Uneingeschränkter Zugang

Sustainable Production of an Iron-Eggshell Nanocomposite and Investigating its Catalytic Potential for Phenol Removal


Zitieren

Hashem T, Ibrahim AH, Wöll C, Alkordi MH. Grafting zirconium-based metal-organic framework UiO-66-NH2 nanoparticles on cellulose fibers for the removal of Cr(VI) ions and methyl orange from water. ACS Appl Nano Materials. 2019;2:5804-8. DOI: 10.1021/acsanm.9b01263. Search in Google Scholar

Luan M, Jing G, Piao Y, Liu D, Jin L. Treatment of refractory organic pollutants in industrial wastewater by wet air oxidation. Arabian J Chem. 2017;10:S769-S76. DOI: 10.1016/j.arabjc.2012.12.003. Search in Google Scholar

Borhade A, Kale A. Calcined eggshell as a cost effective material for removal of dyes from aqueous solution. Appl Water Sci. 2017;7:4255-68. DOI: 10.1007/s13201-017-0558-9. Search in Google Scholar

Oulego P, Laca A, Calvo S, Díaz M. Eggshell-supported catalysts for the advanced oxidation treatment of humic acid polluted wastewaters. Water. 2019;12:100. DOI: 10.3390/w12010100. Search in Google Scholar

Mohamed A, Yousef S, Nasser WS, Osman T, Knebel A, Sánchez EPV, et al. Rapid photocatalytic degradation of phenol from water using composite nanofibers under UV. Environ Sci Europe. 2020;32:1-8. DOI: 10.1186/s12302-020-00436-0. Search in Google Scholar

Malato S, Fernández-Ibáñez P, Maldonado MI, Blanco J, Gernjak W. Decontamination and disinfection of water by solar photocatalysis: recent overview and trends. Catalysis Today. 2009;147:1-59. DOI: 10.1016/j.cattod.2009.06.018. Search in Google Scholar

Aboamera NM, Mohamed A, Salama A, Osman T, Khattab A. Characterization and mechanical properties of electrospun cellulose acetate/graphene oxide composite nanofibers. Mechanics Adv Materials Structures. 2019;26:765-9. DOI: 10.1080/15376494.2017.1410914. Search in Google Scholar

Damjanović L, Rakić V, Rac V, Stošić D, Auroux A. The investigation of phenol removal from aqueous solutions by zeolites as solid adsorbents. J Hazard Materials. 2010;184:477-84. DOI: 10.1016/j.jhazmat.2010.08.059. Search in Google Scholar

Mohammadi S, Kargari A, Sanaeepur H, Abbassian K, Najafi A, Mofarrah E. Phenol removal from industrial wastewaters: a short review. Desalin Water Treatment. 2015;53:2215-34. DOI: 10.1080/19443994.2014.883327. Search in Google Scholar

Hussain A, Dubey SK, Kumar V. Kinetic study for aerobic treatment of phenolic wastewater. Water Resources Industry. 2015;11:81-90. DOI: 10.1016/j.wri.2015.05.002. Search in Google Scholar

Rana AG, Minceva M. Analysis of photocatalytic degradation of phenol with exfoliated graphitic carbon nitride and light-emitting diodes using response surface methodology. Catalysts. 2021;11:898. DOI: 10.3390/catal11080898. Search in Google Scholar

Choquette-Labbé M, Shewa WA, Lalman JA, Shanmugam SR. Photocatalytic degradation of phenol and phenol derivatives using a nano-TiO2 catalyst: Integrating quantitative and qualitative factors using response surface methodology. Water. 2014;6:1785-806. DOI: 10.3390/w6061785. Search in Google Scholar

Ramírez EEP, de la Luz Asunción M, Rivalcoba VS, Hernández ALM, Santos CV. Removal of Phenolic Compounds from Water by Adsorption and Photocatalysis. Intech Open; 2017. DOI: 10.5772/66895. Search in Google Scholar

Aslam Z, Qaiser M, Ali R, Abbas A, Zarin S. Al2O3/MnO2/CNTs nanocomposite: Synthesis, characterization and phenol adsorption. Fullerenes Nanotubes Carbon Nanostructures. 2019. DOI: 10.1080/1536383x.2019.1622528. Search in Google Scholar

