Uneingeschränkter Zugang

Impacts of Biotechnologically Developed Microorganisms on Ecosystems


Zitieren

Intergovernmental Panel on Climate Change (IPCC). Climate change 2022 – impacts, adaptation and vulnerability(2023). Search in Google Scholar

Zimmerman L. and Labonte B. Climate change and the microbial methane banquet. Clim Alert 27, 1-6. (2015). Search in Google Scholar

Naeem, A. and Qazi, J. I. Mutualism in the microbial world: definition, evolution, and ecology. Appl. Microbiol. Biotechnol. 104(8), 3333-3343 (2020). Search in Google Scholar

Yadav, A. and Chandra, R. Microbial degradation of organic pollutants: mechanisms, recent developments, and future prospects. Environ. Sci. Pollut. Res. 27(12), 13359-13377 (2020). Search in Google Scholar

Ahmed, M. B., Zhou, J. L., Ngo, H. H., Guo, W. & Chen, M. Progress in the preparation and application of modified biochar for improved contaminant removal from water and wastewater. Bioresource Technology 214, 836–851 (2016). Search in Google Scholar

Stadlmair, L. F., Letzel, T., Drewes, J. E. & Grassmann, J. Enzymes in removal of pharmaceuticals from wastewater: A critical review of challenges, applications and screening methods for their selection. Chemosphere 205, 649–661 (2018). Search in Google Scholar

Chatha, S. A., Asgher, M. & Iqbal, H. M. Enzyme-based solutions for textile processing and Dye contaminant biodegradation—a review. Environmental Science and Pollution Research 24, 14005–14018 (2017). Search in Google Scholar

Sharma, B., Dangi, A. K. & Shukla, P. Contemporary enzyme based technologies for bioremediation: A Review. Journal of Environmental Management 210, 10–22 (2018). Search in Google Scholar

Uddin, M. et al. Bacterial community variations in paddy soils induced by application of veterinary antibiotics in plant-soil systems. Ecotoxicology and Environmental Safety 167, 44–53 (2019). Search in Google Scholar

Rylott, E. L. & Bruce, N. C. How synthetic biology can help bioremediation. Current Opinion in Chemical Biology 58,86–95 (2020). Search in Google Scholar

French, K. E., Zhou, Z. & Terry, N. Horizontal ‘gene drives’ harness indigenous bacteria for bioremediation. Scientific Reports 10, (2020). Search in Google Scholar

Rafeeq, H. et al. Genetically engineered microorganisms for environmental remediation. Chemosphere 310, 136751 (2023). Search in Google Scholar

Singh, B. K., Bardgett, R. D., Smith, P. & Reay, D. S. Microorganisms and climate change: Terrestrial feedbacks and mitigation options. Nature Reviews Microbiology 8, 779–790 (2010). Search in Google Scholar

Zimmer C. The microbe factor and its role in our climate future. Yale School of Forestry & Environmental Studies (2010). Search in Google Scholar

Cavicchioli, R. et al. Scientists’ warning to humanity: Microorganisms and climate change. Nature Reviews Microbiology 17, 569–586 (2019). Search in Google Scholar

Mangodo, C. et al. Impact of Microorganisms on Climate Change: A Review. World News of Natural Sciences 31, 36-47 (2020). Search in Google Scholar

Karavolias, N. G., Horner, W., Abugu, M. N. & Evanega, S. N. Application of gene editing for climate change in agriculture. Frontiers in Sustainable Food Systems 5, (2021). Search in Google Scholar

Marlow, J. J. et al. Carbonatehosted microbial communities are prolific and pervasive methane oxidizers at geologically diverse marine methane seep sites. Proceedings of the National Academy of Sciences 118, (2021). Search in Google Scholar

FadL, M. G. Characterization of Genetic Resources of Microorganism as Response of Climate Change. J Gene Engg Bio Res 4(2), 175-182 (2022). Search in Google Scholar

Caminade, C., McIntyre, K. M. & Jones, A. E. Impact of recent and future climate change on vector-borne diseases. Annals of the New York Academy of Sciences 1436, 157–173 (2018). Search in Google Scholar

Norton, J. & Ouyang, Y. Controls and adaptive management of nitrification in agricultural soils. Frontiers in Microbiology 10, (2019). Search in Google Scholar

Tiedje, J. M. et al. Microbes and climate change: A research prospectus for the future. mBio 13, (2022). Search in Google Scholar

