Uneingeschränkter Zugang

Application of whey retentate as complex nitrogen source for growth of the polyhydroxyalkanoate producer Hydrogenophaga pseudoflava strain DSM1023


Zitieren

Haider TP, Völker C, Kramm J, Landfester K, Wurm FR. Plastics of the future? The impact of biodegradable polymers on the environment and on society. Angew Chem Int Edit 2019; 58: 50-62HaiderTPVölkerCKrammJLandfesterKWurmFRPlastics of the future? The impact of biodegradable polymers on the environment and on societyAngew Chem Int Edit201958506210.1002/anie.20180576629972726Search in Google Scholar

Koller M. Switching from petro-plastics to microbial polyhydroxyalkanoates (PHA): the biotechnological escape route of choice out of the plastic predicament? The EuroBiotech Journal 2019; 3(1): 32-44.KollerMSwitching from petro-plastics to microbial polyhydroxyalkanoates (PHA): the biotechnological escape route of choice out of the plastic predicament?The EuroBiotech Journal201931324410.2478/ebtj-2019-0004Search in Google Scholar

Narodoslawsky M, Shazad K, Kollmann R, Schnitzer H. LCA of PHA production–Identifying the ecological potential of bio-plastic. Chem Biochem Eng Q 2015; 29(2): 299-305.NarodoslawskyMShazadKKollmannRSchnitzerHLCA of PHA production–Identifying the ecological potential of bio-plasticChem Biochem Eng Q201529229930510.15255/CABEQ.2014.2262Search in Google Scholar

Koller M, Maršálek L, Miranda de Sousa Dias M, Braunegg G. Producing microbial polyhydroxyalkanoate (PHA) biopolyesters in a sustainable manner. New Biotechnol 2017; 37(A): 24-38.KollerMMaršálekLMirandade Sousa Dias MBrauneggGProducing microbial polyhydroxyalkanoate (PHA) biopolyesters in a sustainable mannerNew Biotechnol201737A243810.1016/j.nbt.2016.05.00127184617Search in Google Scholar

Kourmentza C, Plácido J, Venetsaneas N, Burniol-Figols A, Varrone C, Gavala HN, Reis MAM. Recent advances and challenges towards sustainable polyhydroxyalkanoate (PHA) production. Bioengineering 2017; 4(2): 55.KourmentzaCPlácidoJVenetsaneasNBurniol-FigolsAVarroneCGavalaHNReisMAMRecent advances and challenges towards sustainable polyhydroxyalkanoate (PHA) productionBioengineering2017425510.3390/bioengineering4020055559047428952534Search in Google Scholar

Bugnicourt E, Cinelli P, Lazzeri A, Alvarez VA. Polyhydroxyalkanoate (PHA): Review of synthesis, characteristics, processing and potential applications in packaging. eXPRESS Polym Lett 2014; 8(11): 791-808.BugnicourtECinelliPLazzeriAAlvarezVAPolyhydroxyalkanoate (PHA): Review of synthesis, characteristics, processing and potential applications in packagingeXPRESS Polym Lett201481179180810.3144/expresspolymlett.2014.82Search in Google Scholar

Khosravi-Darani K, Bucci DZ. Application of poly(hydroxyalkanoate) in food packaging: Improvements by nanotechnology. Chem Biochem Engineering Q 2015; 29(2): 275-285.Khosravi-DaraniKBucciDZApplication of poly(hydroxyalkanoate) in food packaging: Improvements by nanotechnologyChem Biochem Engineering Q201529227528510.15255/CABEQ.2014.2260Search in Google Scholar

Koller M. Biodegradable and biocompatible polyhydroxy-alkanoates (PHA): Auspicious microbial macromolecules for pharmaceutical and therapeutic applications. Molecules 2018; 23(2): 362.KollerMBiodegradable and biocompatible polyhydroxy-alkanoates (PHA): Auspicious microbial macromolecules for pharmaceutical and therapeutic applicationsMolecules201823236210.3390/molecules23020362601758729419813Search in Google Scholar

Drosg B, Fritz I, Gattermayr F, Silvestrini L. Photo-autotrophic production of poly(hydroxyalkanoates) in cyanobacteria. Chem Biochem Engineering Q 2015; 29(2): 145-156.DrosgBFritzIGattermayrFSilvestriniLPhoto-autotrophic production of poly(hydroxyalkanoates) in cyanobacteriaChem Biochem Engineering Q201529214515610.15255/CABEQ.2014.2254Search in Google Scholar

Troschl C, Meixner K, Drosg B. Cyanobacterial PHA production—Review of recent advances and a summary of three years’ working experience running a pilot plant. Bioengineering 2017: 4(2): 26.TroschlCMeixnerKDrosgBCyanobacterial PHA production—Review of recent advances and a summary of three years’ working experience running a pilot plantBioengineering2017422610.3390/bioengineering4020026559047028952505Search in Google Scholar

Koller M. Production of polyhydroxyalkanoate (PHA) biopolyesters by extremophiles. MOJ Polym Sci 2017; 1(2): 1-19.KollerMProduction of polyhydroxyalkanoate (PHA) biopolyesters by extremophilesMOJ Polym Sci20171211910.15406/mojps.2017.01.00011Search in Google Scholar

