Uneingeschränkter Zugang

Perspective Applications of Plasma-Deposited Thin Film Nanocatalysts on Structured Supports: From CO2 Capture to Wastewater Treatment


Zitieren

Whang HS, Lim J, Choi MS, Lee J, Lee H. Heterogeneous catalysts for catalytic CO2 conversion into value-added chemicals. BMC Chem Eng. 2019;1(1):9. DOI: 10.1186/s42480-019-0007-7. Search in Google Scholar

Mirzakhani S, Yin BH, Masteri-Farahani M, Yip ACK. Heterogeneous catalytic systems for carbon dioxide hydrogenation to value-added chemicals. ChemPlusChem. 2023;88(7):e202300157. DOI: 10.1002/cplu.202300157. Search in Google Scholar

Yusuf N, Almomani F, Qiblawey H. Catalytic CO2 conversion to C1 value-added products: Review on latest catalytic and process developments. Fuel. 2023;345:128178. DOI: 10.1016/j.fuel.2023.128178. Search in Google Scholar

Muhammad Farhan S, Pan W, Zhijian C, Jian Jun Y. Innovative catalysts for the selective catalytic reduction of NOx with H2: A systematic review. Fuel. 2024;355:129364. DOI: 10.1016/j.fuel.2023.129364. Search in Google Scholar

Liu K, Zhang T. Single-atom catalysts for nitrogen oxide emission control. Curr Opin Chem Eng. 2023;41:100948. DOI: 10.1016/j.coche.2023.100948. Search in Google Scholar

Elkaee S, Kim SY, Phule AD, Zaman MWU, Gyu Lee S, Park G, et al. Catalysts for fast and NO2 SCR reactions for the removal of nitrogen oxides emitted from various sources: Recent advances, mechanisms, and future directions. J Environ Chem Eng. 2023;11(6):111131. DOI: 10.1016/j.jece.2023.111131. Search in Google Scholar

Guo Y, Wen M, Li G, An T. Recent advances in VOC elimination by catalytic oxidation technology onto various nanoparticles catalysts: a critical review. Appl Catal B Environ. 2021;281:119447. DOI: 10.1016/j.apcatb.2020.119447. Search in Google Scholar

Wang Q, Yeung KL, Bañares MA. Ceria and its related materials for VOC catalytic combustion: A review. Catal Today. 2020;356:141-54. DOI: 10.1016/j.cattod.2019.05.016. Search in Google Scholar

Gao W, Tang X, Yi H, Jiang S, Yu Q, Xie X, et al. Mesoporous molecular sieve-based materials for catalytic oxidation of VOC: A review. J Environ Sci. 2023;125:112-34. DOI: 10.1016/j.jes.2021.11.014. Search in Google Scholar

Jin X, Wu C, Fu L, Tian X, Wang P, Zhou Y, et al. Development, dilemma and potential strategies for the application of nanocatalysts in wastewater catalytic ozonation: A review. J Environ Sci. 2023;124:330-49. DOI: 10.1016/j.jes.2021.09.041. Search in Google Scholar

Mbarek WB, Escoda L, Saurina J, Pineda E, Alminderej FM, Khitouni M, et al. Nanomaterials as a sustainable choice for treating wastewater: A review. Materials. 2022;15(23):8576. DOI: 10.3390/ma15238576. Search in Google Scholar

Tai VC, Che HX, Kong XY, Ho KC, Ng WM. Decoding iron oxide nanoparticles from design and development to real world application in water remediation. J Ind Eng Chem. 2023;127:82-100. DOI: 10.1016/j.jiec.2023.07.038. Search in Google Scholar

Patil RP, Kalantre VA, Alasundkar KN. Recent trends of nanocatalyst for organic transformations via sustainable environmental benign route. Res Chem Intermed. 2023;49(12):5163-203. DOI: 10.1007/s11164-023-05119-y. Search in Google Scholar