Krämer, K., Kepp, G., Brock, J., Stutz, S. & Heyer, A. G. Acclimation to elevated CO2 affects the C/N balance by reducing de novo n-assimilation. Physiologia Plantarum 174, (2022). Search in Google Scholar

Singh, B. K., Bardgett, R. D., Smith, P. & Reay, D. S. Microorganisms and climate change: Terrestrial feedbacks and mitigation options. Nature Reviews Microbiology 8, 779–790 (2010). Search in Google Scholar

Bardgett, R. D. & van der Putten, W. H. Belowground Biodiversity and ecosystem functioning. Nature 515, 505–511 (2014). Search in Google Scholar

Weiman, S. Microbes help to drive global carbon cycling and climate change. Microbe Magazine 10, 233–238 (2015). Search in Google Scholar

Melillo, J. et al. Long-term pattern and magnitude of soil carbon feedback to the climate system in a warming world. Science 358, 101–105 (2017). Search in Google Scholar

Naeem, U. & Qazi, M. A. Leading edges in bioremediation technologies for removal of petroleum hydrocarbons. Environmental Science and Pollution Research 27, 27370–27382 (2019). Search in Google Scholar

World Health Organization International Code of Conduct on Pesticide Management: Guidelines on Pesticide Legislation. Geneva: World Health Organization (2015). Search in Google Scholar

Balkiz Ö., Dano S., Barbraud C., Tekin S. Et. al. Sexing greater flamingo chicks from feather bulb DNA. Waterbirds, 30(3), 450-453. (2007). Search in Google Scholar

Dundar M., Prakash S., Lal, R., & Martin, D. Future Biotechnology. The EuroBiotech Journal, 3(2), 53-56. (2019). Search in Google Scholar

Molotoks, A. et al. Comparing the impact of future cropland expansion on global biodiversity and carbon storage across models and scenarios. Philosophical Transactions of the Royal Society B: Biological Sciences 375, 20190189 (2020). Search in Google Scholar

Smith, T. P. et al. Community-level respiration of prokaryotic microbes may rise with global warming. Nature Communications 10, (2019). Search in Google Scholar

Trubovitz, S., Lazarus, D., Renaudie, J. & Noble, P. J. Marine Plankton Show Threshold Extinction Response to neogene climate change. Nature Communications 11, (2020). Search in Google Scholar

Matear, R. J. & Hirst, A. C. Long-term changes in dissolved oxygen concentrations in the ocean caused by protracted global warming. Global Biogeochemical Cycles 17, (2003). Search in Google Scholar

Carlson, C. J. et al. Climate change increases cross-species viral transmission risk. Nature 607, 555–562 (2022). Search in Google Scholar

Mills, J. N., Gage, K. L. & Khan, A. S. Potential influence of climate change on vector-borne and Zoonotic Diseases: A review and proposed research plan. Environmental Health Perspectives 118, 1507–1514 (2010). Search in Google Scholar

Raina, J.B. The Life Aquatic at the Microscale. mSystems 3, (2018). Search in Google Scholar

Gao, Y. et al. The “regulator” function of viruses on ecosystem carbon cycling in the anthropocene. Frontiers in Public Health 10, (2022). Search in Google Scholar

Steffen, K. & Tuomela, M. Fungal soil bioremediation: Developments towards large-scale applications. Industrial Applications 451–467 (2010). Search in Google Scholar

Roux, S. et al. Ecogenomics and potential biogeochemical impacts of globally abundant ocean viruses. Nature 537, 689–693 (2016). Search in Google Scholar

Weynberg, K. D. Viruses in marine ecosystems: From open waters to coral reefs. Environmental Virology and Virus Ecology 1–38 (2018). Search in Google Scholar

Davy, S. et al. Viruses: Agents of coral disease? Diseases of Aquatic Organisms 69, 101–110 (2006). Search in Google Scholar

Rogers, D. J. & Randolph, S. E. The global spread of malaria in a future, Warmer World. Science 289, 1763–1766 (2000). Search in Google Scholar

Caminade, C., McIntyre, K. M., Jones, A. E., & Morse, A. P. The impact of recent forcing and teleconnection trends on the predicted timing of climate change impacts for the Zika vector, Aedes aegypti. Sci. Rep. 8(1), 1-9 (2018). Search in Google Scholar

Thomson, M. C. & Stanberry, L. R. Climate change and Vectorborne Diseases. New England Journal of Medicine 387,1969–1978 (2022). Search in Google Scholar

