Zitieren

Noronha H, Silva A, Dai Z, Gallusci P, Rombolà AD, Delrot S, et al. A molecular perspective on starch metabolism in woody tissues. Planta. 2018;248(3):559-68. DOI: 10.1007/s00425-018-2954-2. Search in Google Scholar

Bellasio C, Fini A, Ferrini F. Evaluation of a high throughput starch analysis optimised for wood. PLoS ONE. 2014; 9(2):e86645. DOI: 10.1371/journal.pone.0086645. Search in Google Scholar

Dovis VL, Machado EC, Ribeiro RV, Magalhaes-Filho JR, Marchiori PE, Sales CR. Roots are important sources of carbohydrates during flowering and fruiting in ‘Valencia’ sweet orange trees with varying fruit load. Scientia Horticulturae. 2014;174:87-95. DOI: 10.1016/j.scienta.2014.05.011. Search in Google Scholar

Thalmann M, Santelia D. Starch as a determinant of plant fitness under abiotic stress. New Phytologist. 2017; 214(3):943-51. DOI: 10.1111/nph.14491. Search in Google Scholar

Yepes A, Silveira-Buckeridge M. Respuestas de las plantas ante los factores ambientales del cambio climático global (revisión) [Plant responses to environmental factors of global climate change (review)]. Colombia Forestal. 2011;14(2):213-32. Available from: http://www.scielo.org.co/scielo.php?script=sci_serial&pid=0120-0739&lng=en. Search in Google Scholar

Beckles DM, Thitisaksakul M. How environmental stress affects starch composition and functionality in cereal endosperm. Starch/Stärke. 2014;66:58-71. DOI: 10.1002/star.201300212. Search in Google Scholar

Streb S, Zeeman SC. Starch metabolism in Arabidopsis. The Arabidopsis Book. 2012;10:e0160. DOI: 10.1199/tab.0160. Search in Google Scholar

Savage JA, Clearwater MJ, Haines DF, Klein T, Mencuccini M, Sevanto S, et al. Allocation, stress tolerance and carbon transport in plants: how does phloem physiology affect plant ecology? Plant Cell Environ. 2016;39:709-25. DOI: 10.1111/pce.12602. Search in Google Scholar

MacNeill G, Mehrpouyan S, Minow M, Patterson J, Emes I, Emes M. Starch as a source, starch as a sink: the bifunctional role of starch in carbon allocation. J Experon Botany. 2017;68.4433-53. DOI: 10.1093/jxb/erx291. Search in Google Scholar

Geiger DR, Shieh WJ. Sink strength: learning to measure, measuring to learn. Plant Cell Environ. 1993; 16:1017-8. DOI: 10.1111/j.1365-3040.1996.tb02048.x. Search in Google Scholar

Ciereszko I. Regulatory roles of sugars in plant growth and development. Acta Societatis Botanicorum Poloniae. 2018;87(2):3583. DOI: 10.5586/asbp.3583. Search in Google Scholar

Dong S, Beckles D. Dynamic changes in the starch-sugar interconversion within plant source and sink tissues promote a better abiotic stress response. J Plant Physiol. 2019;234-235:80-93. DOI: 10.1016/j.jplph.2019.01.007. Search in Google Scholar

Xu J, Li Q, Yang L, Li X, Wang Z, Zhang Y. Changes in carbohydrate metabolism and endogenous hormone regulation during bulblet initiation and development in Lycoris radiata. BMC Plant Biology. 2020;(20):180. DOI: 10.1186/s12870-020-02394-4. Search in Google Scholar

Ramirez JA, Handa IT, Posada JM, Delagrange S, Messier C. Carbohydrate dynamics in roots, stems, and branches after maintenance pruning in two common urban tree species of North America. Urban Forestry Urban Greening. 2018;30:24-31. DOI: 10.1016/j.ufug.2018.01.013. Search in Google Scholar

Rossouw GC, Smith JP, Barril C, Deloire A, Holzapfel BP. Implications of the presence of maturing fruit on carbohydrate and nitrogen distribution in grapevines under postveraison water constraints. J Amer Soc Horticult Sci. 2017;142(2):71-84. DOI: 10.21273/JASHS03982-16. Search in Google Scholar

Coetzee ZA, Walker RR, Deloire AJ, Barril C, Clarke SJ, Rogiers SY. Impact of reduced atmospheric CO2 and varied potassium supply on carbohydrate and potassium distribution in grapevine and grape berries (Vitis vinifera L.). Plant Physiol Biochem. 2017;120:252-60. DOI: 10.1016/j.plaphy.2017.10.008. Search in Google Scholar

Rossouw GC, Smith JP, Barril C, Deloire A, Holzapfel BP. Carbohydrate distribution during berry ripening of potted grapevines: impact of water availability and leaf-to-fruit ratio. Scientia Horticulturae. 2017;216:215-25. DOI: 10.1016/j.scienta.2017.01.008. Search in Google Scholar

Oswald SW, Aubrey DP. Xeric tree populations exhibit delayed summer depletion of root starch relative to mesic counterparts. Forests. 2020;11:1026. DOI: 10.3390/f11101026. Search in Google Scholar

Gilson A, Barthes L, Delpierre N, Dufrêne E, Fresneau C, Bazot S. Seasonal changes in carbon and nitrogen compound concentrations in a Quercus petraea chronosequence. Tree Physiol. 2014;34:716-29. DOI: 10.1093/treephys/tpu060. Search in Google Scholar

Chimento C, Amaducci S. Characterization of fine root system and potential contribution to soil organic carbon of six perennial bioenergy crops. Biomass Bioenergy. 2015;83:116-22. DOI: 10.1016/j.biombioe.2015.09.008. Search in Google Scholar

