Uneingeschränkter Zugang

Utilisation of Shrimp Shell as a Low-Cost Biosorbent for the Adsorption of Methylene Blue Dyes


Zitieren

[1] Akbar NA, Sabri S, Abu Bakar AA, Azizan NS. Removal of colour using banana stem adsorbent in textile wastewater. J Phys: Conf Ser. 2019.1-6. DOI: 10.1088/1742-6596/1349/1/012091.Search in Google Scholar

[2] Hevira L, Azimatur R, Zein R, Zilfa Z, Yeni R. The fast and of low-cost-adsorbent to the removal of cationic and anionic dye using chicken eggshell with its membrane. Mediterr J Chem. 2020;10(3):294-301. DOI: 10.13171/mjc02003261271lh.Search in Google Scholar

[3] Phihusut D, Chantharat M. Removal of methylene blue using agricultural waste: A case study of rice husk and rice husk ash from Chaipattana rice mill demonstration center. Environ Nat Resour J. 2017;15(2):30-8. DOI: 10.14456/ennrj.2017.10.Search in Google Scholar

[4] Pang YL, Tan JH, Lim S, Chong WC. A state-of-the-art review on biowaste derived chitosan biomaterials for biosorption of organic dyes: Parameter studies, kinetics, isotherms and thermodynamics. Polymers. 2021;13(3009):2-28. DOI: 10.3390/polym13173009.Search in Google Scholar

[5] Vanlalhmingmawia C, Sreenivasa S, Tiwari D, Lee SM. Novel nanocomposite thin films for efficient degradation of Rhodamine B and Rhodamine 6G under visible light irradiation: Reaction mechanism and pathway studies. Environ Eng Res. 2023;28(4):1-15. DOI: 10.4491/eer.2022.430.Search in Google Scholar

[6] Irdemez Ş, Özyay G, Ekmekyapar Torun F, Kul S, Bingül Z. Comparison of bomaplex blue CR-L removal by adsorption using raw and activated pumpkin seed shells. Ecol Chem Eng S. 2022;29(2):199-216. DOI: 10.2478/eces-2022-0015.Search in Google Scholar

[7] Haskis P, Tsolis P, Tsiantouka L, Mpeza P, Barouchas P, Giannopoulos G, et al. Biosorption of methylene blue dye by Ligustrum lucidum fruits biomass: equilibrium, isotherm, kinetic and thermodynamic studies. Glob Nest J. 2023;25(X):1-8. DOI: 10.30955/gnj.005294.Search in Google Scholar

[8] Pandey LM. Enhanced adsorption capacity of designed bentonite and alginate beads for the effective removal of methylene blue. Appl Clay Sci. 2019;169:102-11. DOI: 10.1016/j.clay.2018.12.019.Search in Google Scholar

[9] Ahlawat A, Jaswal AS, Mishra S. Proposed pathway of degradation of indigo carmine and its co-metabolism by white-rot fungus Cyathus bulleri. Int Biodeterior Biodegrad. 2022;172:105424. DOI: 10.1016/j.ibiod.2022.105424.Search in Google Scholar

[10] Chowdhury MF, Khandaker S, Sarker F, Islam A, Rahman MT, Awual MR. Current treatment technologies and mechanisms for removal of indigo carmine dyes from wastewater: A review. J Mol Liq. 2020;318:114061. DOI: 10.1016/j.molliq.2020.114061.Search in Google Scholar

[11] Kalyana Chakravarthy M, Ramakrishna K, Pv SR. Kinetics and mechanism of oxidation of indigo carmine with potassium bromate: Effect of CTAB and SDS micelles. Int J Chem Sci. 2017;15(4):1-9.Search in Google Scholar

[12] Tarangini K, Rao KJ, Wacławek S, Černík M, Padil VVT. Aegle marmelos leaf extract based synthesis of nanoiron and nanoiron+Au particles for degradation of methylene blue. Ecol Chem Eng S. 2022;29(1):7-14. DOI: 10.2478/eces-2022-0002.Search in Google Scholar

[13] Shkliarenko Y, Halysh V, Nesterenko A. Adsorptive performance of walnut shells modified with urea and surfactant for cationic dye removal. Water. 2023;15(8):1-20. DOI: 10.3390/w15081536.Search in Google Scholar

[14] Ramadhani P, Chaidir Z, Zilfa, Tomi ZB, Rahmiarti D, Zein R. Shrimp shell (Metapenaeus monoceros) waste as a low-cost adsorbent for metanil yellow dye removal in aqueous solution. Desalin Water Treat. 2020;197:413-23. DOI: 10.5004/dwt.2020.25963.Search in Google Scholar