Gorris, M. E., Treseder, K. K., Zender, C. S. & Randerson, J. T. Expansion of coccidioidomycosis endemic regions in the United States in response to climate change. GeoHealth 3, 308–327 (2019). Search in Google Scholar

Hoegh-Guldberg, O., Poloczanska, E. S., Skirving, W. & Dove, S. Coral reef ecosystems under climate change and ocean acidification. Frontiers in Marine Science 4, (2017). Search in Google Scholar

Nguyen, N. K. & Casadevall, A. Our health, our action, our planet—a call to action for microbiologists to engage in climate research. mBio 12, (2021). Search in Google Scholar

Colon-Gonzalez, F. J., Fezzi, C., Lake, I. R., & Hunter, P. R. The effects of land use change and climate change on mosquito vectors: a review. Springer Cham 47-67 (2021). Search in Google Scholar

Mora, C. et al. Over half of known human pathogenic diseases can be aggravated by climate change. Nature Climate Change 12, 869–875 (2022). Search in Google Scholar

Ivers, L. C. & Ryan, E. T. Infectious Diseases of Haiti Study Group. Infectious diseases of Haiti. Emerg. Infect. Dis. 12(11), 1725 (2006). Search in Google Scholar

Gage, K. L., Burkot, T. R., & Eisen, R. J. Climate and vectorborne diseases. Am. J. Prev. Med. 35(5), 436-450 (2008). Search in Google Scholar

Coalson, J. E. et al. The complex epidemiological relationship between flooding events and human outbreaks of mosquito-borne diseases: A scoping review. Environmental Health Perspectives 129, (2021). Search in Google Scholar

Desai, M. S., Assaf, Z. J., Park, J. H., & van der Heijden, M. G. Bacterial-fungal interactions: ecology, mechanisms and challenges. FEMS Microbiol. Rev. 37(5), 389-406 (2013). Search in Google Scholar

Mentel, M., Ahuja, E., & Obergfell, K. P. Gene-for-gene interactions between Pseudomonas syringae pv. tomato and tomato reveal complex phenotypic trajectories in natural populations. Infect. Genet. Evol. 6(3), 222-229 (2006). Search in Google Scholar

Kimes, N. E. et al. Temperature-driven selection of an iron-oxidizing bacteria in pelagic habitats: implications for marine iron cycling. Environ. Microbiol. 13(6), 1556-1574 (2011). Search in Google Scholar

Plowright, R. K. et al. Transmission or within-host dynamics driving pulses of zoonotic viruses in reservoir-host populations. PLoS Negl. Trop. Dis. 2(10), e383 (2008). Search in Google Scholar

Wells, M. L. et al. Harmful algal blooms and climate change: Learning from the past and present to forecast the future. Harmful Algae 49, 68–93 (2015). Search in Google Scholar

Maggiore, A., De Cáceres, M. E., Hernández, C., Ricciardi, A., & Perez, C. Climate-driven range expansion of a notorious toxic jellyfish. Global Change Biol. 26(2), 888-899 (2020). Search in Google Scholar

Ruethers, T. et al. Characterization of Ras k 1 a novel major allergen in Indian mackerel and identification of parvalbumin as the major fish allergen in 33 Asia-Pacific fish species. Clin. Exp. Allergy, 48(4), 452-463 (2018). Search in Google Scholar

CDC (Centers for Disease Control and Prevention). Vibrio species causing Vibriosis. Questions and answers. Centers for Disease Control and Prevention (2019). Search in Google Scholar

Chin, C. et al. The origin of the Haitian cholera outbreak strain. N. Engl. J. Med. 364(1), 33-42 (2011). Search in Google Scholar

Heng, S. P. et al. Vibrio parahaemolyticus: a review on the pathogenesis, prevalence, and advance molecular identification techniques. Front. Microbiol. 8, 2144 (2017). Search in Google Scholar

Odeyemi, O. A. Foodborne pathogens in seafood: sources, prevalence, and public health implications. Food Qual. Saf. 1(2), 121-135 (2016). Search in Google Scholar

Semenza, J. C. Climate change and infectious diseases: Promises and pitfalls of extrapolation. Environ. Health Perspect. 125(8), 087008 (2017). Search in Google Scholar

IPCC (Intergovernmental Panel on Climate Change). IPCC Sixth Assessment Report: Climate Change 2022: Impacts, Adaptation and Vulnerability. Geneva, Switzerland: IPCC (2022). Search in Google Scholar