Jaber WS, Alwared AI. Removal of oil emulsion from aqueous solution by using Ricinus communis leaves as adsorbent. SN Appl Sci. 2019;1:1-12. DOI: 10.1007/s42452-019-0970-x. Search in Google Scholar

Alwared AI, Al-Musawi TJ, Muhaisn LF, Mohammed AA. The biosorption of reactive red dye onto orange peel waste: a study on the isotherm and kinetic processes and sensitivity analysis using the artificial neural network approach. Environ Sci Pollut Res. 2021;28:2848-59. DOI: 10.1007/s11356-020-10613-6. Search in Google Scholar

Girish C, Ramachandra Murty V. Adsorption of phenol from aqueous solution using Lantana camara, forest waste: kinetics, isotherm, and thermodynamic studies. Int Scholarly Res Notices. 2014;2014. DOI: 10.1155/2014/201626. Search in Google Scholar

Issabayeva G, Hang SY, Wong MC, Aroua MK. A review on the adsorption of phenols from wastewater onto diverse groups of adsorbents. Rev Chem Eng. 2018;34:855-73. DOI: 10.1515/revce-2017-0007. Search in Google Scholar

Fathali Z, Rezaei S, Faramarzi MA, Habibi-Rezaei M. Catalytic phenol removal using entrapped cross-linked laccase aggregates. Int J Biol Macromol. 2019;122:359-66. DOI: 10.1016/j.ijbiomac.2018.10.147. Search in Google Scholar

Ok YS, Lee SS, Jeon W-T, Oh S-E, Usman AR, Moon DH. Application of eggshell waste for the immobilization of cadmium and lead in a contaminated soil. Environ Geochem Health. 2011;33:31-9. DOI: 10.1007/s10653-010-9362-2 . Search in Google Scholar

Kakavandi B, Jahangiri-Rad M, Rafiee M, Esfahani AR, Babaei AA. Development of response surface methodology for optimization of phenol and p-chlorophenol adsorption on magnetic recoverable carbon. Microporous Mesoporous Materials. 2016;231:192-206. DOI: 10.1016/j.micromeso.2016.05.033. Search in Google Scholar

Almessiere MA, Slimani Y, Güngüneş H, Ali S, Manikandan A, Ercan I, et al. Magnetic attributes of NiFe2O4 nanoparticles: influence of dysprosium ions (Dy3+) substitution. Nanomaterials. 2019;9:820. DOI: 10.3390/nano9060820. Search in Google Scholar

Mhemid RKS, Saeed LI, Shihab MS. Decontamination of metronidazole antibiotic - A novel nanocomposite-based strategy. J Ecol Eng. 2023;24:246-59. DOI: 10.12911/22998993/168500 Search in Google Scholar

Mhemid RKS, Salman MS, Mohammed NA. Comparing the efficiency of N-doped TiO2 and commercial TiO2 as photo catalysts for amoxicillin and ciprofloxacin photo-degradation under solar irradiation. J Environ Sci Health, Part A. 2022;57:813-29. DOI: 10.1080/10934529.2022.2117960. Search in Google Scholar

Thilakan D, Patankar J, Khadtare S, Wagh NS, Lakkakula J, El-Hady KM, et al. Plant-derived iron nanoparticles for removal of heavy metals. Int J Chem Eng. 2022;2022. DOI: 10.1155/2022/1517849. Search in Google Scholar

Awwad AM, Salem NM, Aqarbeh MM, Abdulaziz FM. Green synthesis, characterization of silver sulfide nanoparticles and antibacterial activity evaluation. Chem Int. 2020;6:42-8. DOI: 10.5281/zenodo.3243157. Search in Google Scholar

Awwad AM, Amer MW, Salem NM, Abdeen AO. Green synthesis of zinc oxide nanoparticles (ZnO-NPs) using Ailanthus altissima fruit extracts and antibacterial activity. Chem Int. 2020;6:151-9. DOI: 10.5281/zenodo.3559520. Search in Google Scholar

Mekonnen A, Degu Y, Carlson R. Appraisal of solvent system effect on bioactivity profiling of Cordia africana stem bark extracts. Chem Int. 2020;6:1-10. DOI: 10.5281/zenodo.2574105. Search in Google Scholar

Noreen S, Ismail S, Ibrahim SM, Kusuma HS, Nazir A, Yaseen M, et al. ZnO, CuO and Fe2O3 green synthesis for the adsorptive removal of direct golden yellow dye adsorption: kinetics, equilibrium and thermodynamics studies. Zeit Physikalische Chemie. 2021;235:1055-75. DOI: 10.1515/zpch-2019-1599. Search in Google Scholar

Ge M, Wang X, Du M, Liang G, Hu G, SM JA. Adsorption analyses of phenol from aqueous solutions using magadiite modified with organo-functional groups: Kinetic and equilibrium studies. Materials. 2018;12:96. DOI: 10.3390/ma12010096. Search in Google Scholar

Sulaiman FA, Alwared AI. Ability of response surface methodology to optimize photocatalytic degradation of amoxicillin from aqueous solutions using immobilized TiO2/sand. J Ecol Eng. 2022;23. DOI: 10.12911/22998993/147318. Search in Google Scholar

Khoshnamvand N, Kord Mostafapour F, Mohammadi A, Faraji M. Response surface methodology (RSM) modeling to improve removal of ciprofloxacin from aqueous solutions in photocatalytic process using copper oxide nanoparticles (CuO/UV). AMB Express. 2018;8:1-9. DOI: 10.1186/s13568-018-0579-2. Search in Google Scholar

Oguaghamba O, Onyia M. Modified and generalized full cubic polynomial response surface methodology in engineering mixture design. Nigerian J Technol. 2019;38:52-9. DOI: 10.4314/njt.v38i1.8. Search in Google Scholar

Sarabia LA, Ortiz MC, Sánchez MS. Response Surface Methodology. 2020;287-326. DOI: 10.1016/B978-044452701-1.00083-1. Search in Google Scholar

Helmiyati H, Masriah I. Preparation of cellulose/CaO-Fe2O3 nanocomposites as catalyst for fatty acid methyl ester production. AIP Conf Proc: AIP Publishing LLC. 2019. p. 020062. DOI: 10.1063/1.5132489. Search in Google Scholar

Lee S, Lee T, Kim D. Adsorption of hydrogen sulfide from gas streams using the amorphous composite of α-FeOOH and activated carbon powder. Ind Eng Chem Res. 2017;56:3116-22. DOI: 10.1021/acs.iecr.6b04747. Search in Google Scholar

Torit J, Phihusut D. Phosphorus removal from wastewater using eggshell ash. Environ Sci Pollut Res. 2019;26:34101-9. DOI: 10.1007/s11356-018-3305-3. Search in Google Scholar

Bwatanglang IB, Magili ST, Kaigamma I. Adsorption of phenol over bio-based silica/calcium carbonate (CS-SiO2/CaCO3) nanocomposite synthesized from waste eggshells and rice husks. Peer J Phys Chem. 2021;3:e17. DOI: 10.7717/peerj-pchem.17. Search in Google Scholar

Basaleh AA, Al-Malack MH, Saleh TA. Metal removal using chemically modified eggshells: preparation, characterization, and statistical analysis. Desalin Water Treat. 2019;173:313-30. DOI: 10.5004/dwt.2020.24690. Search in Google Scholar

Ihli J, Wong WC, Noel EH, Kim Y-Y, Kulak AN, Christenson HK, et al. Dehydration and crystallization of amorphous calcium carbonate in solution and in air. Nature Commun. 2014;5:1-10. DOI: 10.1038/ncomms4169. Search in Google Scholar

Hajji S, Mzoughi N. Kinetic, equilibrium and thermodynamic studies for the removal of lead ions from aqueous solutions by using low cost adsorbents: A comparative study. IOSR J Appl Chem. 2018;11:12-24. DOI: 10.9790/5736-1107011224. Search in Google Scholar

Krumins J, Klavins M, Seglins V, Kaup E. Comparative study of peat composition by using FT-IR spectroscopy. Rigas Tehniskas Universitates Zinatniskie Raksti. 2012;26:106. Search in Google Scholar

Habte L, Shiferaw N, Mulatu D, Thenepalli T, Chilakala R, Ahn JW. Synthesis of nano-calcium oxide from waste eggshell by sol-gel method. Sustainability. 2019;11:3196. DOI: 10.3390/su11113196. Search in Google Scholar

Du H, Amstad E. Water: How does it influence the CaCO3 formation? Angew Chemie Int Ed. 2020;59:1798-816. DOI: 10.1002/anie.201903662. Search in Google Scholar

Sorokhaibam LG, Ahmaruzzaman M. Phenolic Wastewater Treatment: Development and Applications of New Adsorbent Materials. Butterworth-Heinemann: Oxford, England; 2014. ISBN: 9780444634030. Search in Google Scholar

Chaker H, Ameur N, Saidi-Bendahou K, Djennas M, Fourmentin S. Modeling and Box-Behnken design optimization of photocatalytic parameters for efficient removal of dye by lanthanum-doped mesoporous TiO2. J Environ Chem Eng. 2021;9:104584. DOI: 10.1016/j.jece.2020.104584. Search in Google Scholar

Tetteh EK, Obotey Ezugbe E, Rathilal S, Asante-Sackey D. Removal of COD and SO42 from oil refinery wastewater using a photo-catalytic system - comparing TiO2 and zeolite efficiencies. Water. 2020;12:214. DOI: 10.3390/w12010214. Search in Google Scholar

Dehghan A, Zarei A, Jaafari J, Shams M, Khaneghah AM. Tetracycline removal from aqueous solutions using zeolitic imidazolate frameworks with different morphologies: a mathematical modeling. Chemosphere. 2019;217:250-60. DOI: 10.1016/j.chemosphere.2018.10.166. Search in Google Scholar

De la Luz-Asunción M, Sánchez-Mendieta V, Martínez-Hernández A, Castaño V, Velasco-Santos C. Adsorption of phenol from aqueous solutions by carbon nanomaterials of one and two dimensions: Kinetic and equilibrium studies. J Nanomaterials. 2015;2015. DOI: 10.1155/2015/405036. Search in Google Scholar

Khare P, Kumar A. Removal of phenol from aqueous solution using carbonized Terminalia chebula-activated carbon: process parametric optimization using conventional method and Taguchi’s experimental design, adsorption kinetic, equilibrium and thermodynamic study. Appl Water Sci. 2012;2:317-26. DOI: 10.1007/s13201-012-0047-0. Search in Google Scholar

Gundogdu A, Duran C, Senturk HB, Soylak M, Ozdes D, Serencam H, et al. Adsorption of phenol from aqueous solution on a low-cost activated carbon produced from tea industry waste: equilibrium, kinetic, and thermodynamic study. J Chem Eng Data. 2012;57:2733-43. DOI: 10.1021/je300597u. Search in Google Scholar

Lim AP, Aris AZ. A review on economically adsorbents on heavy metals removal in water and wastewater. Rev Environ Sci Bio/Technol. 2014;13:163-81. DOI: 10.1007/s11157-013-9330-2. Search in Google Scholar

Hairuddin MN, Mubarak NM, Khalid M, Abdullah EC, Walvekar R, Karri RR. Magnetic palm kernel biochar potential route for phenol removal from wastewater. Environ Sci Pollut Res. 2019;26:35183-97. DOI: 10.1007/s11356-019-06524-w. Search in Google Scholar

Djebbar M, Djafri F, Bouchekara M, Djafri A. Adsorption of phenol on natural clay. Appl Water Sci. 2012;2:77-86. DOI: 10.1007/s13201-012-0031-8. Search in Google Scholar

Khoshtinat F, Tabatabaie T, Ramavandi B, Hashemi S. Application of pier waste sludge for catalytic activation of proxy-monosulfate and phenol elimination from a petrochemical wastewater. Environ Sci Pollut Research. 2022;46:69462-71. DOI: 10.1007/s11356-022-20690-4. Search in Google Scholar

Bousba S, Meniai AH. Removal of phenol from water by adsorption onto sewage sludge based adsorbent. Chem Eng Trans. 2014;40:235-40. DOI: 10.3303/CET1440040. Search in Google Scholar

eISSN:
2084-4549
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Chemie, Nachhaltige Chemie, Technik, Elektrotechnik, Energietechnik, Biologie, Ökologie