1. bookVolume 3 (2019): Issue 4 (October 2019)
Zeitschriftendaten
License
Format
Zeitschrift
Erstveröffentlichung
30 Jan 2017
Erscheinungsweise
4 Hefte pro Jahr
Sprachen
Englisch
access type Open Access

Artificial cell microcapsules containing live bacterial cells and activated charcoal for managing renal failure creatinine: preparation and in-vitro analysis

Online veröffentlicht: 23 Oct 2019
Seitenbereich: 190 - 196
Zeitschriftendaten
License
Format
Zeitschrift
Erstveröffentlichung
30 Jan 2017
Erscheinungsweise
4 Hefte pro Jahr
Sprachen
Englisch

Activated charcoal was microencapsulated with Lactobacillus acidophilus 314 previously adapted for urea uptake. The creatinine removal capacity of this combination microcapsule was evaluated in-vitro in media simulating the small intestine. Results show that microcapsules containing both activated charcoal and L. acidophilus 314 demonstrated potential for decreasing creatinine. Interestingly, when co-encapsulating both activated charcoal and L. acidophilus 314 a smaller decrease in creatinine was observed than when encapsulating them separately. However, co-encapsulated microcapsules were more stable in various parts of the gastrointestinal system and survived longer in storage. These results suggest the feasibility of using microcapsules containing activated charcoal and probiotic bacteria as oral adjuvants for creatinine removal and provides a theoretical model for the use of these microcapsules to remove any unwanted metabolite.

1. Varma, R., R. Garrick, J. McClung, and W. H. Frishman. 2005. Chronic renal dysfunction as an independent risk factor for the development of cardiovascular disease. Cardiology in review 13: 98-107.10.1097/01.crd.0000132600.45876.d0Open DOISearch in Google Scholar

2. Chow, K. M., C. C. Szeto, C. B. Leung, B. C. Kwan, M. C. Law, and P. K. Li. 2005. A risk analysis of continuous ambulatory peritoneal dialysis-related peritonitis. Peritoneal dialysis international : journal of the International Society for Peritoneal Dialysis 25: 374-379.Search in Google Scholar

3. Stewart, C. L., S. N. Acker, L. L. Pyle, A. Kulungowski, M. Cadnapaphornchai, J. L. Bruny, and F. Karrer. 2016. Factors associated with peritoneal dialysis catheter complications in children. Journal of pediatric surgery 51: 159-162.Search in Google Scholar

4. Ratajczak, A., M. Lange-Ratajczak, A. Bobkiewicz, and A. Studniarek. 2017. Surgical Management of Complications with Perito-neal Dialysis. Seminars in Dialysis 30: 63-68.Search in Google Scholar

5. Wang, L.-J., and C.-K. Che. 2012. The Psychological Impact of Hemodialysis on Patients with Chronic Renal Failure.Search in Google Scholar

6. Depner, T. A., and L. D. Cowgill. 2014. Can oral therapy reduce uremic toxins? Clin J Am Soc Nephrol 9: 1513-1515.2514715610.2215/CJN.07330714Search in Google Scholar

7. Jain, P., S. Shah, R. Coussa, and S. Prakash. 2009. Potentials and limitations of microorganisms as renal failure biotherapeutics. Biologics 3: 233-243.19707412Search in Google Scholar

8. Vaziri, N. D., J. Yuan, M. Khazaeli, Y. Masuda, H. Ichii, and S. Liu. 2013. Oral Activated Charcoal Adsorbent (AST-120) Ameliorates Chronic Kidney Disease-Induced Intestinal Epithelial Barrier Disruption. American Journal of Nephrology 37: 518-525.Search in Google Scholar

9. Dhondt, A., R. Vanholder, W. Van Biesen, and N. Lameire. 2000. The removal of uremic toxins. Kidney International 58: S47-S59.10.1046/j.1523-1755.2000.07606.xOpen DOISearch in Google Scholar

10. Clark, J. E., J. Y. Templeton, 3rd, and C. D. Mc. 1962. Perfusion of isolated intestinal loops in the management of chronic renal failure. Transactions - American Society for Artificial Internal Organs 8: 246-251.Search in Google Scholar

11. Parisi, R. 1969. Management of chronic renal failure by isolated jejunal loop perfusion. British journal of urology 41: 603-604.Search in Google Scholar