Chadha U, Selvaraj SK, Ashokan H, Hariharan SP, Mathew Paul V, Venkatarangan V, et al. Complex nanomaterials in catalysis for chemically significant applications: from synthesis and hydrocarbon processing to renewable energy applications. Adv Mater Sci Eng. 2022:1-72. DOI: 10.1155/2022/1552334. Search in Google Scholar

Wacławek S, Padil VVT, Černík M. Major advances and challenges in heterogeneous catalysis for environmental applications: A review. Ecol Chem Eng S. 2018;25(1):9-34. DOI: 10.1515/eces-2018-0001 Search in Google Scholar

Cao S, Tao F (Feng), Tang Y, Li Y, Yu J. Size- and shape-dependent catalytic performances of oxidation and reduction reactions on nanocatalysts. Chem Soc Rev. 2016;45(17):4747-65. DOI: 10.1039/C6CS00094K. Search in Google Scholar

Baig N, Kammakakam I, Falath W. Nanomaterials: a review of synthesis methods, properties, recent progress, and challenges. Mater Adv. 2021;2(6):1821-71. DOI: 10.1039/D0MA00807A. Search in Google Scholar

Beena Sreekumar M, Annadurai N, Jayaram S, Sarojini S. Industrial applications of hybrid nanocatalysts and their green synthesis. Top Catal. 2022;65(19-20):1910-22. DOI: 10.1007/s11244-022-01712-4. Search in Google Scholar

Wacławek S, Fijalkowski M, Bardos P, Kočí J, Scholz S, Hirsch P, et al. How can hybrid materials enable a circular economy? Ecol Chem Eng S. 2022;29(4):447-62. DOI: 10.2478/eces-2022-0030. Search in Google Scholar

Argyle M, Bartholomew C. Heterogeneous catalyst deactivation and degeneration: A review. Catalysts. 2015;5(1):145-269. DOI: 10.3390/catal5010145. Search in Google Scholar

Wang Z, Zhang Y, Neyts EC, Cao X, Zhang X, Jang BWL, et al. Catalyst preparation with plasmas: How does it work? ACS Catal. 2018;8(3):2093-110. DOI: 10.1021/acscatal.7b03723. Search in Google Scholar

Liu C, Li M, Wang J, Zhou X, Guo Q, Yan J, et al. Plasma methods for preparing green catalysts: Current status and perspective. Chin J Catal. 2016;37(3):340-8. DOI: 10.1016/S1872-2067(15)61020-8. Search in Google Scholar

Ye Z, Zhao L, Nikiforov A, Giraudon JM, Chen Y, Wang J, et al. A review of the advances in catalyst modification using nonthermal plasma: Process, mechanism and applications. Adv Colloid Interface Sci. 2022;308:102755. DOI: 10.1016/j.cis.2022.102755. Search in Google Scholar

Tyczkowski J. Cold Plasma Produced Catalytic Materials. In: Plasma Science and Technology - Progress in Physical States and Chemical Reactions. InTech; 2016. DOI: 10.5772/61832. Search in Google Scholar

Jozwiak L, Balcerzak J, Kubiczek A, Tyczkowski J. Plasma deposited thin-film sandwich-like bifunctional electrocatalyst for oxygen reduction and evolution reactions. Thin Solid Films. 2018;660:161-5. DOI: 10.1016/j.tsf.2018.06.002. Search in Google Scholar

Carraro G, Maccato C, Gasparotto A, Kaunisto K, Sada C, Barreca D. Plasma-assisted fabrication of Fe2O3-Co3O4 nanomaterials as anodes for photoelectrochemical water splitting. Plasma Processes Polymers. 2016;13(1):191-200. DOI: 10.1002/ppap.201500106. Search in Google Scholar

Bogaerts A, Tu X, Whitehead JC, Centi G, Lefferts L, Guaitella O, et al. The 2020 plasma catalysis roadmap. J Phys Appl Phys. 2020;53(44):443001. DOI: 10.1088/1361-6463/ab9048. Search in Google Scholar

Kim HH, Teramoto Y, Ogata A, Takagi H, Nanba T. Plasma catalysis for environmental treatment and energy applications. Plasma Chem Plasma Process. 2016;36(1):45-72. DOI: 10.1007/s11090-015-9652-7. Search in Google Scholar