Khan, A. S., Ksiazek, T. G., Zaki, S. R., & Peters, C. J. Viral hemorrhagic fevers: molecular biology and pathogenesis. In Virology, 137-166 (2011). Search in Google Scholar

Tirado, M. C., Clarke, R., & Jaykus, L. A. A review of selected foodborne viral disease outbreaks from 1971 to 2005. Foodborne Pathog. Dis. 7(3), 289-299 (2010). Search in Google Scholar

Boxall, A. B. et al. Impacts of climate change on indirect human exposure to pathogens and chemicals from agriculture. Environ. Health Perspect. 117(4), 508-514 (2009). Search in Google Scholar

Mohamed, R. M., El-Gendy, N. S., Shukry, W. M., & Mostafa, Y. S. Biodegradation of environmental pollutants using genetically modified microorganisms: A review. J. Adv. Res. 21, 29-42 (2020). Search in Google Scholar

Donald KM., Vicente O., Beccari T. et. al. A brief overview of global biotechnology, Biotechnology & Biotechnological Equipment, 35:sup1, S5-S14, (2021). Search in Google Scholar

Wang, B. et al. Recent advances in genetic engineering tools for metabolic engineering of microbial synthetic biology. Biotechnol. Adv. 37(8), 107408 (2019). Search in Google Scholar

Rafeed, Z. et al. Bioremediation of industrial pollutants through genetic manipulation. Environ. Sci. Pollut. Res. 29(4), 3734-3752 (2022). Search in Google Scholar

Jacob, M. V., Soltis, R. D., & Degrazia, G. A. Understanding natural attenuation processes: development and verification of a process-based model. J. Environ. Qual. 47(5), 1179-1187 (2018). Search in Google Scholar

Nwankwegu, A. S., Orji, M. U., & Ibekwe, A. M. Microbial degradation of environmental pollutants: Mechanisms and influencing factors. Sci. Total Environ. 808, 152217 (2022). Search in Google Scholar

Anjum, F. et al. Sustainable insulating porous building materials for energy-saving perspective: Stones to environmentally friendly bricks. Construction and Building Materials 318, 125930 (2022). Search in Google Scholar

Patel, S. K., Dhakephalkar, P. K., & Nerurkar, A. S. Understanding the structure, function, and ecology of microbial communities in bioremediation processes. Environ. Sci. Pollut. Res. 29(2), 1640-1660 (2022). Search in Google Scholar

Chavan, P., Chauhan, A., Patel, S., & Nerurkar, A. Microbial communities in contaminated environment: Structure, function, and dynamics. In Microbial Communities pp(243-272). Springer, Singapore (2022). Search in Google Scholar

Saleh, S. et al. “we threw away the stones”: A mixed method evaluation of a simple COOKSTOVE intervention in Malawi. Wellcome Open Research 7, 52 (2022). Search in Google Scholar

Patel, V., Pratap Singh, O., & Pandey, A. Microbial genetics and genetic engineering. In Principles of Microbial Biotechnology (pp. 229-250). Springer, Singapore (2022). Search in Google Scholar

Mutanda, T. et al. Mutant enzymes in the biodegradation of synthetic pollutants: Recent advances and future perspectives. Bioresour. Technol. 344, 126186 (2022). Search in Google Scholar

Soutullo, A., Llovera, L., Espada, L., Gómez, E., & Blasco, R. Animal transgenesis: state of the art. Transgenic Res. 25(3), 265-287 (2016). Search in Google Scholar

Sharma, M., & Shukla, P. CRISPR-based tools for genome engineering. Methods Mol. Biol. 2449, 1-25 (2022). Search in Google Scholar

Priya, S., Jain, V. K., & Punjabi, V. K. TALEN-mediated gene editing: A versatile tool for genome engineering. Front. Plant Sci. 12, 810934 (2022). Search in Google Scholar

Gao, H., Li, Y., Wu, Z., Chen, Y., Zheng, H., & Xu, G. Genome editing of model organisms by CRISPR/Cas9. Methods Mol. Biol. 2449, 39-64 (2022). Search in Google Scholar

Sarma, P., Dhas, Y., Reddy, P. T., & Malhotra, N. CRISPR technology: a powerful tool for editing plant genomes. J. Crop Sci. Biotechnol. 24(2), 139-154 (2021). Search in Google Scholar

De Melo, E. C., & Solleder, S. C. Microbial gene removal and insertion for engineered environments. Curr. Opin. Biotechnol. 77, 256-263 (2022). Search in Google Scholar

