Uneingeschränkter Zugang

Examining Tongue Movement Intentions in EEG-Based BCI with Machine and Deep Learning: An Approach for Dysphagia Rehabilitation

 und   
17. Okt. 2024

Zitieren
COVER HERUNTERLADEN

M. Panebianco, R. Marchese-Ragona, S. Masiero, and D. A. Restivo, “Dysphagia in neurological diseases: a literature review.” Neurological sciences : official journal of the Italian Neurological Society and of the Italian Society of Clinical Neurophysiology vol. 41,11 (2020): 3067-3073. doi:10.1007/s10072-020-04495-2. Search in Google Scholar

P. Clavé and R. Shaker, “Dysphagia: current reality and scope of the problem.” Nature reviews. Gastroenterology & hepatology vol. 12,5 (2015): 259-70. doi:10.1038/nrgastro.2015.49. Search in Google Scholar

R. Martino, N. Foley, S. Bhogal, N. Diamant, M. Speechley, and R. Teasell, “Dysphagia after stroke: Incidence, diagnosis, and pulmonary complications,” Stroke, vol. 36, no. 12, 2005, doi: 10.1161/01.STR.0000190056.76543.eb. Search in Google Scholar

N. Bhattacharyya, “The prevalence of dysphagia among adults in the United States,” Otolaryngology - Head and Neck Surgery (United States), vol. 151, no. 5, 2014, doi: 10.1177/0194599814549156. Search in Google Scholar

N. Yang et al., “Novel NARS2 variants in a patient with early-onset status epilepticus: case study and literature review,” BMC Pediatr, vol. 24, no. 1, 2024, doi: 10.1186/s12887-024-04553-0. Search in Google Scholar

White, Gregory N et al. “Dysphagia: causes, assessment, treatment, and management.” Geriatrics vol. 63,5 (2008): 15-20. Search in Google Scholar

J. Garcia-Casado, G. Prats-Boluda, Y. Ye-Lin, S. Restrepo-Agudelo, E. Perez-Giraldo, and A. Orozco-Duque, “Evaluation of swallowing related muscle activity by means of concentric ring electrodes,” Sensors (Switzerland), vol. 20, no. 18, 2020, doi: 10.3390/s20185267. Search in Google Scholar

H. Salfity and M. G. Hartwig, “The Robotic Method of Repairing Dysphagia.” Innovations (Philadelphia, Pa.) vol. 15,3 (2020): 225-228. doi:10.1177/1556984520921957. Search in Google Scholar

M. Orban, M. Elsamanty, K. Guo, S. Zhang, and H. Yang, “A Review of Brain Activity and EEG-Based Brain-Computer Interfaces for Rehabilitation Application.” Bioengineering (Basel, Switzerland) vol. 9,12 768. 5 Dec. 2022, doi:10.3390/bioengineering9120768. Search in Google Scholar

M. A. Lebedev and M. A. L. Nicolelis, “Brain-machine interfaces: past, present and future.” Trends in neurosciences vol. 29,9 (2006): 536-46. doi:10.1016/j. tins.2006.07.004. Search in Google Scholar

A. Saibene, M. Caglioni, S. Corchs, and F. Gasparini, “EEG-Based BCIs on Motor Imagery Paradigm Using Wearable Technologies: A Systematic Review.” Sensors (Basel, Switzerland) vol. 23,5 2798. 3 Mar. 2023, doi:10.3390/s23052798. Search in Google Scholar

C. M. Steele and A. J. Miller, “Sensory input pathways and mechanisms in swallowing: a review.” Dysphagia vol. 25,4 (2010): 323-33. doi:10.1007/s00455-010-9301-5. Search in Google Scholar

H. Yang, C. Guan, K. K. Ang, C. C. Wang, K. S. Phua, and J. Yu, “Dynamic initiation and dual-tree complex wavelet feature-based classification of motor imagery of swallow EEG signals,” in Proceedings of the International Joint Conference on Neural Networks, 2012. doi: 10.1109/IJCNN.2012.6252603. Search in Google Scholar

H. Yang et al., “Detection of Motor Imagery of Swallow With Model Adaptation: Swallow or Tongue? Prognostic and Monitory EEG-Biomarkers for BCI Upper-limb Stroke Rehabilitation View project digital health View project Detection of Motor Imagery of Swallow With Model Adaptation: Swallow or Tongue?,” Proceedings of the Fifth International Brain-Computer Interface Meeting, 2013, doi: 10.3217/978-3-85125-260-6-56. Search in Google Scholar

H. Yang et al., “Feature consistency-based model adaptation in session-to-session classification: A study using motor imagery of swallow EEG signals,” in Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, 2013. doi: 10.1109/EMBC.2013.6609528. Search in Google Scholar

H. Yang et al., “Detection of motor imagery of swallow EEG signals based on the dual-tree complex wavelet transform and adaptive model selection,” J Neural Eng, vol. 11, no. 3, 2014, doi: 10.1088/1741-2560/11/3/035016. Search in Google Scholar

