Uneingeschränkter Zugang

The Use of Bark in Biomonitoring Heavy Metal Pollution of Forest Areas on the Example of Selected Areas in Poland


Zitieren

[1] Kłos A. Porosty w biomonitoringu środowiska (Lichens in environmental biomonitoring). Opole: University of Opole; 2009. ISBN: 9788373952607.Search in Google Scholar

[2] Kłos A, Rajfur M, Šramek I, Wacławek M. Mercury concentration in lichen, moss and soil samples collected from the forest areas of Praded and Glacensis Euroregions (Poland and Czech Republic). Environ Monit Assess. 2012;184:6765-74. DOI: 10.1007/s10661-011-2456-1.10.1007/s10661-011-2456-1346379322131015Search in Google Scholar

[3] Świsłowski P, Rajfur M. Mushrooms as biomonitors of heavy metals contamination in forest areas. Ecol Chem Eng S. 2018;25(4):557-68. DOI: 10.1515/eces-2018-0037.10.1515/eces-2018-0037Search in Google Scholar

[4] Aleksiayenak Y, Frontasyeva M. A ten-year biomonitoring study of atmospheric deposition of trace elements at the territory of the Republic of Belarus. Ecol Chem Eng S. 2019;26(3):455-64. DOI: 10.1515/eces-2019-0034.10.1515/eces-2019-0034Search in Google Scholar

[5] Ramachandra TV, Sudarshan PB, Mahesh MK, Vinay S. Spatial patterns of heavy metal accumulation in sediments and macrophytes of Bellandur wetland, Bangalore. J Environ Manage. 2018;206:1204-10. DOI: 10.1016/j.jenvman.2017.10.014.10.1016/j.jenvman.2017.10.01429157887Search in Google Scholar

[6] Meyer C, Diaz-de-Quijano M, Monna F, Franchi M, Toussaint ML, Gilbert D, et al. Characterisation and distribution of deposited trace elements transported over long and intermediate distances in north-eastern France using Sphagnum peatlands as a sentinel ecosystem. Atmos Environ. 2015;101:286-93. DOI: 10.1016/j.atmosenv.2014.11.041.10.1016/j.atmosenv.2014.11.041Search in Google Scholar

[7] Allahabadi A, Ehrampoush MH, Miri M, Aval HE, Yousefzadeh S, Ghaffari HR, et al. A comparative study on capability of different tree species in accumulating heavy metals from soil and ambient air. Chemosphere. 2017;172:459-67. DOI: 10.1016/j.chemosphere.2017.01.045.10.1016/j.chemosphere.2017.01.04528104557Search in Google Scholar

[8] Matin G, Kargar N, Buyukisik HB. Bio-monitoring of cadmium, lead, arsenic and mercury in industrial districts of Izmir, Turkey by using honey bees, propolis and pine tree leaves. Ecol Eng. 2016;90:331-5. DOI: 10.1016/j.ecoleng.2016.01.035.10.1016/j.ecoleng.2016.01.035Search in Google Scholar

[9] Song Y, Maher BA, Li F, Wang X, Sun X, Zhang H. Particulate matter deposited on leaf of five evergreen species in Beijing, China: source identification and size distribution. Atmos Environ. 2015;105:53-60. DOI: 10.1016/j.atmosenv.2015.01.032.10.1016/j.atmosenv.2015.01.032Search in Google Scholar

[10] Cosma C, Iurian AR, Incze R, Kovacs T, Žunić ZS. The use of tree bark as long term biomonitor of 137Cs deposition. J Environ Radioactiv. 2016;153:126-33. DOI: 10.1016/j.jenvrad.2015.12.01910.1016/j.jenvrad.2015.12.01926771244Search in Google Scholar

[11] Belivermiş M, Kılıç Ö, Çotuk Y, Topcuoğlu S, Kalaycı G, Peştreli D. The usability of tree barks as long term biomonitors of atmospheric radionuclide deposition. App Radia Isotopes. 2010;68:2433-7. DOI: 10.1016/j.apradiso.2010.07.010.10.1016/j.apradiso.2010.07.01020678943Search in Google Scholar

[12] Berlizov AN, Blum OB, Filby RH, Malyuk IA, Tryshyn VV. Testing applicability of black poplar (Populus nigra L.) bark to heavy metal air pollution monitoring in urban and industrial regions. Sci Total Environ. 2007;372:693-706. DOI: 10.1016/j.scitotenv.2006.10.029.10.1016/j.scitotenv.2006.10.02917140640Search in Google Scholar

