Uneingeschränkter Zugang

Biological Monitoring Using Lichens as a Source of Information About Contamination of Mountain with Heavy Metals


Zitieren

[1] Zaikov GE, Weisfeld LI, Lisitsyn EM, Bekuzarova SA. Heavy Metals and other Pollutants in the Environment: Biological Aspects. Palm Bay, Florida, USA: Apple Academic Press; 2017. ISBN: 9781771884372.10.1201/9781315366029 Search in Google Scholar

[2] Murozumi M, Chow TL, Patterson C. Chemical concentrations of pollutant lead aerosols, terrestrial dusts, and sea salts in Greenland and Antarctic snow strata. Geochim Cosmochim Acta. 1969;33:1247-94. DOI: 10.1016/0016-7037(69)90045-3. Open DOISearch in Google Scholar

[3] Chamberlain AC. Fallout of lead and uptake by crops. Atmos Environ. 1983;17:693-706. DOI: 10.1016/0004-6981(83)90416-X. Open DOISearch in Google Scholar

[4] Tiller KG. Heavy Metals in Soils and their Environmental Significance. Advances in Soil Science. New York, NY: Springer; 1989. DOI: 10.1007/978-1-4612-3532-3. Open DOISearch in Google Scholar

[5] Mishra S, Bharagava RN, More N, Yadav A, Zainith S, Mani S, et al. Heavy Metal Contamination: An Alarming Threat to Environment and Human Health. In: Environmental Biotechnology: For Sustainable Future. Singapore: Springer; 2019. DOI: 10.1007/978-981-10-7284-0. Open DOISearch in Google Scholar

[6] Kamran S, Shafaqat A, Samra H, Sana A, Samar F, Muhammad B, et al. Heavy metals contamination and what are the impacts on living organisms. Greener J Environ Manage Public Saf. 2013;2(4):172-9. DOI: 10.15580/GJEMPS.2016.1.011916013. Open DOISearch in Google Scholar

[7] Vhahangwele M, Muedi KL. Environmental contamination by heavy metals. Heavy Metals. 2018;10:115-32. DOI: 10.5772/intechopen.76082. Open DOISearch in Google Scholar

[8] Kozak J, Włodarczyk-Makuła M. Ogólna charakterystyka metod biologicznej kontroli jakości środowiska. [General characteristics of biological environmental quality control methods]. LAB Laboratoria, Aparatura, Badania. 2016;21:1-6. Available from: https://bibliotekanauki.pl/articles/273655 Search in Google Scholar

[9] Elinder CG, Friberg L, Kjellström T, Nordberg G, Oberdoerster G. et al. Biological monitoring of metals. Geneva: World Health Organization; 1994. Available from: https://apps.who.int/iris/bitstream/handle/10665/62052/WHO_EHG_94.2.pdf?sequence=1&isAllowed=y, Accessed date: 11 June 2022. Search in Google Scholar

[10] Conti ME, Cecchetti G. Biological monitoring: lichens as bioindicators of air pollution assessment -a review. Environ Pollut. 2001;114(3):471-92. DOI: 10.1016/S0269-7491(00)00224-4. Open DOISearch in Google Scholar

[11] Blasco M, Domeño C, Nerín C. Lichens biomonitoring as feasible methodology to assess air pollution in natural ecosystems: Combined study of quantitative PAHs analyses and lichen biodiversity in the Pyrenees Mountains. Analyt Bioanalyt Chem. 2008; 391(3):759-71. DOI: 10.1007/s00216-008-1890-6.18335215 Open DOISearch in Google Scholar

[12] Świsłowski P, Kříž J, Rajfur M. The use of bark in biomonitoring heavy metal pollution of forest areas on the example of selected areas in Poland. Ecol Chem Eng S. 2020;27(2):195-210. DOI: 10.2478/eces-2020-0013. Open DOISearch in Google Scholar

[13] Słonina N, Świsłowski P, Rajfur M. Passive and active biomonitoring of atmospheric aerosol with the use of mosses. Ecol Chem Eng S. 2021;28(2):163-72. DOI: 10.2478/eces-2021-0012. Open DOISearch in Google Scholar