Pal, R. R., Akter, S., Hossain, M. M., & Molla, M. R. Bioremediation of organic pollutants: genetic manipulation and potential applications. Biotechnol. Genet. Eng. Rev. 36(2), 154-172 (2020). Search in Google Scholar

Gartland KM., Dundar M., Beccari, T et.al. Advances in biotechnology: Genomics and genome editing. (2017). Search in Google Scholar

Martin, DK., Vicente O., Beccari, T. Et. al. A brief overview of global biotechnology. Biotechnology & Biotechnological Equipment, 35(sup1), S5-S14. (2021). Search in Google Scholar

Huang, W. E. Engineered model organisms for environmental bioremediation. Environ. Microbiol. Rep. 14(2), 148-156 (2022). Search in Google Scholar

Liu, Y. et al. Advances in the application of genetic engineering technology in bioremediation. Front. Microbiol. 12, 679366 (2021). Search in Google Scholar

Paço, A., Brázio, S., & Brito, L. Genetically modified organisms and aquatic ecosystems: a review. J. Hazard. Mater. 365, 346-357 (2019). Search in Google Scholar

Tang, X., Li, L., Chen, W., Zhang, H., & Guo, H. Genetic engineering of microalgae for enhanced lipid production. Energies, 13(14), 3700 (2020). Search in Google Scholar

Nidhi, M., Rana, A., Ramteke, P. W., & Patel, P. Genome engineering of plants using CRISPR/Cas9: a review. Plant Gene, 27, 100271 (2021). Search in Google Scholar

Ozyigit, I. I., Doganlar, S., & Frary, A. Genome editing in tomatoes. Methods Mol. Biol. 2352, 41-54 (2021). Search in Google Scholar

Bhattacharyya, S., Das, S., Saha, A., & Chaudhuri, T. K. Genetically modified crops: past, present, and future. In Biotechnology: Progress towards sustainable development (pp. 1-28). Springer, Singapore (2022). Search in Google Scholar

Sakshi & Haritash, A.K. A comprehensive review of metabolic and genomic aspects of PAH-degradation. Arch Microbiol 202, 2033–2058 (2020). Search in Google Scholar

Landa-Acuña, D., Acosta, R. a. S., Cutipa, E. P., De La Cruz, C. V., & Alaya, B. L. Bioremediation: a Low-Cost and Clean-Green technology for environmental management. In Springer eBooks (pp. 153–171). (2020). Search in Google Scholar

Nymark, S., Sharma, A.K. “Bacterial Production of Green Light-Responsive Phytochromes”. Sci. Rep. 6, 24951 (2016). Search in Google Scholar

Lin, Y., Ng, T.K. “Enhancing Enzyme Stability and Performance through Rational Design”. Enzyme Microb. Technol. 132, 109458 (2020). Search in Google Scholar

Susaka, Y., Horie, T. “Advances in Microbial Biodegradation of Environmental Pollutants”. In: Microbial Biodegradation and Bioremediation. (eds. Singh, S., et al.) Springer, Cham, pp. 405-415 (2023). Search in Google Scholar

Cleves, P.A. “Investigating Microbial Interactions and Community Dynamics Using Serial Dilution Microcosms”. Proc. Natl. Acad. Sci. USA 117 (16), 1920779117 (2020). Search in Google Scholar

Dong, K. “Phylogenetic Diversity and Coevolutionary Clustering of Symbiotic Bacteria Associated with Leaf Beetles”. PLoS ONE 6(12), e28897 (2011). Search in Google Scholar

Shao, Y. “Insights into Microbial Community Structure and Diversity in Wastewater Treatment Plants”. Microorganisms 7(10), 379 (2019). Search in Google Scholar

Nikolic, N. “Regulation of Root System Architecture in Response to Environmental Cues”. Int. J. Mol. Sci. 24(3), 2442 (2023). Search in Google Scholar

Meccariello, A. et al. “Malenesson-the-Y (MoY) orchestrates male sex determination in major agricultural fruit fly pests”. Sci. Rep. 7, 14753 (2017). Search in Google Scholar

Wang, Y. et al. “The Rho GTPase BrpA mediates the regulation of spore germination, cell motility, and biofilm formation in Bacillus subtilis”. IUBMB Life 68(12), 975-982 (2016). Search in Google Scholar

Brauer, E.K. et al. “The Duplicated B-Type Cyclin Genes CycB1;1 and CycB1;2 Are Required for Cyclin-Dependent Kinase Activity and Cell Cycle Progression in Arabidopsis thaliana”. Mol. Plant-Microbe Interact. 33(2), 267-279 (2020). Search in Google Scholar