[13] Forbes PBC, van der Wat L, Kroukamp EM. Chapter 3 - Biomonitors. In: Monitoring of Air Pollutants: Sampling, Sample Preparation and Analytical Techniques. Comprehensive Anal Chem. 2015;70:53-108. DOI: 10.1016/bs.coac.2015.09.003.10.1016/bs.coac.2015.09.003Search in Google Scholar

[14] Sawidis T, Breuste J, Mitrovic M, Pavlovic P, Tsigaridas K. Trees as bioindicator of heavy metal pollution in three European cities. Environ Pollut. 2011;159:3560-70. DOI: 10.1016/j.envpol.2011.08.008.10.1016/j.envpol.2011.08.00821907471Search in Google Scholar

[15] Catinon M, Ayrault S, Spadini L, Boudouma O, Asta J, Tissut M, et al. Tree bark suber-included particles: a long-term accumulation site for elements of atmospheric origin. Atmos Environ. 2011;45:1102-9. DOI: 10.1016/j.atmosenv.2010.11.038.10.1016/j.atmosenv.2010.11.038Search in Google Scholar

[16] Chiarantini L, Rimondi V, Benvenuti M, Beutel MW, Costagliola P, Gonnelli C, et al. Black pine (Pinus nigra) barks as biomonitors of airborne mercury pollution. Sci Total Environ. 2016;569-570:105-13. DOI: 10.1016/j.scitotenv.2016.06.029.10.1016/j.scitotenv.2016.06.02927341111Search in Google Scholar

[17] Minganti V, Drava G, Giordani P, Malaspina P, Modenesi P. Human contribution to trace elements in urban areas as measured in holm oak (Quercus ilex L.) bark. Environ Sci Pollut Res Int. 2016;23:12467-73. DOI: 10.1007/s11356-016-6485-8.10.1007/s11356-016-6485-827000118Search in Google Scholar

[18] Khokhotva O, Waara S. The influence of dissolved organic carbon on sorption of heavy metals on urea-treated pine bark. J Hazard Mater. 2010;173:689-96. DOI: 10.1016/j.jhazmat.2009.08.149.10.1016/j.jhazmat.2009.08.14919836133Search in Google Scholar

[19] Cocozza C, Ravera S, Cherubini P, Lombardi F, Marchetti M, Tognetti R. Integrated biomonitoring of airborne pollutants over space and time using tree rings, bark, leaves and epiphytic lichens. Urban Forestry Urban Green. 2016;17:177-91. DOI: 10.1016/j.ufug.2016.04.008.10.1016/j.ufug.2016.04.008Search in Google Scholar

[20] Drava G, Brignole D, Giordani P, Minganti V. Urban and industrial contribution to trace elements in the atmosphere as measured in holm oak bark. Atmos Environ. 2016;144:370-5. DOI: 10.1016/j.atmosenv.2016.09.009.10.1016/j.atmosenv.2016.09.009Search in Google Scholar

[21] Drava G, Anselmo M, Brignole D, Giordani P, Minganti V. Branch bark of holm oak (Quercus ilex L.) for reconstructing the temporal variations of atmospheric deposition of hexavalent chromium. Chemosphere. 2017;170:141-5. DOI: 10.1016/j.chemosphere.2016.12.012.10.1016/j.chemosphere.2016.12.01227988450Search in Google Scholar

[22] Sedumedi HN, Mandiwana KL, Ngobeni P, Panichev N. Speciation of Cr(VI) in environmental samples in the vicinity of the ferrochrome smelter. J Hazard Mater. 2009;172:1686-9. DOI: 10.1016/j.jhazmat.2009.07.111.10.1016/j.jhazmat.2009.07.11119716233Search in Google Scholar

[23] Dogan Y, Unver MC, Ugulu I, Calis M, Durkan N. Heavy metal accumulation in the bark and leaves of Juglans regia planted in Artvin City, Turkey. Biotechnol Biotechnol Equip. 2014;28:643-9. DOI: 10.1080/13102818.2014.947076.10.1080/13102818.2014.947076443395426019552Search in Google Scholar