Rytter RM. The potential of willow and poplar plantations as carbon sinks in Sweden. Biomass Bioenergy. 2012;36:86-95. DOI: 10.1016/j.biombioe.2011.10.012. Search in Google Scholar

Tognetti R, Johnson JD, Michelozzi M, Raschi A. Response of foliar metabolism in mature trees of Quercus pubescens and Quercus ilex to long term elevated CO2. Environ Experimental Botany. 1998;39:233-45. DOI: 10.1016/S0098-8472(98)00013-6. Search in Google Scholar

Locosselli GM, Buckeridge MS. Dendrobiochemistry, a missing link to further understand carbon allocation during growth and decline of trees. Trees. 2017;31:1745-58. DOI: 10.1007/s00468-017-1599-2. Search in Google Scholar

Henriksson N, Tarvainen L, Lim H, Tor-Ngern P, Palmroth S, Oren R, et al. Stem compression reversibly reduces phloem transport in Pinus sylvestris trees. Tree Physiology. 2015;35(10):1075-85. DOI: 10.1093/treephys/tpv078. Search in Google Scholar

IMTA. Extractor rápido de información climatológica versión 2.0. (ERIC 2.0). Software. Instituto Mexicano de la Tecnología del Agua. Secretaría del Medio Ambiente y Recursos Naturales. [Mexican Institute of Water Technology. Ministry of the Environment and Natural Resources] 2005. Available from: http://hidrosuperf.imta.mx/sig_eric/. Search in Google Scholar

INEGI. Anuario estadístico del estado de Coahuila de Zaragoza. Instituto Nacional de Estadística y Geografía. Aguascalientes, Ags. México [Statistical yearbook of the state of Coahuila de Zaragoza. National Institute of Statistic and Geography. Aguascalientes, Ags. Mexico]. 2012. Available from: https://www.inegi.org.mx/contenidos/productos/prod_serv/contenidos/espanol/bvinegi/productos/nueva_estruc/anuarios_2017/702825095406.pdf. Search in Google Scholar

Valenzuela-Nuñez LM, Gérant D, Maillard P, Bréda N, González-Cervantes G, Sánchez-Cohen I. Evidence for a 26kDA vegetative storage protein in the stem sapwood of mature pedunculate oak. Interciencia. 2011;36(2): 142-7. Available from: http://www.redalyc.org/articulo.oa?id=33917765009. Search in Google Scholar

Briceño-Contreras EA, Valenzuela-Núñez LM, Espino-Castillo DA, García-De La Peña C, Esparza-Rivera JR, Borja-De La Rosa A. Content of starch in walnut organs (Carya illinoensis Koch) in two phenological stages. Revista Mexicana de Ciencias Agrícolas. 2018;1(20):4161-73. DOI: 10.29312/remexca.v0i20.987. Search in Google Scholar

Ebell LF. Specific total starch determinations in conifer tissues with glucose oxidase. Phytochemistry. 1969; 8(1):25-36. DOI: 10.1016/S0031-9422(00)85790-8. Search in Google Scholar

Drexhage M, Huber F, Colin F. Comparison of radial increment and volume growth in stems and roots of Quercus petraea. Plant Soil. 1999;217:101-10. DOI: 10.1023/A:1004647418616. Search in Google Scholar

Bruciamacchie M. Structure, croissance et biomasse des régénerations naturelles de chêne rouvre (Quercus petraea Liebl.) [Structure, growth and biomass of natural regenerations of sessile oak (Quercus petraea Liebl.)] E.N.LT.E.F., Nogent-sur-Vernisson; Mémoire de fin d’études. INRA, Station de Sylviculture, Nancy, 82/02. 1982. Available from: https://belinra.inrae.fr/index.php?lvl=notice_display&id=55870. Search in Google Scholar

Aguirre-Calderón OA, Jiménez-Pérez J. Carbon content evaluation in southern forests of Nuevo León. Revista Mexicana de Ciencias Forestales. 2011;2(6):73-84. Available from: https://www.scielo.org.mx/pdf/remcf/v2n6/v2n6a7.pdf. Search in Google Scholar

Thomas SC, Martin AR. Carbon content of tree tissues: A synthesis. Forests. 2012;3:332-52. DOI: 10.3390/f3020332. Search in Google Scholar

Martin AR, Thomas SC. A reassessment of carbon content in tropical trees. PLoS ONE. 2011;6(8):e23533. DOI: 10.1371/journal.pone.0023533. Search in Google Scholar

Mendez-Estrella R, Romo-Leon JR, Castellanos AE. Mapping changes in carbon storage and productivity services provided by riparian ecosystems of semi-arid environments in Northwestern Mexico. ISPRS Int J Geo-Information. 2017;6(10):298. DOI: 10.3390/ijgi6100298. Search in Google Scholar

Zomer RJ, Neufeldt H, Xu J, Ahrends A, Bossio D, Trabucco A, et al. Global tree cover and biomass carbon on agricultural land: The contribution of agroforestry to global and national carbon budgets. Scientific Reports. 2016;6:29987. DOI: 10.1038/srep29987. Search in Google Scholar

Ohlde GW, Stadtlander T, Becker K. Biomass production and carbon sequestration by cultivation of trees under hyperarid conditions using desalinated seawater (sewage water). J Agricult Food Development. 2019;(5):33-42. DOI: 10.30635/2415-0142.2019.05.4. Search in Google Scholar

Pilkington SM, Encke B, Krohn N, Höhne M, Stitt M, Pyl ET. Starch degradation and carbon demand. Plant Cell Environ. 2015;38:157-71. DOI:10.1111/pce.12381. Search in Google Scholar

eISSN:
2084-4549
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Chemie, Nachhaltige Chemie, Technik, Elektrotechnik, Energietechnik, Biologie, Ökologie