Uneingeschränkter Zugang

Role of Nitrate Reductase and Nitrite Reductase in NaCl Tolerance in Eelgrass (Zostera marina L.)


Zitieren

[1] Touchette BW, Burkholder JM. Carbon and nitrogen metabolism in the seagrass, Zostera marina L.: Environmental control of enzymes involved in carbon allocation and nitrogen assimilation. J Exp Mare Biol Ecol. 2007;350:216233. DOI: 10.1016/j.jembe.2007.05.034.10.1016/j.jembe.2007.05.034 Search in Google Scholar

[2] Lal MA. Plant Physiology, Development and Metabolism. Nitrogen Metabolism. Singapore: Springer; 2018. pp. 425-80. ISBN: 9789811320231. DOI: 10.1007/978-981-13-2023-1_11.10.1007/978-981-13-2023-1_11 Search in Google Scholar

[3] Chow FY. Nitrate Assimilation: The Role of In Vitro Nitrate Reductase Assay as Nutritional Predictor. Applied Photosynthesis. New York: IntechOpen; 2016. pp. 105-20. ISBN: 9789535100614. DOI: 10.5772/26947.10.5772/26947 Search in Google Scholar

[4] Lv XF, Yu P, Deng WH, Li YC. Transcriptomic analysis reveals the molecular adaptation to NaCl stress in Zostera marina L. Plant Physiol Bioch. 2018;130:61-8. DOI: 10.1016/j.plaphy.2018.06.022.10.1016/j.plaphy.2018.06.02229960892 Search in Google Scholar

[5] Olsen JL, Rouzé P, Verhelst B, Lin YC, Bayer T, Collen J, et al. The genome of the seagrass Zostera marina reveals angiosperm adaptation to the sea. Nature. 2016;530:331-8. DOI: 10.1038/nature16548.10.1038/nature1654826814964 Search in Google Scholar

[6] Lefebvre A, Thompson CEL, Amos CL. Influence of Zostera Marina canopies on unidirectional flow, hydraulic roughness and sediment movement. Cont Shelf Res. 2010;30:1783-94. DOI: 10.1016/j.csr.2010.08.006.10.1016/j.csr.2010.08.006 Search in Google Scholar

[7] Xu C, Zeng WZ, Wu JW, Huang JS. Effects of different irrigation strategies on soil water, salt, and nitrate nitrogen transport. Ecol Chem Eng S. 2015;22:589-609. DOI: 10.1515/eces-2015-0035.10.1515/eces-2015-0035 Search in Google Scholar

[8] Pooja R, Jaya PY. Acute salt stress differentially modulates nitrate reductase expression in contrasting salt responsive rice cultivars. Protoplasma. 2019;256:1267-78. DOI: 10.1007/s00709-019-01378-y.10.1007/s00709-019-01378-y31041536 Search in Google Scholar

[9] Baki G, Siefritz F, Man HM, Weiner H, Kaldenhoff R, Kaiser W. Nitrate reductase in Zea mays L. under salinity. Plant Cell Environ. 2000;23(5):515-21. DOI: 10.1046/j.1365-3040.2000.00568.x.10.1046/j.1365-3040.2000.00568.x Search in Google Scholar

[10] Correia MJ, Fonseca F, Azedo-Silva J, Dias C, David MM, Barrote I, et al. Effects of water deficit on the activity of nitrate reductase and content of sugars, nitrate and free amino acids in the leaves and roots of sunflower and white lupin plants growing under two nutrient supply regimes. Physiol Plant. 2005;124(1):61-70. DOI: 10.1111/j.1399-3054.2005.00486.x.10.1111/j.1399-3054.2005.00486.x Search in Google Scholar

[11] Nabi RBS, Tayade R, Hussain A, Kulkarni KP, Imran QM, Muna BG, et al. Nitric oxide regulates plant responses to drought, salinity, and heavy metal stress. Environ Exp Bot. 2019;161:120-33. DOI: 10.1016/j.envexpbot.2019.02.003.10.1016/j.envexpbot.2019.02.003 Search in Google Scholar

[12] Crawford NM. Nitrate: Nutrient and signal for plant growth. The Plant Cell Online. 1995;7:859-68. DOI: 10.1105/tpc.7.7.859.10.1105/tpc.7.7.8591608777640524 Search in Google Scholar