Chang T, Wang Y, Wang Y, Zhao Z, Shen Z, Huang Y, et al. A critical review on plasma-catalytic removal of VOCs: Catalyst development, process parameters and synergetic reaction mechanism. Sci Total Environ. 2022;828:154290. DOI: 10.1016/j.scitotenv.2022.154290. Search in Google Scholar

Liu Y, Wang JW, Zhang J, Qi TT, Chu GW, Zou HK, et al. NOx removal by non-thermal plasma reduction: experimental and theoretical investigations. Front Chem Sci Eng. 2022;16(10):1476-84. DOI: 10.1007/s11705-022-2165-z. Search in Google Scholar

Jun H, Kim H, Sakaguchi Y, Hong Y. Reduction of NOx and SO2 in a non-thermal plasma reactor combined with catalyst and methanol. J Phys Appl Phys. 2008;41(20):205213. DOI: 10.1088/0022-3727/41/20/205213. Search in Google Scholar

Wang J, AlQahtani MS, Wang X, Knecht SD, Bilen SG, Song C, et al. One-step plasma-enabled catalytic carbon dioxide hydrogenation to higher hydrocarbons: significance of catalyst-bed configuration. Green Chem. 2021;23(4):1642-7. DOI: 10.1039/D0GC03779F. Search in Google Scholar

Ray D, Ye P, Yu JC, Song C. Recent progress in plasma-catalytic conversion of CO2 to chemicals and fuels. Catal Today. 2023;423:113973. DOI: 10.1016/j.cattod.2022.12.004. Search in Google Scholar

Guo H, Su Y, Yang X, Wang Y, Li Z, Wu Y, et al. Dielectric barrier discharge plasma coupled with catalysis for organic wastewater treatment: A review. Catalysts. 2022;13(1):10. DOI: 10.3390/catal13010010. Search in Google Scholar

Jiang B, Zheng J, Qiu S, Wu M, Zhang Q, Yan Z, et al. Review on electrical discharge plasma technology for wastewater remediation. Chem Eng J. 2014;236:348-68. DOI: 10.1016/j.cej.2013.09.090. Search in Google Scholar

Locke BR, Sato M, Sunka P, Hoffmann MR, Chang JS. Electrohydraulic discharge and nonthermal plasma for water treatment. Ind Eng Chem Res. 2006;45(3):882-905. DOI: 10.1021/ie050981u. Search in Google Scholar

Tyczkowski J. Cold Plasma - A promising tool for the development of electrochemical cells. In: Shao Y, editor. Electrochemical Cells - New Advances in Fundamental Researches and Applications. InTech; 2012. DOI: 10.5772/33974. Search in Google Scholar

Santos AM, Catapan RC, Duarte DA. The potential of non-thermal plasmas in the preparation of supported metal catalysts for fuel conversion in automotive systems: A literature overview. Front Mech Eng. 2020;6:42. DOI: 10.3389/fmech.2020.00042. Search in Google Scholar

Tyczkowski J, Kierzkowska-Pawlak H, Kapica R. Method of producing a thin layer of catalyst on structured packing of reactors for CO2 methanation. Lodz University of Technology, Poland, 2022.09.12, patent PL429641 (A1). Search in Google Scholar

Tyczkowski J, Kapica R, Łojewska J, Kołodziej A. Method for obtaining a thin layer of catalyst material on substrates made of electrically conductive material. Lodz University of Technology, Poland, 2014.07.31, patent PL217586 (B1). Search in Google Scholar

Landi G. Novel structured catalytic reactors. Catalysts. 2021;11(12):1472. DOI: 10.3390/catal11121472. Search in Google Scholar

Moulijn JA, Kreutzer MT, Nijhuis TA, Kapteijn F. Monolithic catalysts and reactors. In: Advances in Catalysis. Vol 54. Elsevier; 2011:249-327. DOI: 10.1016/B978-0-12-387772-7.00005-8. Search in Google Scholar