[14] Carreras HA, Pignata ML. Biomonitoring of heavy metals and air quality in Cordoba City, Argentina, using transplanted lichens. Environ Pollut. 2002;117(1). DOI: 10.1016/S0269-7491(01)00164-6. Open DOISearch in Google Scholar

[15] Cortés E. Investigation of air pollution in Chile using biomonitors. J Radioanal Nuclear Chem. 2004;262(1):169-276. DOI: 10.1023/B:JRNC.0000040885.09041.2e. Open DOISearch in Google Scholar

[16] Poličnik H, Batič F, Cvetka RL. Monitoring of short-term heavy metal deposition by accumulation in epiphytic lichens (Hypogymnia physodes (L.) Nyl.). J Atmospher Chem. 2004;49(1):223-30. DOI: 10.1007/s10874-004-1227-6. Open DOISearch in Google Scholar

[17] Jóźwiak MA, Jozwiak M. Bioindication as challenge in modern environmental protection. Ecol Chem Eng S. 2014;21(4):577-91. DOI: 10.1515/eces-2014-0041. Open DOISearch in Google Scholar

[18] Conti ME, Tudino M, Stripeikis J, Cecchetti G. Heavy metal accumulation in the lichen Evernia prunastri transplanted at urban, rural and industrial sites in Central Italy. J Atmospher Chem. 2004;49(1):83-94. DOI: 10.1007/s10874-004-1216-9. Open DOISearch in Google Scholar

[19] Sawicka-Kapusta K, Zakrzewska M, Budłoń G, Hajduk J. Ocena zanieczyszczenia powietrza stacji bazowych ZMŚP metalami ciężkimi i dwutlenkiem siarki w latach 2001-2009 z wykorzystaniem porostu Hypogymnia physodes [Air pollution assessment ZMŚP base stations with heavy metals and sulfur dioxide in 2001-2009 with the use of Hypogymnia physodes l]. Monitoring Środowiska Przyrodniczego. Kielce: Kieleckie Towarzystwo Naukowe; 2010;11:63-71. Available from: https://ios.ujk.edu.pl/wydawnictwa/z11/kapusta_zakrzewska_bydlon_hajduk.pdf, Accessed date: 11 June 2022. Search in Google Scholar

[20] Harmens H, Norris DA, Sharps K, Mills G, Alber R, Aleksiayenak Y, et al. Heavy metal and nitrogen concentrations in mosses are declining across Europe whilst some “hotspots” remain in 2010. Environ Pollut. 2015;200:93-104. DOI: 10.1016/j.envpol.2015.01.036.25703579 Open DOISearch in Google Scholar

[21] Kłos A, Wacławek M, editors. Badania biomonitoringowe na transgranicznym obszarze polsko-czeskim. [Biomonitoring research in the cross-border Polish-Czech area]. Opole: TChIE; 2010. ISBN: 9788391751169. Search in Google Scholar

[22] James PW. The effect of air pollutants other than hydrogen fluoride and sulphur dioxide on lichens. In: Ferry BW, Baddeley MS, Hawksworth DL, Editors. Air Pollution and Lichens. London: The Athlone Press: 1973:143-75. Available from: https://www.fs.fed.us/rm/pubs_rm/rm_gtr224.pdf, Accessed date: 11 June 2022. Search in Google Scholar

[23] Oksanen J, Läärä E, Zobel K. Statistical analysis of bioindicator value of epiphytic lichens. Lichenologist. 1991;23(2):167-80. DOI: 10.1017/S0024282991000312. Open DOISearch in Google Scholar

[24] Oztetik E, Cicek A. Effects of urban air pollutants on elemental accumulation and identification of oxidative stress biomarkers in the transplanted lichen Pseudovernia furfuracea. Environ Toxicol Chem. 2011;30(7):1629-36. DOI: 10.1002/etc.541.21462237 Open DOISearch in Google Scholar

[25] Spagnuolo V, Giordano S, Giordano S. Cytological stress and element uptake in moss and lichen exposed in bags in urban area. Ecotoxicol Environ Saf. 2011;74(5):1434-43. DOI: 10.1016/j.ecoenv.2011.02.011.21411142 Open DOISearch in Google Scholar

[26] Sujetovienė G, Galinytė V. Effects of the urban environmental conditions on the physiology of lichen and moss. Atmospher Pollut Res. 2016;7(4):611-8. DOI: 10.1016/j.apr.2016.02.009. Open DOISearch in Google Scholar

[27] De La Cruz ARH, De La Cruz JKH, Tolentino DA, Gioda A. Trace element biomonitoring in the Peruvian Andes Metropolitan Region using Flavoparmelia caperata lichen. Chemosphere. 2018;210:849-58. DOI: 10.1016/j.chemosphere.2018.07.013. Open DOISearch in Google Scholar

[28] Paoli L, Vannini A, Fačkovcová Z, Guarnieri M, Bačkor M, Loppi S. One year of transplant: is it enough for lichens to reflect the new atmospheric conditions? Ecol Indicat. 2018;88:495-502. DOI: 10.1016/j.ecolind.2018.01.043. Open DOISearch in Google Scholar

[29] Massimi L, Conti ME, Mele G, Ristorini M, Astolfi ML, Canepari S. Lichen transplants as indicators of atmospheric element concentrations: a high spatial resolution comparison with PM10 samples in a polluted area (Central Italy). Ecol Indicat. 2019;101:759-69. DOI: 10.1016/j.ecolind.2018.12.051. Open DOISearch in Google Scholar

[30] Rola K, Osyczka P. Temporal changes in accumulation of trace metals in vegetative and generative parts of Xanthoria parietina lichen thalli and their implications for biomonitoring studies. Ecol Indicat. 2019;96:293-302. DOI: 10.1016/j.ecolind.2018.09.004. Open DOISearch in Google Scholar

[31] Abas A, Awang A, Aiyub K. Analysis of heavy metal concentration using transplanted lichen Usnea misaminensis at Kota Kinabalu, Sabah (Malaysia). Appl Ecol Environ Res. 2020;18(1):1175-82. DOI: 10.15666/aeer/1801_11751182. Open DOISearch in Google Scholar

[32] Blasco M, Celia D, Cristina N. Lichens biomonitoring as feasible methodology to assess air pollution in natural ecosystems: Combined study of quantitative PAHs analyses and lichen biodiversity in the Pyrenees Mountains. Anal Bioanalyt Chem. 2008;391(3):759-71. DOI: 10.1007/s00216-008-1890-6. Open DOISearch in Google Scholar

[33] Nimis PL, Scheidegger Ch, Wolseley PA. Monitoring with lichens - monitoring lichens. In: Monitoring with Lichens - Monitoring Lichens. Dordrecht: Springer; 2002. DOI: 10.1007/978-94-010-0423-7_1. Open DOISearch in Google Scholar

[34] Białońska D, Dayan FE. Chemistry of the lichen Hypogymnia physodes transplanted to an industrial region. J Chem Ecol. 2005;31(12):2975-91. DOI: 10.1007/s10886-005-8408-x. Open DOISearch in Google Scholar

[35] Scerbo R, Ristori T, Possenti L, Lampugnani L, Barale R, Barghigiani C. Lichen (Xanthoria parietina) biomonitoring of trace element contamination and air quality assessment in Pisa Province (Tuscany, Italy). Sci Total Environ. 2002;286(1-3):27-40. DOI: 10.1016/S0048-9697(99)00333-2 Open DOISearch in Google Scholar

[36] Kahraman A, Kaynak G, Gurler O, Yalcin S, Ozturk S, Gundogdu O. Investigation of environmental contamination in lichens of Gökçeada (Imbroz) Island in Turkey. Radiat Measur. 2009;44(2):199-202. DOI: 10.1016/j.radmeas.2009.01.006. Open DOISearch in Google Scholar

[37] Osyczka P, Boroń P, Lenart-Boroń A, Rola K. Modifications in the structure of the lichen Cladonia thallus in the aftermath of habitat contamination and implications for its heavy-metal accumulation capacity. Environ Sci Pollut Res. 2018;25(2):1950-61. DOI: 10.1007/s11356-017-0639-1. Open DOISearch in Google Scholar