[13] Rockel P, Strube F, Rockel A, Wildt J, Kaiser WM. Regulation of nitric oxide (NO) production by plant nitrate reductase in vivo and in vitro. J Exp Bot. 2002;53:103-10. DOI: 10.1093/jexbot/53.366.103.10.1093/jexbot/53.366.103 Search in Google Scholar

[14] Kester DR, Duedall IW, Connors DN, Pytkowicz RM. Preparation of artificial seawater. Limnol Oceanogr. 1967;12:176-9. DOI: 10.4319/lo.1967.12.1.0176.10.4319/lo.1967.12.1.0176 Search in Google Scholar

[15] Hiscox JD, Israelstam GF. A method for the extraction of chlorophyll from leaf tissue without maceration. Can J Plant Pathol. 1979;57:1332-4. DOI: 10.1139/b79-163.10.1139/b79-163 Search in Google Scholar

[16] Swislowski P, Rajfur M, Waclawek M. Influence of heavy metal concentration on chlorophyll content in Pleurozium schreberi mosses. Ecol Chem Eng S. 2020;27:591-601. DOI: 10.2478/eces-2020-0037.10.2478/eces-2020-0037 Search in Google Scholar

[17] Azamal H. Growth characteristics, physiological and metabolic responses of teak (Tectona Grandis Linn. f.) clones differing in rejuvenation capacity subjected to drought stress. Silvae Genet. 2010;59:124-36. DOI: 10.1515/sg-2010-0015.10.1515/sg-2010-0015 Search in Google Scholar

[18] Ábrahám E, Hourton-Cabassa C, Erdei L, Szabados L. Methods for determination of proline in plants. Methods Mol Biol. 2015;639:317-31. DOI: 10.1007/978-1-60761-702-0_20.10.1007/978-1-60761-702-0_2020387056 Search in Google Scholar

[19] Hodges DM, DeLong JM, Forney CF, Prange RK. Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta. 1999;207:604-11. DOI: 10.1007/s004250050524.10.1007/s004250050524 Search in Google Scholar

[20] Zhang HY, Jiang YN, He ZY, Ma M. Cadmium accumulation and oxidative burst in garlic (Allium sativum). J Plant Physiol. 2005;162:977-84. DOI: 10.1016/j.jplph.2004.10.001.10.1016/j.jplph.2004.10.00116173459 Search in Google Scholar

[21] Zhao G, Zhao Y, Lou W, Su JC, Wei SQ, Yang XM, et al. Nitrate reductase-dependent nitric oxide is crucial for multi-walled carbon nanotube-induced plant tolerance against salinity. Nanoscale. 2019;11:10511-23. DOI: 10.1039/C8NR10514F.10.1039/C8NR10514F31116204 Search in Google Scholar

[22] Wang H, Huang J, Bi YR. Nitrate reductase-dependent nitric oxide production is involved in aluminum tolerance in red kidney bean roots. Plant Sci. 2010;179:281-8. DOI: 10.1016/j.plantsci.2010.05.014.10.1016/j.plantsci.2010.05.014 Search in Google Scholar

[23] Rao LVM, Rajasekhar VK, Sopory SK, Sipra GM. Phytochrome regulation of nitrite reductase -a chloroplast enzyme - in etiolated maize leaves. Plant and Cell Physiol. 1981;22:577-82. DOI: 10.1094/Phyto-71-1225.10.1094/Phyto-71-1225 Search in Google Scholar

[24] Pragya M, Ajay J, Teruhiro T, Yoshito T, Manisha N, Nisha S, et al. Heterologous expression of Serine Hydroxymethyltransferase-3 from rice confers tolerance to salinity stress in E. coli and Arabidopsis. Front Plant Sci. 2019;10:Article 217. DOI: 10.3389/fpls.2019.00217.10.3389/fpls.2019.00217643379630941150 Search in Google Scholar

[25] Horsch RB, Fry JE, Hoffmann NL, Eichholtz D, Rogers SG, Fraley RT. A simple and general method for transferring genes into plants. Science. 1985;227:1229-31. DOI: 10.1126/science.227.4691.1229.10.1126/science.227.4691.122917757866 Search in Google Scholar

[26] Wu D, Ji J, Wang G, Guan C, Jin C. LchERF, a novel ethylene - responsive transcription factor from Lycium chinense, confers salt tolerance in transgenic tobacco. Plant Cell Rep. 2014;33:2033-45. DOI: 10.1007/s00299-014-1678-4.10.1007/s00299-014-1678-425182480 Search in Google Scholar