Kapteijn F, Moulijn JA. Structured catalysts and reactors - Perspectives for demanding applications. Catal Today. 2022;383:5-14. DOI: 10.1016/j.cattod.2020.09.026. Search in Google Scholar

Mehla S, Das J, Jampaiah D, Periasamy S, Nafady A, Bhargava SK. Recent advances in preparation methods for catalytic thin films and coatings. Catal Sci Technol. 2019;9(14):3582-602. DOI: 10.1039/C9CY00518H. Hanna Kierzkowska-Pawlak, Lucyna Bilińska and Jacek Tyczkowski Perspective applications of plasma-deposited thin film nanocatalysts on structured supports: … 503 Search in Google Scholar

Kierzkowska-Pawlak H, Ryba M, Fronczak M, Kapica R, Sielski J, Sitarz M, et al. Enhancing CO2 conversion to CO over plasma-deposited composites based on mixed Co and Fe oxides. Catalysts. 2021;11(8):883. DOI: 10.3390/catal11080883. Search in Google Scholar

Tyczkowski J, Kierzkowska-Pawlak H, Kapica R, Balcerzak J, Sielski J. Cold plasma − A promising tool for the production of thin-film nanocatalysts. Catal Today. 2019;337:44-54. DOI: 10.1016/j.cattod.2019.03.037. Search in Google Scholar

Tyczkowski J, Kapica R, Kozanecki M, Kierzkowska-Pawlak H, Sielski J, Aoki T, et al. Tailoring the nanostructure of plasma-deposited CoOX-based thin films for catalytic applications - A step forward in designing nanocatalysts. Mater Des. 2022;222:111095. DOI: 10.1016/j.matdes.2022.111095. Search in Google Scholar

Kierzkowska-Pawlak H, Kruszczak E, Tyczkowski J. Catalytic activity of plasma-deposited Co3O4-based thin films for CO2 hydration - A new approach to carbon capture applications. Appl Catal B Environ. 2022;304:120961. DOI: 10.1016/j.apcatb.2021.120961. Search in Google Scholar

Bilińska L, Gmurek M, Kierzkowska-Pawlak H, Kruszczak E, Tyczkowski J. Bubble column for catalytic ozonation with heterogeneous thin-film catalyst. Lodz University of Technology, Poland, 2023.06.27, patent claim P.445362. Search in Google Scholar

Smolarek M, Kierzkowska-Pawlak H, Kapica R, Fronczak M, Sitarz M, Leśniak M, et al. Cold plasma synthesis and testing of NiOX-based thin-film catalysts for CO2 methanation. Catalysts. 2021;11(8):905. DOI: 10.3390/catal11080905. Search in Google Scholar

Panek B, Kierzkowska-Pawlak H, Uznański P, Nagy S, Nagy-Trembošová V, Tyczkowski J. The role of carbon nanotube deposit in catalytic activity of FeOX-based PECVD thin films tested in RWGS reaction. Catalysts. 2023;13(9):1302. DOI: 10.3390/catal13091302. Search in Google Scholar

Singh BK, Lee S, Na K. An overview on metal-related catalysts: metal oxides, nanoporous metals and supported metal nanoparticles on metal organic frameworks and zeolites. Rare Met. 2020;39(7):751-66. DOI: 10.1007/s12598-019-01205-6. Search in Google Scholar

Munnik P, de Jongh PE, de Jong KP. Recent developments in the synthesis of supported catalysts. Chem Rev. 2015;115(14):6687-718. DOI: 10.1021/cr500486u. Search in Google Scholar

Gao X, Wang Z, Huang Q, Jiang M, Askari S, Dewangan N, et al. State-of-art modifications of heterogeneous catalysts for CO2 methanation - Active sites, surface basicity and oxygen defects. Catal Today. 2022;402:88-103. DOI: 10.1016/j.cattod.2022.03.017. Search in Google Scholar

Ashok J, Pati S, Hongmanorom P, Tianxi Z, Junmei C, Kawi S. A review of recent catalyst advances in CO2 methanation processes. Catal Today. 2020;356:471-89. DOI: 10.1016/j.cattod.2020.07.023. Search in Google Scholar

González-Castaño M, Dorneanu B, Arellano-García H. The reverse water gas shift reaction: a process systems engineering perspective. React Chem Eng. 2021;6(6):954-76. DOI: 10.1039/D0RE00478B. Search in Google Scholar

Sharma T, Sharma S, Kamyab H, Kumar A. Energizing the CO2 utilization by chemo-enzymatic approaches and potentiality of carbonic anhydrases: A review. J Clean Prod. 2020;247:119138. DOI: 10.1016/j.jclepro.2019.119138. Search in Google Scholar

Jing G, Meng X, Sun W, Kowalczuk PB, Gao Z. Recent advances in the treatment and recycling of mineral processing wastewater. Environ Sci Water Res Technol. 2023;9(5):1290-304. DOI: 10.1039/D2EW00944G. Search in Google Scholar

Vuppaladadiyam AK, Merayo N, Prinsen P, Luque R, Blanco A, Zhao M. A review on greywater reuse: quality, risks, barriers and global scenarios. Rev Environ Sci Biotechnol. 2019;18(1):77-99. DOI: 10.1007/s11157-018-9487-9. Search in Google Scholar

Deng Y, Zhao R. Advanced oxidation processes (AOPs) in wastewater treatment. Curr Pollut Rep. 2015;1(3):167-76. DOI: 10.1007/s40726-015-0015-z. Search in Google Scholar

Pandis PK, Kalogirou C, Kanellou E, Vaitsis C, Savvidou MG, Sourkouni G, et al. Key points of advanced oxidation processes (AOPs) for wastewater, organic pollutants and pharmaceutical waste treatment: A mini review. ChemEng. 2022;6(1):8. DOI: 10.3390/chemengineering6010008. Search in Google Scholar

Wacławek S. Do we still need a laboratory to study advanced oxidation processes? A review of the modelling of radical reactions used for water treatment. Ecol Chem Eng S. 2021;28(1):11-28. DOI: 10.2478/eces-2021-0002. Search in Google Scholar

Bilińska L, Blus K, Bilińska M, Gmurek M. Industrial textile wastewater ozone treatment: Catalyst selection. Catalysts. 2020;10(6):611. DOI: 10.3390/catal10060611. Search in Google Scholar

Gmurek M, Alexander J, Mazierski P, Miodyńska M, Fronczak M, Klimczuk T, et al. Enhancement of photocatalytic-based processes by mono- and bimetallic (CuPd) rutile loaded nanoparticles for antibiotic resistance genes and facultative pathogenic bacteria removal. Chem Eng J. 2023;462:142243. DOI: 10.1016/j.cej.2023.142243. Search in Google Scholar

Chokshi NP, Ruparelia JP. Catalytic ozonation of reactive black 5 over silver-cobalt composite oxide catalyst. J Inst Eng India Ser A. 2020;101(3):433-43. DOI: 10.1007/s40030-020-00454-4. Search in Google Scholar

Avramescu SM, Fierascu I, Fierascu RC, Brazdis RI, Nica AV, Butean C, et al. Removal of paracetamol from aqueous solutions by photocatalytic ozonation over TiO2-MexOy thin films. Nanomaterials. 2022;12(4):613. DOI: 10.3390/nano12040613. Search in Google Scholar

Priyadarshini M, Ahmad A, Ghangrekar MM. Efficacious degradation of ethylene glycol in baffled ozonation reactor in the presence of waste-derived MIL-53(Al/Fe)-metal-organic framework derived Al2O3/Fe3O4. J Environ Chem Eng. 2023;11(5):110754. DOI: 10.1016/j.jece.2023.110754. Search in Google Scholar

Beltrán FJ. Ozone Reaction Kinetics for Water and Wastewater Systems. CRC Press; 2003. ISBN: 9781566706292. DOI: 10.1201/9780203509173. Search in Google Scholar

eISSN:
2084-4549
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Chemie, Nachhaltige Chemie, Technik, Elektrotechnik, Energietechnik, Biologie, Ökologie