H. Yang, C. Guan, C. C. Wang, and K. K. Ang, “Detection of motor imagery of brisk walking from electroencephalogram,” J Neurosci Methods, vol. 244, 2015, doi: 10.1016/j.jneumeth.2014.05.007. Search in Google Scholar

H. Hashimoto et al., “Swallowing-related neural oscillation: an intracranial EEG study,” Ann Clin Transl Neurol, vol. 8, no. 6, 2021, doi: 10.1002/acn3.51344. Search in Google Scholar

A. Esteva et al., “A guide to deep learning in healthcare.” Nature medicine vol. 25,1 (2019): 24-29. doi:10.1038/s41591-018-0316-z. Search in Google Scholar

H. Altaheri et al., “Deep learning techniques for classification of electroencephalogram (EEG) motor imagery (MI) signals: a review,” Neural Comput Appl, vol. 35, no. 20, 2023, doi: 10.1007/s00521-021-06352-5. Search in Google Scholar

H. Yang et al.,“On the Correlations of Motor Imagery of Swallow with Motor Imagery of Tongue Movements and Actual Swallow,” In: Wang, R., Pan, X. (eds) Advances in Cognitive Neurodynamics (V). Advances in Cognitive Neurodynamics. Springer, Singapore. https://doi.org/10.1007/978-981-10-0207-6_55. Search in Google Scholar

A. Delorme and S. Makeig, “EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis,” J Neurosci Methods, vol. 134, no. 1, 2004, doi: 10.1016/j.jneumeth.2003.10.009. Search in Google Scholar

A. Al-Saegh, S. A. Dawwd, and J. M. Abdul-Jabbar, “Deep learning for motor imagery EEG-based classification: A review,” 2021. doi: 10.1016/j.bspc.2020.102172. Search in Google Scholar

A. Craik, Y. He, and J. L. Contreras-Vidal, “Deep learning for electroencephalogram (EEG) classification tasks: A review,” 2019. doi: 10.1088/1741-2552/ab0ab5. Search in Google Scholar

L. Alzubaidi et al., “Review of deep learning: concepts, CNN architectures, challenges, applications, future directions,” J Big Data, vol. 8, no. 1, 2021, doi: 10.1186/s40537-021-00444-8. Search in Google Scholar

H. Yang, K. K. Ang, C. Wang, K. S. Phua, and C. Guan, “Neural and cortical analysis of swallowing and detection of motor imagery of swallow for dysphagia rehabilitation—A review,” in Progress in Brain Research, vol. 228, 2016. doi: 10.1016/bs.pbr.2016.03.014. Search in Google Scholar

I. Jestrović, J. L. Coyle, and E. Sejdić, “Differences in brain networks during consecutive swallows detected using an optimized vertex–frequency algorithm,” Neuroscience, vol. 344, 2017, doi: 10.1016/j.neuroscience.2016.11.047. Search in Google Scholar

I. Jestrović, J. L. Coyle, and E. Sejdić, “Characterizing functional connectivity patterns during saliva swallows in different head positions,” J Neuroeng Rehabil, vol. 12, no. 1, 2015, doi: 10.1186/s12984-015-0049-x. Search in Google Scholar

I. Jestrović, J. L. Coyle, S. Perera, and E. Sejdić, “Influence of attention and bolus volume on brain organization during swallowing,” Brain Struct Funct, vol. 223, no. 2, 2018, doi: 10.1007/s00429-017-1535-7. Search in Google Scholar

I. Jestrović, J. L. Coyle, S. Perera, and E. Sejdić, “Functional connectivity patterns of normal human swallowing: difference among various viscosity swallows in normal and chin-tuck head positions,” Brain Res, vol. 1652, 2016, doi: 10.1016/j.brainres.2016.09.041. Search in Google Scholar

I. Jestrović, J. L. Coyle, and E. Sejdić, “Decoding human swallowing via electroencephalography: A state-ofthe-art review,” J Neural Eng, vol. 12, no. 5, 2015, doi: 10.1088/1741-2560/12/5/051001. Search in Google Scholar

I. Jestrović, J. L. Coyle, and E. Sejdić, “The effects of increased fluid viscosity on stationary characteristics of EEG signal in healthy adults,” Brain Res, vol. 1589, 2014, doi: 10.1016/j.brainres.2014.09.035. Search in Google Scholar

I. Jestrović, J. M. Dudik, B. Luan, J. L. Coyle, and E. Sejdić, “Baseline characteristics of cervical auscultation signals during various head maneuvers,” Comput Biol Med, vol. 43, no. 12, 2013, doi: 10.1016/j.compbiomed.2013.10.005. Search in Google Scholar

S. Hammi, S. M. Hammami, and L. H. Belguith, “Advancing aspect-based sentiment analysis with a novel architecture combining deep learning models CNN and bi-RNN with the machine learning model SVM,” Soc Netw Anal Min, vol. 13, no. 1, 2023, doi: 10.1007/s13278-023-01126-4. Search in Google Scholar

Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Biologie, Genetik, Biotechnologie, Bioinformatik, Biologie, andere