12. Goto, S., K. Yoshiya, T. Kita, H. Fujii, and M. Fukagawa. 2011. Uremic toxins and oral adsorbents. Therapeutic apheresis and dialysis : official peer-reviewed journal of the International Society for Apheresis, the Japanese Society for Apheresis, the Japanese Society for Dialysis Therapy 15: 132-134.10.1111/j.1744-9987.2010.00891.xOpen DOISearch in Google Scholar

13. Sato, E., D. Saigusa, E. Mishima, T. Uchida, D. Miura, T. Morikawa-Ichinose, K. Kisu, A. Sekimoto, R. Saito, Y. Oe, Y. Matsumoto, Y. Tomioka, T. Mori, N. Takahashi, H. Sato, T. Abe, T. Niwa, and S. Ito. 2017. Impact of the Oral Adsorbent AST-120 on Organ-Specific Accumulation of Uremic Toxins: LC-MS/MS and MS Imaging Techniques. Toxins (Basel) 10: 19.Search in Google Scholar

14. Abidin, M. N. Z., P. S. Goh, A. F. Ismail, N. Said, M. H. D. Othman, H. Hasbullah, M. S. Abdullah, B. C. Ng, S. H. S. A. Kadir, and F. Kamal. 2018. Highly adsorptive oxidized starch nanoparticles for efficient urea removal. Carbohydrate Polymers 201: 257-263.Search in Google Scholar

15. Chandy, T., and C. P. Sharma. 1998. Activated charcoal microcapsules and their applications. Journal of biomaterials applications 13: 128-157.Search in Google Scholar

16. Sparks, R. E., N. S. Mason, P. M. Meier, M. H. Litt, and O. Lindan. 1971. Removal of uremic waste metabolites from the intestinal tract by encapsulated carbon and oxidized starch. Transactions-American Society for Artificial Internal Organs 17: 229-238.Search in Google Scholar

17. Prakash, S., and T. M. S. Chang. 1996. Microencapsulated genetically engineered live E. coli DH5 cells administered orally to maintain normal plasma urea level in uremic rats. Nature Medicine 2: 883-887.10.1038/nm0896-883Open DOISearch in Google Scholar

18. Bhatia, A., P. Rana, A. Sharma, R. Singla, and M. K. Randhawa. 2012. Preparation, characterization and hypocholesterolemic effect of sodium alginate encapsulated lab isolate. Journal of Microbiology and Biotechnology Research 2: 741-746.Search in Google Scholar

19. Solga, S. F. 2003. Probiotics can treat hepatic encephalopathy. Medical Hypotheses 61: 307-313.10.1016/S0306-9877(03)00192-0Open DOISearch in Google Scholar

20. Iqbal, U. H., S. Westfall, and S. Prakash. 2018. Novel microencapsulated probiotic blend for use in metabolic syndrome: design and in-vivo analysis. Artificial cells, nanomedicine, and biotechnology 46: S116-s124.Search in Google Scholar

21. Westfall, S., N. Lomis, and S. Prakash. 2019. A novel synbiotic delays Alzheimer’s disease onset via combinatorial gut-brain-axis signaling in Drosophila melanogaster. PLOS ONE 14: e0214985.Search in Google Scholar

22. Prakash, S., and T. M. Chang. 1995. Preparation and in vitro analysis of microencapsulated genetically engineered E. coli DH5 cells for urea and ammonia removal. Biotechnology and bioengineering 46: 621-626.10.1002/bit.260460615Open DOISearch in Google Scholar

23. Dehghani, H., F. Heidari, H. Mozaffari-Khosravi, N. Nouri-Majelan, and A. Dehghani. 2016. Synbiotic Supplementations for Azotemia in Patients With Chronic Kidney Disease: a Randomized Controlled Trial. Iranian journal of kidney diseases 10: 351-357.Search in Google Scholar

24. Firouzi, S., B.-N. Mohd-Yusof, H.-A. Majid, A. Ismail, and N.-A. Kamaruddin. 2015. Effect of microbial cell preparation on renal profile and liver function among type 2 diabetics: a randomized controlled trial. BMC Complement Altern Med 15: 433-433.Search in Google Scholar

25. Natarajan, R., B. Pechenyak, U. Vyas, P. Ranganathan, A. Weinberg, P. Liang, M. C. Mallappallil, A. J. Norin, E. A. Friedman, and S. J. Saggi. 2014. Randomized controlled trial of strain-specific probiotic formulation (Renadyl) in dialysis patients. Biomed Res Int 2014: 568571-568571.Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo