Uneingeschränkter Zugang

Effect of Mn(II) on Tetracycline Degradation by a Selected Strain Burkholderia sp.


Zitieren

Huang X, Zhang X, Feng F, Xu X. Biodegradation of tetracycline by the yeast strain Trichosporon mycotoxinivorans XPY-10. Prep Biochem Biotechnol. 2016;46:15-22. DOI: 10.1080/10826068.2014.970692. Search in Google Scholar

Daghrir R, Drogui P. Tetracycline antibiotics in the environment: a review. Environ Chem. 2013;11:209-27. DOI: 10.1007/s10311-013-0404-8. Search in Google Scholar

Al-Hashimi O, Hashim K, Loffill E, Nakouti I, Faisal AAH, Čebašek TM. Kinetic and equilibrium isotherm studies for the removal of tetracycline from aqueous solution using engineered sand modified with calcium ferric oxides. Environments. 2023;10:7. DOI: 10.3390/environments10010007. Search in Google Scholar

Delius J, Emmerich M, Özyurt V, Hamscher G. Biotransformation of tetracyclines by fungi: Challenges and future research perspectives. J Agric Food Chem. 2022;70:1454-60. DOI: 10.1021/acs.jafc.1c05121. Search in Google Scholar

Chen X, Yang Y, Ke Y, Chen C, Xie S. A comprehensive review on biodegradation of tetracyclines: Current research progress and prospect. Sci Total Environ. 2022;814:152852. DOI: 10.1016/j.scitotenv. Search in Google Scholar

Picon D, Vergara-Rubio A, Estevez-Areco S, Cerveny S, Goyanes S. Adsorption of methylene blue and tetracycline by zeolites immobilized on a PBAT electrospun membrane. Molecules. 2023;28:1-17. DOI: 10.3390/molecules28010081. Search in Google Scholar

Li Y, Wang H, Liu X, Zhao G, Sun Y. Dissipation kinetics of oxytetracycline, tetracycline, and chlortetracycline residues in soil. Environ Sci Pollut Res Int. 2016;23:13822-31. DOI: 10.1007/s11356-016-6513-8. Search in Google Scholar

Santas-Miguel V, Rodriguez-Gonzalez L, Nunez-Delgado A, Alvarez-Rodriguez E, Diaz-Ravina M, Arias-Estévez M, et al. Soil bacterial community tolerance to three tetracycline antibiotics induced by Ni and Zn. Span J Soil Sci. 2023;13:10799. DOI: 10.3389/sjss.2023.10799. Search in Google Scholar

Li Y, Fang J, Yuan X, Chen Y, Yang H, Fei X. Distribution characteristics and ecological risk assessment of tetracyclines pollution in the Weihe River, China. Int J Environ Res Public Health. 2018;15:1803. DOI: 10.3390/ijerph15091803. Search in Google Scholar

Javid A, Mesdaghinia A, Nasseri S, Mahvi AH, Alimohammadi M, Gharibi H. Assessment of tetracycline contamination in surface and groundwater resources proximal to animal farming houses in Tehran, Iran. J Environ Health Sci Eng. 2016;14:4. DOI: 10.1186/s40201-016-0245-z. Search in Google Scholar

Dai Y, Liu M, Li J, Yang S, Sun Y, Sun Q, et al. A review on pollution situation and treatment methods of tetracycline in groundwater. Sep Sci Technol. 2019;55:1-17. DOI: 10.1080/01496395.2019.1577445. Search in Google Scholar

Pan M, Lyu T, Zhan L, Matamoros V, Angelidaki I, Cooper M, et al. Mitigating antibiotic pollution using cyanobacteria: Removal efficiency, pathways and metabolism. Water Res. 2021;190:116735. DOI: 10.1016/j.watres.2020.116735. Search in Google Scholar

Liao Q, Rong H, Zhao M, Luo H, Chu Z, Wang R. Interaction between tetracycline and microorganisms during wastewater treatment: A review. Sci Total Environ. 2021;757:143981. DOI: 10.1016/j.scitotenv.2020.143981. Search in Google Scholar

Xu H, Chen Z, Wu X, Zhao L, Wang N, Mao D, et al. Antibiotic contamination amplifies the impact of foreign antibiotic-resistant bacteria on soil bacterial community. Sci Total Environ. 2021;758:143693. DOI: 10.1016/j.scitotenv.2020.143693. Search in Google Scholar

Zhang L, Xin Z, Fei X, Luo H, Li H, Lu B, et al. Study on adsorption of tetracycline by red mud-based ceramsite. J Water Supply: Res Technol Aqua. 2019;68:39-50. DOI: 10.2166/aqua.2018.100. Search in Google Scholar

Ait Hamoudi S, Hamdi B, Brendle J. Tetracycline removal from water by adsorption on geomaterial, activated carbon and clay adsorbents. Ecol Chem Eng S. 2021;28:303-28. DOI: 10.2478/eces-2021-0021. Search in Google Scholar

Gomez E, Fons A, Cestaro R, Serra A. Enhanced activation of peroxymonosulfate for tetracycline degradation using CoNi-based electrodeposited films. Nanomaterials. 2023;13:790. DOI: 10.3390/nano13050790. Search in Google Scholar

Cestaro R, Philippe L, Serra A, Gomez E, Schmutz P. Electrodeposited manganese oxides as efficient photocatalyst for the degradation of tetracycline antibiotics pollutant. Chem Eng J. 2023;462:142202. DOI: 10.1016/j.cej.2023.142202. Search in Google Scholar

Wang C, Lin C, Liao G. Degradation of antibiotic tetracycline by ultrafine-bubble ozonation process. J Water Process Eng. 2020;37:101463. DOI: 10.1016/j.jwpe.2020.101463. Search in Google Scholar

Tan H, Kong D, Ma Q, Li Q, Zhou Y, Jiang X, et al. Biodegradation of tetracycline antibiotics by the yeast strain Cutaneotrichosporon dermatis M503. Microorganisms. 2022;10:565. DOI: 10.3390/microorganisms10030565. Search in Google Scholar

Chen X, Shen W, Chen J, Zhu Y, Chen C, Xie S. Tetracycline biotransformation by a novel bacterial strain Alcaligenes sp. T17. Sci Total Environ. 2022;832:155130. DOI: 10.1016/j.scitotenv.2022.155130. Search in Google Scholar

Chang Q, Ali A, Su J, Wen Q, Bai Y, Gao Z. Simultaneous removal of nitrate, manganese, and tetracycline by Zoogloea sp. MFQ7: Adsorption mechanism of tetracycline by biological precipitation. Bioresour Technol. 2021;340:125690. DOI: 10.1016/j.biortech.2021.125690. Search in Google Scholar

Tan Z, Abdoulahi M, Yang X, Zhu Y, Gong B, Li Y. Carbon source type can affect tetracycline removal by Pseudomonas sp. TC952 through regulation of extracellular polymeric substances composition and production. Sci Total Environ. 2022;804:149907. DOI: 10.1016/j.scitotenv.2021.149907. Search in Google Scholar

Shi Y, Lin H, Ma J, Zhu R, Sun W, Lin X, et al. Degradation of tetracycline antibiotics by Arthrobacter nicotianae OTC-16. J Hazard Mater. 2021;403:123996. DOI: 10.1016/j.jhazmat.2020.123996. Search in Google Scholar

Bhatt P, Jeon C, Kim W. Tetracycline bioremediation using the novel Serratia marcescens strain WW1 isolated from a wastewater treatment plant. Chemosphere. 2022;298:134344. DOI: 10.1016/j.chemosphere.2022.134344. Search in Google Scholar

Shobnam N, Sun Y, Mahmood M, Loffler F, Im J. Biologically mediated abiotic degradation (BMAD) of bisphenol A by manganese-oxidizing bacteria. J Hazard Mater. 2021;417:7. DOI: 10.1016/j.jhazmat.2021.125987. Search in Google Scholar

Li H, Tang Y, Wu Y, Wang Y, Huang H, Huang Y, et al. Bio-immobilization of soluble Mn(II) in aqueous solution with co-occurred Mn(II)-oxidizing bacteria: Facilitation or inhibition? J Environ Chem Eng. 2021;9:106448. DOI: 10.1016/j.jece.2021.106448. Search in Google Scholar

Cai Y, He J, Zhang J, Li J. Antibiotic contamination control mediated by manganese oxidizing bacteria in a lab-scale biofilter. J Environ Sci. 2020;98:47-54. DOI: 10.1016/j.jes.2020.05.024. Search in Google Scholar

Leng Y, Bao J, Chang G, Zheng H, Li X, Du J, et al. Biotransformation of tetracycline by a novel bacterial strain Stenotrophomonas maltophilia DT1. J Hazard Mater. 2016;318:125-33. DOI: 10.1016/j.jhazmat.2016.06.053. Search in Google Scholar

Peng X, Cao J, Xie B, Duan M, Zhao J. Evaluation of degradation behavior over tetracycline hydrochloride by microbial electrochemical technology: Performance, kinetics, and microbial communities. Ecotox Environ Safety. 2020;188:7. DOI: 10.1016/j.ecoenv.2019.109869. Search in Google Scholar

Wacławek S. Do we still need a laboratory to study advanced oxidation processes? A review of the modelling of radical reactions used for water treatment. Ecol Chem Eng S. 2021;28:11-28. DOI: 10.2478/eces-2021-0002. Search in Google Scholar

Wang Q, Li X, Yang Q, Chen Y, Du B. Evolution of microbial community and drug resistance during enrichment of tetracycline-degrading bacteria. Ecotox Environ Safety. 2019;171:746-52. DOI: 10.1016/j.ecoenv.2019.01.047. Search in Google Scholar

Li X, Gu A, Zhang Y, Xie B, Li D, Chen J. Sub-lethal concentrations of heavy metals induce antibiotic resistance via mutagenesis. J Hazard Mater. 2019;369:9-16. DOI: 10.1016/j.jhazmat.2019.02.006. Search in Google Scholar

Chen S, Li X, Sun G, Zhang Y, Su J, Ye J. Heavy metal induced antibiotic resistance in bacterium LSJC7. Int J Mol Sci. 2015;16:23390-404. DOI: 10.3390/ijms161023390. Search in Google Scholar

Sun F, Xu Z, Fan L. Response of heavy metal and antibiotic resistance genes and related microorganisms to different heavy metals in activated sludge. J Environ Manage. 2021;300:113754. DOI: 10.1016/j.jenvman.2021.113754. Search in Google Scholar

Bai Y, Su J, Wen Q, Li G, Xue L, Huang T. Removal of tetracycline by denitrifying Mn(II)-oxidizing bacterium Pseudomonas sp. H117 and biomaterials (BMO and MBMO): Efficiency and mechanisms. Bioresour Technol. 2020;312:123565. DOI: 10.1016/j.biortech.2020.123565. Search in Google Scholar

eISSN:
2084-4549
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Chemie, Nachhaltige Chemie, Technik, Elektrotechnik, Energietechnik, Biologie, Ökologie