[27] Zhang Z, Wang Y, Chang L, Zhang T, An J. MsZEP, a novel zeaxanthin epoxidase gene from alfalfa (Medicago sativa), confers drought and salt tolerance in transgenic tobacco. Plant Cell Rep. 2015;35:439-53. DOI: 10.1007/s00299-015-1895-5.10.1007/s00299-015-1895-526573680 Search in Google Scholar

[28] Wang X, Tamiev D, Jagannathan A, DiSpirito AA, Phillips GJ, Hargrove MS. The role of the NADH-dependent nitrite reductase, Nir, from Escherichia coli in fermentative ammonification. Arch Microbiol. 2018;201:519-30. DOI: 10.1007/s00203-018-1590-3.10.1007/s00203-018-1590-330406295 Search in Google Scholar

[29] Ozawa K, Kawahigashi H. Positional cloning of the nitrite reductase gene associated with good growth and regeneration ability of calli and establishment of a new selection system for Agrobacterium-mediated transformation in rice (Oryza sativa L.). Plant Sci. 2006;170:384-93. DOI: 10.1016/j.plantsci.2005.09.015.10.1016/j.plantsci.2005.09.015 Search in Google Scholar

[30] Del Castello F, Nejamkin A, Cassia R, Correa-Aragunde N, Fernández B, Foresi N. The era of nitric oxide in plant biology: Twenty years tying up loose ends. Nitric Oxide. 2019;85:17-27. DOI: 10.1016/j.niox.2019.01.013.10.1016/j.niox.2019.01.01330703499 Search in Google Scholar

[31] Chen WW, Yang JL, Qin C, Jin CW, Mo JH, Ye T, et al. Nitric oxide acts downstream of auxin to trigger root ferric-chelate reductase activity in response to iron deficiency in Arabidopsis. Plant Physiol. 2010;154:810-9. DOI: 10.1104/pp.110.161109.10.1104/pp.110.161109294898320699398 Search in Google Scholar

[32] Arora D, Jain P, Singh N, Kaur H, Bhatla SC. Mechanisms of nitric oxide crosstalk with reactive oxygen species scavenging enzymes during abiotic stress tolerance in plants. Free Radical Res. 2016;50:291-303. DOI: 10.3109/10715762.2015.1118473.10.3109/10715762.2015.111847326554526 Search in Google Scholar

[33] Fancy NN, Bahlmann AK, Loake GJ. Nitric oxide function in plant abiotic stress. Plant Cell Environ. 2017;40:462-72. DOI: 10.1111/pce.12707.10.1111/pce.1270726754426 Search in Google Scholar

[34] Gadelha CG, Miranda RS, Alencar NLM, Costa JH, Prisco JT, Gomes-Filhoa E. Exogenous nitric oxide improves salt tolerance during establishment of Jatropha curcas seedlings by ameliorating oxidative damage and toxic ion accumulation. J Plant Physiol. 2017;212:69-79. DOI: 10.1016/j.jplph.2017.02.005.10.1016/j.jplph.2017.02.00528278442 Search in Google Scholar

[35] Mur LAJ, Julien M, Stefan P, Simona MC, Novikova GV, Michael AH, et al. Nitric oxide in plants: an assessment of the current state of knowledge. AoB Plants. 2012;5:pls052. DOI: 10.1093/aobpla/pls052.10.1093/aobpla/pls052356024123372921 Search in Google Scholar

[36] Chen G, Fan PS, Feng WM, Guan AQ, Lu YY, Wan YL. Effects of 5-aminolevulinic acid on nitrogen metabolism and ion distribution of watermelon seedlings under salt stress. Russian J Plant Physiol. 2017;64:116-23. DOI: 10.1134/S1021443717010046.10.1134/S1021443717010046 Search in Google Scholar

[37] Mohammad AA, Agarwal RM. Salinity stress induced alterations in antioxidant metabolism and nitrogen assimilation in wheat (Triticum aestivum L) as influenced by potassium supplementation. Plant Physiol Bioch. 2017;115:449-60. DOI: 10.1016/j.plaphy.2017.04.017.10.1016/j.plaphy.2017.04.01728478373 Search in Google Scholar

eISSN:
2084-4549
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Chemie, Nachhaltige Chemie, Technik, Elektrotechnik, Energietechnik, Biologie, Ökologie