[38] Jóźwiak MA. Ectohydricity of lichens and role of cortex layer in accumulation of heavy metals. Ecol Chem Eng A. 2013;20(4):659-76. DOI: 10.2478/eces-2013-0045. Open DOISearch in Google Scholar

[39] Uluozlu OD, Kinalioglu K, Tuzen M, Soylak M. Trace metal levels in lichen samples from roadsides in East Black Sea region, Turkey. Biomed Environ Sci. 2007;20(3):203-7. Available from: https://www.besjournal.com/en/article/id/e0d72daa-04dd-4df0-9af4-e17d0693fe00, Accessed date: 11 June 2022. Search in Google Scholar

[40] Galun M, Garty J, Ronen R. Lichens as bioindicators of air pollution. J Plant Taxon Geograp. 1984;38(1):371-83. DOI: 10.1080/00837792.1984.10670312. Open DOISearch in Google Scholar

[41] Garty J, Fuchs C. Heavy metals in the lichen Ramalina duriaei transplanted in biomonitoring stations. Water Air Soil Pollut. 1982;17(2):175-83. DOI: 10.1007/BF00283300. Open DOISearch in Google Scholar

[42] Paoliac L, Bigagli CV, Vannini J, Bruscoli C, Loppi S. Long-term biological monitoring of environmental quality around a solid waste landfill assessed with lichens. Environ Pollut. 2012;161:70-5. DOI: 10.1016/j.envpol.2011.09.028. Open DOISearch in Google Scholar

[43] Nascimbene J, Tretiach M, Corana F, Lo Schiavo F, Kodnik D, Dainese M, et al. Patterns of traffic polycyclic aromatic hydrocarbon pollution in mountain areas can be revealed by lichen biomonitoring: A case study in the Dolomites (Eastern Italian Alps). Sci Total Environ. 2014;475:90-6. DOI: 10.1016/j.scitotenv.2013.12.090. Open DOISearch in Google Scholar

[44] Bytnerowicz A, Badea O, Barbu I, Fleischer P, Frączek W, Gancz V, et al. New international long-term ecological research on air pollution effects on the Carpathian Mountain forests, Central Europe. Environ Inter. 2003;29(2-3):367-76. DOI: 10.1016/S0160-4120(02)00172-1. Open DOISearch in Google Scholar

[45] Dołęgowska S, Gałuszka A, Migaszewski ZM. Significance of the long-term biomonitoring studies for understanding the impact of pollutants on the environment based on a synthesis of 25-year biomonitoring in the Holy Cross Mountains, Poland. Environ Sci Pollut Res. 2021;28(9):10413-35. DOI: 10.1007/s11356-020-11817-6.33410053 Open DOISearch in Google Scholar

[46] Ugulu I, Dogan Y, Baslar S, Varol O. Biomonitoring of trace element accumulation in plants growing at Murat Mountain. Int J Environ Sci Technol. 2012;9(3):527-34. DOI: 10.1007/s13762-012-0056-4. Open DOISearch in Google Scholar

[47] Lee CSL, Li X, Zhang G, Peng X, Zhang L. Biomonitoring of trace metals in the atmosphere using moss (Hypnum plumaeforme) in the Nanling Mountains and the Pearl River Delta, Southern China. Atmospher Environ. 2005;39(3):397-407. DOI: 10.1016/j.atmosenv.2004.09.067. Open DOISearch in Google Scholar

[48] Devkota B, Schmidt GH. Accumulation of heavy metals in food plants and grasshoppers from the Taigetos Mountains, Greece. Agricultur Ecos Environ. 2000;78(1):85-91. DOI: 10.1016/S0167-8809(99)00110-3. Open DOISearch in Google Scholar

[49] Zhaoyong Z, Abuduwaili J, Jiang F. Determination of occurrence characteristics of heavy metals in soil and water environments in Tianshan Mountains, Central Asia. Analyt Lett. 2013;46(13):2122-31. DOI: 10.1080/00032719.2013.784919. Open DOISearch in Google Scholar

[50] Becker T, Dierschke H. Vegetation response to high concentrations of heavy metals in the Harz Mountains, Germany. Phytocoenologia. 2008;38(4):255-65. DOI: 10.1127/0340-269x/2008/0038-0255. Open DOISearch in Google Scholar

[51] Alloway BJ. Sources of heavy metals and metalloids in soils. In: Heavy Metals in Soils. Dordrecht: Springer; 2013. DOI: 10.1007/978-94-007-4470-7_2. Open DOISearch in Google Scholar

[52] Gautam PK, Gautam RK, Banerjee S, Chattopadhyaya MC, Pandey JD. Heavy metals in the environment: fate, transport, toxicity and remediation technologies. In: Heavy Metals: Sources Toxicity and Remediation Techniques. Hauppauge, NY, USA: Nova Sci Publishers, Inc.; 2016. ISBN: 9781634847407. Search in Google Scholar

[53] Pujari M, Kapoor D. Heavy metals in the ecosystem: Sources and their effects. In: Heavy Metals in the Environment. Amsterdam: Elsevier; 2021. DOI: 10.1016/B978-0-12-821656-9.00001-8. Open DOISearch in Google Scholar

[54] Bradl HB. Sources and origins of heavy metals. In: Interface Science and Technology. Amsterdam: Elsevier; 2005. DOI: 0.1016/S1573-4285(05)80020-1. Open DOISearch in Google Scholar

[55] Saiki M, Chaparro CG, Vasconcellos MBA, Marcelli MP. Determination of trace elements in lichens by instrumental neutron activation analysis. J Radioanal Nuclear Chem. 1997;217(1):111-5. DOI: 10.1007/bf02055358. Open DOISearch in Google Scholar

[56] Richardson DHS, Shore M, Hartree R, Richardson RM. The use of X-ray fluorescence spectrometry for the analysis of plants, especially lichens, employed in biological monitoring. Sci Total Environ. 1995;176(1-3):97-105. DOI: 10.1016/0048-9697(95)04835-9. Open DOISearch in Google Scholar

[57] Studabaker WB, Puckett KJ, Percy KE, Landis MS. Determination of polycyclic aromatic hydrocarbons, dibenzothiophene, and alkylated homologs in the lichen Hypogymnia physodes by gas chromatography using single quadrupole mass spectrometry and time-of-flight mass spectrometry. J Chromatograpy A. 2017;1492:106-16. DOI: 10.1016/j.chroma.2017.02.051.28267997 Open DOISearch in Google Scholar

[58] Sha Y, Zhang P, Wang X, Liu J, Huang Y, Li G. Analysis of candidate micro-reference materials of lichen and algae by SRXRF and PIXE. Nuclear Instrum Method Physics Res Section B: Beam Interactions Materials Atoms. 2002;189(1-4):107-12. DOI: 10.1016/S0168-583X(01)01015-1. Open DOISearch in Google Scholar

[59] Coufalík P, Uher A, Zvěřina O, Komárek J. Determination of cadmium in lichens by solid sampling graphite furnace atomic absorption spectrometry (SS-GF-AAS). Environ Monit Assess. 2020;192(4):1-7. DOI: 10.1007/s10661-020-8186-5. Open DOISearch in Google Scholar

[60] Tuncel SG, Yenisoy-Karakas S, Dogangün A. Determination of metal concentrations in lichen samples by inductively coupled plasma atomic emission spectroscopy technique after applying different digestion procedures. Talanta. 2004;63(2):273-7. DOI: 10.1016/j.talanta.2003.10.055. Open DOISearch in Google Scholar

[61] Chant LA, Andrews HR, Cornett RJ, Koslowsky V, Militon JC, Van den Berg GJ, et al. 129I and 36Cl concentrations in lichens collected in 1990 from three regions around Chernobyl. Appl Radiat Isot. 1996;47(9-10):933-7. DOI: 10.1016/S0969-8043(96)00090-5. Open DOISearch in Google Scholar

[62] Paatero J, Jaakkola T, Ikäheimonen TK. Regional distribution of Chernobyl-derived plutonium deposition in Finland. J Radioanal Nucl Chem. 2002;252(2):407-12. DOI: 10.1023/a:1015795028775. Open DOISearch in Google Scholar

[63] Uğur A, Özden B, Saç MM, Yener G, Altmbaş Ü, Kurucu Y, et al. Lichens and mosses for correlation between trace elements and 210Po in the areas near coal-fired power plant at Yatağan, Turkey. J Radioanal Nucl Chem. 2004;259(1):87-92. DOI: 10.1023/b:jrnc.0000015811.68036.69. Open DOISearch in Google Scholar

[64] Chibowski S, Reszka M. Investigation of Lublin town environment contamination by radionuclides and heavy metals with application of Parmeliaceae lichens. J Radioanal Nucl Chem. 2001;247(2):443-6. DOI: 10.1023/A:1006798828071. Open DOISearch in Google Scholar

[65] Paatero J, Jaakkola T, Kulmala S. Lichen (sp. Cladonia) as a deposition indicator for transuranium elements investigated with the Chernobyl fallout. J Environ Radioactiv. 1998;38(2):223-47. DOI: 10.1016/S0265-931X(97)00024-6. Open DOISearch in Google Scholar

[66] Barański MJ. Beskid Śląski: przewodnik. [Silesian Beskid: a guide]. Piastów: Ofic Wydawn Rewasz; 2007. ISBN: 9788381220156. Search in Google Scholar

[67] Mika M. Turystyka a przemiany środowiska przyrodniczego Beskidu Śląskiego. [Tourism and changes in the natural environment of the Silesian Beskids]. Krakow: Instytut Geografii i Gospodarki Przestrzennej Uniwersytetu Jagiellońskiego; 2004. ISBN: 8388424386. Search in Google Scholar

[68] Figiel S, Janicka-Krzywda U, Krzywda P. Beskid Żywiecki. Przewodnik. [Beskid Zywiecki. Guide.]. Piastów: Ofic Wydawn Rewasz; 2012. ISBN: 8389188597. Search in Google Scholar

[69] Nowak J. Porosty Beskidów Wyspowego i Żywieckiego, Pasma Jałowca i Masywu Babiej Góry. [Lichens of the Beskid Wyspowy and Zywiecki, the Jalowiec Range and the Babia Gora Massif]. Monographiae Botanicae 83; Łódź: Uniwersytet Łódzki: 1998. Available from: https://pbsociety.org.pl/journals/index.php/mb/article/view/mb.1998.002/3560.10.5586/mb.1998.002 Search in Google Scholar

[70] Wertz B, Socha J, Grabczyński S, Szydłowska P, Ochał W, Maj M. Dendrochronologiczna charakterystyka przyrostu świerka pospolitego (Picea abies (L.) Karst.) z terenu Beskidu Śląskiego i Żywieckiego. [Dendrochronological characteristics of radial increments of Norway spruce (Picea abies (L.) Karst.) from the Silesian and Żywiec Beskids]. Acta Agr Silv ser Silv. 2013;51:59-73. Available from: https://www.researchgate.net/publication/261362630_Dendrochronologiczna_charakterystyka_przyrostu_swierka_pospolitego_Picea_abies_L_Karst_z_terenu_Beskidu_Slaskiego_i_Zywieckiego, Accessed date: 11 June 2022. Search in Google Scholar

[71] iCE 3000 Series AA Spectrometers Operators Manuals. Cambridge: Thermo Fisher Scientific; 2011. Available from: http://photos.labwrench.com/equipmentManuals/9291-6306.pdf, Accessed date: 11 June 2022. Search in Google Scholar

[72] Kłos A, Ziembik Z, Rajfur M, Dołhańczuk-Śródka A, Bochenek Z, Bjerke JW, et al. Using moss and lichens in biomonitoring of heavy-metal contamination of forest areas in southern and north-eastern Poland. Sci Total Environ. 218;627:438-49. DOI: 10.1016/j.scitotenv.2018.01.211.29426166 Open DOISearch in Google Scholar

eISSN:
2084-4549
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Chemie, Nachhaltige Chemie, Technik, Elektrotechnik, Energietechnik, Biologie, Ökologie