Uneingeschränkter Zugang

Optimisation of Biochar Yield from Sorted Wood Wastes as Sustainable Alternatives to Burning to Ash


Zitieren

[1] Borah P, Baruah N, Gogoi L, Borkotoki B, Gogoi N, Kataki R. Biochar: A new environmental paradigm in management of agricultural soils and mitigation of GHG emission. Biochar App Agric Environ Manage. 2020;20(8):223. DOI: 10.1007/978-3-030-40997-5_11.10.1007/978-3-030-40997-5_11 Search in Google Scholar

[2] Kim MH, Song HB. Analysis of the global warming potential for wood waste recycling systems. J Clean Prod. 2014;69(1):199-207. DOI: 10.1016/j.jclepro.2014.01.039.10.1016/j.jclepro.2014.01.039 Search in Google Scholar

[3] Lin Y, Ge Y, Xiao H, He Q, Wang W, Chen B. Investigation of hydrothermal co-carbonization of waste textile with waste wood, waste paper and waste food from typical municipal solid wastes. Energy. 2020;210(1):118606. DOI: 10.1016/j.energy.2020.118606.10.1016/j.energy.2020.118606 Search in Google Scholar

[4] Yang D, Wang L, Li Z, Tang X, He M, Yang S, et al. Simultaneous adsorption of Cd(II) and As(III) by a novel biochar-supported nanoscale zero-valent iron in aqueous systems. Sci Total Environ. 2020;708:134823. DOI: 10.1016/j.scitotenv.2019.134823.10.1016/j.scitotenv.2019.13482331780167 Search in Google Scholar

[5] Ogundiran MB, Mekwunyei NS, Adejumo SA. Compost and biochar assisted phytoremediation potentials of Moringa oleifera for remediation of lead contaminated soil. J Environ Chem Eng. 2018;6(2):2206-13. DOI: 10.1016/j.jece.2018.03.025.10.1016/j.jece.2018.03.025 Search in Google Scholar

[6] Gondim RS, Muniz CR, Lima CE, Santos CL. Explaining the water-holding capacity of biochar by scanning electron microscope images. Rev Caatinga. 2018;31(4):972-9. DOI: 10.1590/1983-21252018v31n420rc.10.1590/1983-21252018v31n420rc Search in Google Scholar

[7] Wang Y, Hu Y, Zhao X, Wang S, Xing G. Comparisons of biochar properties from wood material and crop residues at different temperatures and residence times. Energy Fuels. 2013;27(10):5890-9. DOI: 10.1021/ef400972z.10.1021/ef400972z Search in Google Scholar

[8] Tomczyk A, Sokołowska Z, Boguta P. Biochar physicochemical properties: pyrolysis temperature and feedstock kind effects. Rev Environ Sci Biotechnol. 2020;19(1):191-215. DOI: 10.1007/s11157-020-09523-3.10.1007/s11157-020-09523-3 Search in Google Scholar

[9] Guida MY, Lanaya SE, Laghchioua FE, Rbihi Z, Hannioui A. Production of bio-oil and bio-char from pyrolysis of sawdust wood waste (SWW). Prog Agric Eng Sci. 2020;16(1):61-80. DOI: 10.1556/446.2020.00012.10.1556/446.2020.00012 Search in Google Scholar

[10] Vega L, López L, Valdés CF, Chejne F. Assessment of energy potential of wood industry wastes through thermochemical conversions. Waste Manage. 2019;87:108-18. DOI: 10.1016/j.wasman.2019.01.048.10.1016/j.wasman.2019.01.04831109509 Search in Google Scholar

[11] Amuda OS, Giwa AA, Bello IA. Removal of heavy metal from industrial wastewater using modified activated coconut shell carbon. Biochem Eng J. 2007;36(2):174-81. DOI: 10.1016/j.bej.2007.02.013.10.1016/j.bej.2007.02.013 Search in Google Scholar

