical modeling in a curved thin-walled structure by laser powder bed fusion additive manufacturing. Materials & Design, vol. 135, pp. 122–132. DOI: 10.1016/j.matdes.2017.09.018. Open DOISearch in Google Scholar

[22] Gloaguen, D. et al. (2020). Study of Residual Stresses in Additively Manufactured Ti-6Al-4V by Neutron Diffraction Measurements. Metallurgical and Materials Transactions A, vol. 5(2), pp. 951–961. DOI: 10.1007/s11661-019-05538-w. Open DOISearch in Google Scholar

[23] Ulbricht, A. et al. (2020). Separation of the Formation Mechanisms of Residual Stresses in LPBF 316L. Metals, vol. 10(9). DOI: 10.1007/s11661-019-05538-w. Open DOISearch in Google Scholar

[24] Goel, S. et al. (2020). Residual stress determination by neutron diffraction in powder bed fusion-built Alloy 718: Influence of process parameters and post-treatment. Materials & Design, vol. 195, p. 109045. DOI: 10.1016/j.matdes.2020.109045. Open DOISearch in Google Scholar

[25] Clausen, B. et al. (2020). Complementary Measurements of Residual Stresses Before and After Base Plate Removal in an Intricate Additively-Manufactured Stainless-Steel Valve Housing. Additive Manufacturing, vol. 36, p. 101555. DOI: 10.1016/j.addma. 2020.101555. Open DOISearch in Google Scholar

[26] Pant, P. et al. (2020). Mapping of residual stresses in as-built Inconel 718 fabricated by laser powder bed fusion: A neutron diffraction study of build orientation influence on residual stresses. Additive Manufacturing, vol. 36, p. 101501. DOI: 10.1016/j.addma. 2020.101501. Open DOISearch in Google Scholar

[27] Zhang, X.X. et al. (2021). Quantifying internal strains, stresses, and dislocation density in additively manufactured AlSi10Mg during loading-unloading-reloading deformation. Materials & Design, vol. 198, p. 109339. DOI: 10.1016/j.matdes.2020.109339. Open DOISearch in Google Scholar

[28] Fritsch, T. et al. (2021). On the determination of residual stresses in additively manufactured lattice structures. Journal of Applied Crystallography, vol. 54(1), pp. 228–236. DOI: 10.1107/S1600576720015344.794130733833650 Open DOISearch in Google Scholar

[29] Nadammal, N. et al. (2021). Critical role of scan strategies on the development of microstructure, texture, and residual stresses during laser powder bed fusion additive manufacturing. Additive Manufacturing, vol. 38, p. 101792. DOI: 10.1016/j.addma.2020.101792. Open DOISearch in Google Scholar

[30] Serrano-Munoz, I. et al. (2021). Scanning Manufacturing Parameters Determining the Residual Stress State in LPBF IN718 Small Parts. Advanced Engineering Materials, vol. 23(7), p. 2100158. DOI: 10.1002/adem.202100158. Open DOISearch in Google Scholar

[31] Busi, M. et al. (2021). A parametric neutron Bragg edge imaging study of additively manufactured samples treated by laser shock peening. Scientific Reports, vol. 11(1), p. 14919. DOI: 10.1038/s41598-021-94455-3.829536734290334 Open DOISearch in Google Scholar

[32] Serrano-Munoz, I. et al. (2021). The Importance of Subsurface Residual Stress in Laser Powder Bed Fusion IN718. Advanced Engineering Materials, 2100895. DOI: 10.1002/adem.202100895. Open DOISearch in Google Scholar

[33] Reid, M. (2017). Residual Stresses in Selective Laser Melted Components of Different Geometries. Materials Research Proceedings, vol. 2, pp. 383–388. DOI: 10.21741/9781945291173-65. Open DOISearch in Google Scholar

[34] Kim, D.-K., Hwang, J.-H., Kim, E.-Y., Heo, Y.-U., Woo, W. and Choi, S.-H. (2017). Evaluation of the stress-strain relationship of constituent phases in AlSi10Mg alloy produced by selective laser melting using crystal plasticity FEM. Journal of Alloys and Compounds, vol. 714, pp. 687–697. DOI: 10.1016/j.jallcom.2017.04.264. Open DOISearch in Google Scholar

[35] Nadammal, N. et al. (2017). Effect of hatch length on the development of microstructure, texture and residual stresses in selective laser melted superalloy Inconel 718. Materials & Design, vol. 134, pp. 139–150. DOI: 10.1016/j.matdes.2017.08.049. Open DOISearch in Google Scholar

[36] Andersson, L.S. (2018). Investigating the Residual Stress Distribution in Selective Laser Melting Produced Ti-6Al-4V using Neutron Diffraction. Materials Research Proceedings, vol. 4, pp. 73–78. DOI: 10.21741/9781945291678-11. Open DOISearch in Google Scholar

[37] Syed, A.K. et al. (2019). An experimental study of residual stress and direction-dependence of fatigue crack growth behaviour in as-built and stress-relieved selective-laser-melted Ti6Al4V. Materials Science and Engineering: A, vol. 755, pp. 246–257. DOI: 10.1016/j.msea.2019.04.023. Open DOISearch in Google Scholar

[38] Kromm, A. (2018). Residual Stresses in Selective Laser Melted Samples of a Nickel Based Superalloy. Materials Research Proceedings, vol. 6, pp. 259–264. DOI: 10.21741/9781945291890-41. Open DOISearch in Google Scholar

[39] Phan, T.Q. et al. (2019). Elastic Residual Strain and Stress Measurements and Corresponding Part Deflections of 3D Additive Manufacturing Builds of IN625 AM-Bench Artifacts Using Neutron Diffraction, Synchrotron X-Ray Diffraction, and Contour Method., vol. 8(3), pp. 318–334. DOI: 10.1007/s40192-019-00149-0. Open DOISearch in Google Scholar

[40] Liu, S. and Shin, Y.C. (2019). Additive manufacturing of Ti6Al4V alloy: A review. Materials & Design, vol. 164, p. 107552. DOI: 10.1016/j.matdes.2018.107552. Open DOISearch in Google Scholar

[41] Hosseini, E. and Popovich, V.A. (2019). A review of mechanical properties of additively manufactured Inconel 718. Additive Manufacturing, vol. 30, p. 100877. DOI: 10.1016/j.addma.2019.100877. Open DOISearch in Google Scholar

[42] Bajaj, P., Hariharan, A., Kini, A., Kürnsteiner, P., Raabe, D. and Jägle, E.A. (2020). Steels in additive manufacturing: A review of their microstructure and properties. Materials Science and Engineering: A, vol. 772, p. 138633. DOI: 10.1016/j.msea. 2019.138633. Open DOISearch in Google Scholar

eISSN:
2300-7591
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
Volume Open
Fachgebiete der Zeitschrift:
Technik, Einführungen und Gesamtdarstellungen, andere