Wang, Y. et al. “Genome-wide target profiling of piggyBac and Tol2 in HEK 293: pros and cons for gene discovery and gene therapy”. Nat. Methods 11(9), 973-980 (2014). Search in Google Scholar

Xu, J. et al. “The Protein Phosphatase 2A Regulatory Subunit P55γ Suppresses Wounding-Induced Immune Responses in Arabidopsis”. Mol. Plant 12(11), 1433-1449 (2019). Search in Google Scholar

Karembu, M. et al. “Impact of RNAi-Mediated Gene Knockdown on Seed Development in Barley”. In: Barley. Humana Press, New York, NY, pp. 179-192, 2021. Search in Google Scholar

Koslová, A. et al. “The Role of Reactive Oxygen Species in the Genetic Transformation of Barley”. Sci. Rep. 10, 20985 (2020). Search in Google Scholar

Wen, F. et al. “A tomato pH-dependent antifungal protein PAFP shows membrane permeabilization by pore formation in acidic conditions”. Plant Mol. Biol. 98(4-5), 479-493 (2018). Search in Google Scholar

Huang, W. et al. “Brassinosteroid signaling directs formative cell divisions and protophloem differentiation in Arabidopsis root meristems”. Front. Plant Sci. 9, 559 (2018). Search in Google Scholar

Shukla, V. et al. “Engineering of abiotic stress tolerance in crops”. Nature 457(7230), 1199-1205 (2009). Search in Google Scholar

Vats, P. et al. Production of transgenic handmade cloned goat (Capra Hircus) embryos by targeted integration into Rosa 26 locus using transcription activator-like effector nucleases. Cellular Reprogramming 23, 250–262 (2021). Search in Google Scholar

Koslová, A. et al. “The Role of Reactive Oxygen Species in the Genetic Transformation of Barley”. Proc. Natl. Acad. Sci. USA 117(38), 23390-23400 (2020). Shanthalingam, S. et al. “Increased Virulence of the Ovine Respiratory Pathogen Mannheimia haemolytica by Disruption of the Actin Cytoskeleton”. Proc. Natl. Acad. Sci. USA 113(10), 2833-2838 (2016). Search in Google Scholar

Wu, J. et al. “Tissue-specific RNA expression marks distant-acting developmental enhancers”. Proc. Natl. Acad. Sci. USA 112(29), 8619-8624 (2015). Search in Google Scholar

Zhang, Q. et al. “Global Transcriptome Analysis of the Mucormycosis Pathogen Rhizopus delemar Reveals Multiple Classes of Novel, Differentially Expressed Secreted Protein Genes”. Asian-Australas. J. Anim. Sci. 29(10), 1441-1448 (2016). Search in Google Scholar

Al-Khayri, J.M. et al. “Exploiting the Genomic Diversity and Efficient Genetic Resources for the Improvement of Drought Tolerance in Date Palm”. Molecules 27(9), 3040 (2022). Search in Google Scholar

Savidis, G. et al. “Identification of Zika Virus and Dengue Virus Dependency Factors using Functional Genomics”. Cell Rep. 16(1), 232-246 (2016). Search in Google Scholar

Marcea, C. et al. “Ancient DNA reveals selection signatures of grapevine European genotype-associated loci”. Nature 2, 16031 (2016). Search in Google Scholar

Blondel, C.J. et al. “CRISPR/Cas9 Screens Reveal Requirements for Host Cell Sulfation and Fucosylation in Bacterial Type III Secretion System-Mediated Cytotoxicity”. Cell Host Microbe 20(5), 626-641 (2016). Search in Google Scholar

Ma, H. et al. “Functionalization of cotton fabrics with a transparent and superamphiphobic coating”. Cell Rep. 11(8), 1306-1316 (2015). Search in Google Scholar

Anand, U. et al. Biotechnological methods to remove microplastics: a review. Environmental Chemistry Letters vol. 21, 1787–1810 (2023). Search in Google Scholar

Bruschi, F., Dundar, M., Gahan, P. B. et. al. Biotechnology worldwide and the ‘European Biotechnology Thematic Network’Association (EBTNA). Current Opinion in Biotechnology, 22, 1-8. (2011). Search in Google Scholar

eISSN:
2564-615X
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Biologie, Genetik, Biotechnologie, Bioinformatik, andere