[12] Okoya AA, Akinyele AB, Amuda OS, Ofoezie IE. Chitosan-grafted carbon for the sequestration of heavy metals in aqueous solution. Am Chem Sci J. 2016;11(3):1-14. DOI: 10.9734/ACSJ/2016/21813.10.9734/ACSJ/2016/21813 Search in Google Scholar

[13] Amoako EE, Gambiza J. Effects of fire on the population structure and abundance of Anogeissus leiocarpa and Vitellaria paradoxa in a West African savanna parkland. Acta Oecol. 2021;112(1):1037-45. DOI: 10.1016/j.actao.2021.103745.10.1016/j.actao.2021.103745 Search in Google Scholar

[14] Alhassan DA, Uba AI, Muhammad AU, Muhammad YY. Phytochemical screening and antimicrobial activity of crude stem bark extracts of Anogeissus leiocarpus. Eur J Med Plants. 2016;11(2):1-7. DOI: 10.9734/EJMP/2016/22443.10.9734/EJMP/2016/22443 Search in Google Scholar

[15] Adrien KM, Guillaume SK, Souleymane M, Lucien BG. In vitro antibacterial and antidiarraheic activity of root bark extract of Anogeissus leiocarpa (Combretaceae) during an experimental bacterial diarrhea induced by Escherichia coli extended-spectrum-lactamases (ESBL) in albino Wistar rats. J Med Plants Res. 2018;12(27):463-73. DOI: 10.5897/JMPR2018.6663.10.5897/JMPR2018.6663 Search in Google Scholar

[16] Kumar R, Pandey K, Chandrashekar N, Mohan S. Study of age and height wise variability on calorific value and other fuel properties of Eucalyptus hybrid, Acacia auriculaeformis and Casuarina equisetifolia. Biomass Bioenergy. 2011;35(3):1339-44. DOI: 10.1016/j.biombioe.2010.12.031.10.1016/j.biombioe.2010.12.031 Search in Google Scholar

[17] Adeonipekun PA, Adeniyi TA, Olowokudejo JD, Akande I. Allergenicity of dominant aeropollen in Nigeria (part II). Curr Allgy Clin Immunol. 2018;31(3):178-83. DOI: 10520/EJC-109593cbe8. Search in Google Scholar

[18] Ukpebor EE, Ukpebor JE, Aigbokhan E, Goji I, Onojeghuo AO, Okonkwo AC. Delonix regia and Casuarina equisetifolia as passive biomonitors and as bioaccumulators of atmospheric trace metals. J Environ Sci. 2010;22(7):1073-9. DOI: 10.1016/S1001-0742(09)60219-9.10.1016/S1001-0742(09)60219-9 Search in Google Scholar

[19] Crombie K, Mašek O. Pyrolysis biochar systems, balance between bioenergy and carbon sequestration. GCB Bioenergy. 2015;7(2):349-61. DOI: 10.1111/gcbb.12137.10.1111/gcbb.12137 Search in Google Scholar

[20] Okoya AA, Akinyele AB, Ifeanyi E, Amuda OS, Alayande OS, Makinde OW. Adsorption of heavy metal ions onto chitosan grafted cocoa husk char. Afr J Pure Appl Chem. 2014;8(10):147-61. DOI: 10.5897/AJPAC2014.0591.10.5897/AJPAC2014.0591 Search in Google Scholar

[21] Sam-Amobi C, Ekechukwu O, Chukwuali C. A preliminary assessment of the energy related carbon emissions associated with hotels in Enugu metropolis Nigeria. Int J Sci Technol. 2019;8(2):19-30. DOI: 10.4314/stech.v8i2.2.10.4314/stech.v8i2.2 Search in Google Scholar

[22] Wong C. Atmospheric input of carbon dioxide from burning wood. Science. 1978;200(4338):197-200. DOI: 10.1126/science.200.4338.197.10.1126/science.200.4338.19717818808 Search in Google Scholar