[24] Pacheco AMG, Freitas MC, Barros LIC, Figueira R. Investigating tree bark as an air-pollution biomonitor by means of neutron activation analysis. J Radioanal Nucl Chem. 2001;249:327-31. DOI: 10.1023/A:1013293814789.10.1023/A:1013293814789Search in Google Scholar

[25] Birke M, Rauch U, Hofmann F. Tree bark as a bioindicator of air pollution in the city of Stassfurt, Saxony-Anhalt, Germany. J Geochem Explor. 2018;187:97-117. DOI: 10.1016/j.gexplo.2017.09.007.10.1016/j.gexplo.2017.09.007Search in Google Scholar

[26] Pacheco AMG, Freitas MC, Baptista MS, Vasconcelos MTSD, Cabral IJP. Elemental levels in tree-bark and epiphytic-lichen transplants at a mixed environment in mainland Portugal, and comparisons with in situ lichen. Environ Pollut. 2008;151:326-33. DOI: 10.1016/j.envpol.2007.06.038.10.1016/j.envpol.2007.06.03817689160Search in Google Scholar

[27] Moreira TCL, de Oliveira RC, Lourenço Amato LF, Kang CM, Nascimento Saldiva PH, Saiki M. Intraurban biomonitoring: Source apportionment using tree barks to identify air pollution sources. Environ Int. 2016;91:271-5. DOI: 10.1016/j.envint.2016.03.005.10.1016/j.envint.2016.03.00526995269Search in Google Scholar

[28] Nehrenheim E., Gustafsson JP. Kinetic sorption modelling of Cu, Ni, Zn, Pb and Cr ions to pine bark and blast furnace slag by using batch experiments. Bioresour Technol. 2008;99:1571-7. DOI: 10.1016/j.biortech.2007.04.017.10.1016/j.biortech.2007.04.01717532623Search in Google Scholar

[29] Ribé V, Nehrenheim E, Odlare M, Gustavsson L, Berglind R, Forsberg Å. Ecotoxicological assessment and evaluation of a pine bark biosorbent treatment of five landfill leachates. Waste Manage. 2012;32:1886-94. DOI: 10.1016/j.wasman.2012.05.011.10.1016/j.wasman.2012.05.01122703999Search in Google Scholar

[30] Marć M, Tobiszewski M, Zabiegała B, Guardia MDL, Namieśnik J. Current air quality analytics and monitoring: A review. Anal Chim Acta. 2015;853:116-26. DOI: 10.1016/j.aca.2014.10.018.10.1016/j.aca.2014.10.01825467453Search in Google Scholar

[31] Kłos A, Ziembik Z, Rajfur M, Dołhańczuk-Śródka A, Bochenek Z, Bjerke JW, et al. Using moss and lichens in biomonitoring of heavy-metal contamination of forest areas in southern and north-eastern Poland. Sci Total Environ. 2018;627:438-49. DOI: 10.1016/j.scitotenv.2018.01.211.10.1016/j.scitotenv.2018.01.21129426166Search in Google Scholar

[32] iCE 3000 Series AA Spectrometers Operators Manuals. Cambridge: Thermo Fisher Scientific; 2011. http://photos.labwrench.com/equipmentManuals/9291-6306.pdf.Search in Google Scholar

[33] Konieczka P, Namieśnik J. Quality Assurance and Quality Control in the Analytical Chemical Laboratory. A Practical Approach. Second edition. London: CRC Press/Balkema; 2018. ISBN: 978113819672810.1201/9781315295015Search in Google Scholar

[34] Klimek B, Tarasek A, Hajduk J. Trace element concentrations in lichens collected in the Beskidy Mountains, the Outer Western Carpathians. Bull Environ Contam Toxicol. 2015;94:532-6. DOI: 10.1007/s00128-015-1478-8.10.1007/s00128-015-1478-8435218825634324Search in Google Scholar

[35] Zakrzewska M, Klimek B. Trace element concentrations in tree leaves and lichen collected along a metal pollution gradient near Olkusz (Southern Poland). Bull Environ Contam Toxicol. 2018;100:245-9. DOI: 10.1007/s00128-017-2219-y.10.1007/s00128-017-2219-y580329029181606Search in Google Scholar

eISSN:
1898-6196
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Chemie, Nachhaltige Chemie, Technik, Elektrotechnik, Energietechnik, Biologie, Ökologie