[15] Zein R, Purnomo JS, Ramadhani P, Alif MF, Safni S. Lemongrass (Cymbopogon nardus) leaves biowaste as an effective and low-cost adsorbent for methylene blue dyes removal: isotherms, kinetics, and thermodynamics studies. Sep Sci Technol. 2022;57(15):1-17. DOI: 10.1080/01496395.2022.2058549.Search in Google Scholar

[16] Djelloul C, Hamdaoui O. Removal of cationic dye from aqueous solution using melon peel as nonconventional low-cost sorbent. Desalin Water Treat. 2014;52(40-42):7701-10. DOI: 10.1080/19443994.2013.833555.Search in Google Scholar

[17] Rubangakene NO, Elkady M, Elwardany A, Fujii M, Sekiguchi H, Shokry H. Effective decontamination of methylene blue from aqueous solutions using novel nano-magnetic biochar from green pea peels. Environ Res. 2023;220:115272. DOI: 10.1016/j.envres.2023.115272.Search in Google Scholar

[18] Nnaji NJN, Sonde CU, Nwanji OL, Ezeh GC, Onuigbo AU, Ojukwu AM, et al. Dacryodes edulis leaf derived biochar for methylene blue biosorption. J Environ Chem Eng. 2023;11(3):109638. DOI: 10.1016/j.jece.2023.109638.Search in Google Scholar

[19] Hiep NT, Thu TTH, Quyen LTT, Dong PD, Suong TT, Vu TP. Biochar derived from sesbania sesban plant as a potential low-cost adsorbent for removal of methylene blue. Environ Nat Resour J. 2022;20(6):611-20. DOI: 10.32526/ennrj/20/202200119.Search in Google Scholar

[20] Naghizadeh A, Ghafouri M. Synthesis and performance evaluation of chitosan prepared from Persian gulf shrimp shell in removal of reactive blue 29 dye from aqueous solution (Isotherm, thermodynamic and kinetic study). Iran J Chem Chem Eng. 2017;36(3):25-36. Available from: https://www.ijcce.ac.ir/article_28058_bbe6444964b68661c3306b16d53a4010.pdf.Search in Google Scholar

[21] Ooi J, Lee LY, Hiew BYZ, Thangalazhy-Gopakumar S, Lim SS, Gan S. Assessment of fish scales waste as a low cost and eco-friendly adsorbent for removal of an azo dye: Equilibrium, kinetic and thermodynamic studies. Bioresour Technol. 2017;245:656-64. DOI: 10.1016/j.biortech.2017.08.153.Search in Google Scholar

[22] Ribeiro C, Scheufele FB, Espinoza-Quiñones FR, Módenes AN, da Silva MGC, Vieira MGA, et al. Characterization of Oreochromis niloticus fish scales and assessment of their potential on the adsorption of reactive blue 5G dye. Colloids Surfaces A. Physicochem Eng Asp. 2015;482:693-701. DOI: 10.1016/j.colsurfa.2015.05.057.Search in Google Scholar

[23] Jawad AH, Rashid RA, Ishak MAM, Wilson LD. Adsorption of methylene blue onto activated carbon developed from biomass waste by H2SO4 activation: kinetic, equilibrium and thermodynamic studies. Desalin Water Treat. 2016;57(52):25194-206. DOI: 10.1080/19443994.2016.1144534.Search in Google Scholar

[24] Alseddig A, Eljiedi A, Kamari A. Removal of methyl orange and methylene blue dyes from aqueous solution using lala clam (Orbicularia orbiculata) shell. Proc Int Conf Education, Math Science 2016 (ICEMS2016) in Conjunction with 4th Int Postgraduate Conf Sci Math. 2016 (IPCSM2016). 2017. pp. 1-6. DOI: 10.1063/1.4983899.Search in Google Scholar

[25] Elwakeel KZ, Elgarahy AM, Mohammad SH. Use of beach bivalve shells located at Port Said coast (Egypt) as a green approach for methylene blue removal. J Environ Chem Eng. 2017;5(1):578-87. DOI: 10.1016/j.jece.2016.12.032.Search in Google Scholar

[26] P’yanova LG, Likholobov VA, Gerunova LK, Drozdetskaya MS, Sedanova AV, Kornienko NV. Adsorption of methylene blue and metanil yellow dyes by modified carbon sorbents. Russ J Appl Chem. 2017;90(12):2004-8. DOI: 10.1134/S1070427217120163.Search in Google Scholar

[27] Benhachem F, Attar T, Bouabdallah F. Kinetic study of adsorption methylene blue dye from aqueous solutions using activated carbon. Chem Rev Lett. 2019;2(1):33-9. DOI: 10.22034/crl.2019.87964.Search in Google Scholar

eISSN:
2084-4549
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Chemie, Nachhaltige Chemie, Technik, Elektrotechnik, Energietechnik, Biologie, Ökologie