[23] Fearnside PM. Global warming and tropical land-use change: greenhouse gas emissions from biomass burning, decomposition and soils in forest conversion, shifting cultivation and secondary vegetation. Clim Change. 2000;46(1):115-58. DOI: 10.1023/A:1005569915357.10.1023/A:1005569915357 Search in Google Scholar

[24] Oliver CD, Nassar NT, Lippke BR, McCarter JB. Carbon, fossil fuel, and biodiversity mitigation with wood and forests. J Sustain For. 2014;33(3):248-75. DOI: 10.1080/10549811.2013.839386.10.1080/10549811.2013.839386 Search in Google Scholar

[25] Babatunde OM, Ayegbusi CO, Babatunde DE, Oluseyi PO, Somefun TE. Electricity supply in Nigeria: Cost comparison between grid power tariff and fossil-powered generator. Int J Energy Econ. 2019;10(2):160-4. DOI: 10.32479/ijeep.8590.10.32479/ijeep.8590 Search in Google Scholar

[26] Pariyar P, Kumari K, Jain MK, Jadhao PS. Evaluation of change in biochar properties derived from different feedstock and pyrolysis temperature for environmental and agricultural application. Sci Total Environ. 2020;713(1):136433. DOI: 10.1016/j.scitotenv.2019.136433.10.1016/j.scitotenv.2019.13643331954240 Search in Google Scholar

[27] Khan TA, Gupta A, Jamari SS, Nasir M, Jang S, Kim H-J, et al. Synthesis of micro carbonaceous material by pyrolysis of rubber wood and its effect on properties of urea-formaldehyde (UF) resin. Int J Adhes Adhes. 2020;99:102589. DOI: 10.1016/j.ijadhadh.2020.102589.10.1016/j.ijadhadh.2020.102589 Search in Google Scholar

[28] Schaffer S, Pröll T, Al Afif R, Pfeifer C. A mass-and energy balance-based process modelling study for the pyrolysis of cotton stalks with char utilization for sustainable soil enhancement and carbon storage. Biomass Bioenergy. 2019;120:281-90. DOI: 10.1016/j.biombioe.2018.11.019.10.1016/j.biombioe.2018.11.019 Search in Google Scholar

[29] Hu X, Zhu Z, Chen C, Wen T, Zhao X, Xie L. Highly sensitive H2S gas sensors based on Pd-doped CuO nanoflowers with low operating temperature. Sens Actuators B Chem. 2017;253:809-17. DOI: 10.1016/j.snb.2017.06.183.10.1016/j.snb.2017.06.183 Search in Google Scholar

[30] Yang L, Yan H, Lam JC. Thermal comfort and building energy consumption implications - a review. Appl Energy. 2014;115(1):164-73. DOI: 10.1016/j.apenergy.2013.10.062.10.1016/j.apenergy.2013.10.062 Search in Google Scholar

[31] Mobarra M, Issa M, Rezkallah M, Ilinca A. performance optimization of diesel generators using permanent magnet synchronous generator with rotating stator. EPE. 2018;11(7):22-46. DOI: 10.4236/epe.2019.117017.10.4236/epe.2019.117017 Search in Google Scholar

[32] Soto D. Modeling and measurement of specific fuel consumption in diesel microgrids in Papua, Indonesia. Energy Sustain Dev. 2018;45(1):180-5. DOI: 10.1016/j.esd.2018.06.013.10.1016/j.esd.2018.06.013 Search in Google Scholar

[33] Brulle RJ. Institutionalizing delay: foundation funding and the creation of U.S. climate change counter-movement organizations. Clim Change. 2014;122(4):681-94. DOI: 10.1007/s10584-013-1018-7.10.1007/s10584-013-1018-7 Search in Google Scholar

[34] Bello MO, Solarin SA, Yen YY. The impact of electricity consumption on CO2 emission, carbon footprint, water footprint and ecological footprint: the role of hydropower in an emerging economy. J Environ. 2018;219(1):218-30. DOI: 10.1016/j.jenvman.2018.04.101.10.1016/j.jenvman.2018.04.10129747103 Search in Google Scholar

[35] Dalir F, Motlagh MS, Ashrafi K. A dynamic quasi comprehensive model for determining the carbon footprint of fossil fuel electricity: a case study of Iran. J Clean Prod. 2018;188:362-70. DOI: 10.1016/j.jclepro.2018.03.274.10.1016/j.jclepro.2018.03.274 Search in Google Scholar

[36] Winsley P. Biochar and bioenergy production for climate change mitigation. N Z Sci Rev. 2007;64(1):5-10. DOI: 10.1.1.372.943. Search in Google Scholar

[37] García-Freites S, Gough C, Röder M. The greenhouse gas removal potential of bioenergy with carbon capture and storage (BECCS) to support the UK’s net-zero emission target. Biomass Bioenergy. 2021;151(1):106164. DOI: 10.1016/j.biombioe.2021.106164.10.1016/j.biombioe.2021.106164 Search in Google Scholar

[38] Woolf D, Amonette JE, Street-Perrott FA, Lehmann J, Joseph S. Sustainable biochar to mitigate global climate change. Nat Commun. 2010;1(1):1-9. DOI: 10.1038/ncomms1053.10.1038/ncomms1053296445720975722 Search in Google Scholar

[39] Bui M, Adjiman CS, Bardow A, Anthony EJ, Boston A, Brown S, et al. Carbon capture and storage (CCS): the way forward. Energy Environ Sci. 2018;11(5):1062-176. DOI: 10.1039/C7EE02342A.10.1039/C7EE02342A Search in Google Scholar

[40] Terlouw T, Bauer C, Rosa L, Mazzotti M. Life cycle assessment of carbon dioxide removal technologies: A critical review. Energy Environ Sci. 2021;14(4):1701-21. DOI: 10.1039/D0EE03757E.10.1039/D0EE03757E Search in Google Scholar

[41] Fawzy S, Osman AI, Yang H, Doran J, Rooney DW. Industrial biochar systems for atmospheric carbon removal: a review. Environ Chem Lett. 2021;19(4):3023-55. DOI: 10.1007/s10311-021-01210-1.10.1007/s10311-021-01210-1 Search in Google Scholar

[42] Yang X, Zhang S, Ju M, Liu L. Preparation and modification of biochar materials and their application in soil remediation. Appl Sci. 2019;9(7):1365. DOI: 10.3390/app9071365.10.3390/app9071365 Search in Google Scholar

[43] Lee JE, Park Y-K. Applications of modified biochar-based materials for the removal of environment pollutants: A mini review. Sustainability. 2020;12(15):6112. DOI: 10.3390/su12156112.10.3390/su12156112 Search in Google Scholar

[44] Ji B, Wang J, Song H, Chen W. Removal of methylene blue from aqueous solutions using biochar derived from a fallen leaf by slow pyrolysis: Behavior and mechanism. J Environ Chem Eng. 2019;7(3):103036. DOI: 10.1016/j.jece.2019.103036.10.1016/j.jece.2019.103036 Search in Google Scholar

[45] Zahedifar M, Seyedi N, Shafiei S, Basij M. Surface-modified magnetic biochar: Highly efficient adsorbents for removal of Pb(ΙΙ) and Cd(ΙΙ). Mater Chem Phys. 2021;271:124860. DOI: 10.1016/j.matchemphys.2021.124860.10.1016/j.matchemphys.2021.124860 Search in Google Scholar

[46] Ma X, Zhou B, Budai A, Jeng A, Hao X, Wei D, et al. Study of biochar properties by scanning electron microscope-energy dispersive X-ray spectroscopy (SEM-EDX). Commun Soil Sci Plant Anal. 2016;47(5):593-601. DOI: 10.1080/00103624.2016.1146742.10.1080/00103624.2016.1146742 Search in Google Scholar

eISSN:
2084-4549
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Chemie, Nachhaltige Chemie, Technik, Elektrotechnik, Energietechnik, Biologie, Ökologie