Koller M, Obruca S, Pernicova I, Braunegg G. Physiological, kinetic, and process engineering aspects of polyhydroxyalkanoate biosynthesis by extremophiles. In: Williams H, Kelly P (Eds.) Polyhydroxyalkanoates: Biosynthesis, Chemical Structures and Applications. 2018. ISBN 978-1-53613-439-1; Nova Science Publishers, New York, pp. 1-70.KollerMObrucaSPernicovaIBrauneggGPhysiological, kinetic, and process engineering aspects of polyhydroxyalkanoate biosynthesis by extremophilesWilliamsHKellyPPolyhydroxyalkanoates: Biosynthesis, Chemical Structures and Applications. 2018. ISBN 978-1-53613-439-1Nova Science PublishersNew York170Search in Google Scholar

Willems A, Busse J, Goor M, Pot B, Falsen E, Jantzen, E, et al. Hydrogenophaga a new genus of hydrogen-oxidizing bacteria that includes Hydrogenophaga flava comb. nov.(formerly Pseudomonas flavaHydrogenophaga palleronii (formerly Pseudomonas palleroniiHydrogenophaga pseudoflava (formerly Pseudomonas pseudoflava and “Pseudomonas carboxydoflava”), and Hydrogenophaga taeniospiralis (formerly Pseudomonas taeniospiralis Int J Syst Evol Microbiol1989; 39(3): 319-333.WillemsABusseJGoorMPotBFalsenEJantzenEet alHydrogenophaga, a new genus of hydrogen-oxidizing bacteria that includes Hydrogenophaga flava comb. nov.(formerly Pseudomonas flavaHydrogenophaga palleronii (formerly Pseudomonas palleroniiHydrogenophaga pseudoflava (formerly Pseudomonas pseudoflava and “Pseudomonas carboxydoflava”), and Hydrogenophaga taeniospiralis (formerly Pseudomonas taeniospiralisInt J Syst Evol Microbiol1989;39331933310.1099/00207713-39-3-319Search in Google Scholar

Mahmoudi M, Baei MS, Najafpour GD, Tabandeh F, Eisazadeh H. Kinetic model for polyhydroxybutyrate (PHB) production by Hydrogenophaga pseudoflava and verification of growth conditions. Afr J Biotechnol 2010; 9(21): 3151-3157.MahmoudiMBaeiMSNajafpourGDTabandehFEisazadehHKinetic model for polyhydroxybutyrate (PHB) production by Hydrogenophaga pseudoflava and verification of growth conditionsAfr J Biotechnol201092131513157Search in Google Scholar

Povolo S, Romanelli MG, Basaglia M, Ilieva VI, Corti A, Morelli A, Chiellini E, Casella S. Polyhydroxyalkanoate biosynthesis by Hydrogenophaga pseudoflava DSM1034 from structurally unrelated carbon sources. New Biotechnol 2013; 30(6): 629-634.PovoloSRomanelliMGBasagliaMIlievaVICortiAMorelliAChielliniECasellaSPolyhydroxyalkanoate biosynthesis by Hydrogenophaga pseudoflava DSM1034 from structurally unrelated carbon sourcesNew Biotechnol201330662963410.1016/j.nbt.2012.11.01923201074Search in Google Scholar

Koller M, Hesse P, Bona R, Kutschera C, Atlić A, Braunegg G. Potential of various archae-and eubacterial strains as industrial polyhydroxyalkanoate producers from whey. Macromol Biosci 2007; 7(2): 218-226.KollerMHessePBonaRKutscheraCAtlićABrauneggGPotential of various archae-and eubacterial strains as industrial polyhydroxyalkanoate producers from wheyMacromol Biosci20077221822610.1002/mabi.20060021117295410Search in Google Scholar

Koller M, Atlić A, Gonzalez-Garcia Y, Kutschera C, Braunegg G. Polyhydroxyalkanoate (PHA) biosynthesis from whey lactose. Macromol Symp 2008; 272(1): 87-92).KollerMAtlićAGonzalez-GarciaYKutscheraCBrauneggGPolyhydroxyalkanoate (PHA) biosynthesis from whey lactoseMacromol Symp20082721879210.1002/masy.200851212Search in Google Scholar

Choi MH, Song JJ, Yoon SC. Biosynthesis of copolyesters by Hydrogenophaga pseudoflava from various lactones. Can J Microbiol 1995; 41(13): 60-67.ChoiMHSongJJYoonSCBiosynthesis of copolyesters by Hydrogenophaga pseudoflava from various lactonesCan J Microbiol19954113606710.1139/m95-169Search in Google Scholar

Yoon SC, Choi MH. Local sequence dependence of polyhydroxyalkanoic acid degradation in Hydrogenophaga pseudoflava. J Biol Chem 1999; 274(53): 37800-37808.YoonSCChoiMHLocal sequence dependence of polyhydroxyalkanoic acid degradation in Hydrogenophaga pseudoflavaJ Biol Chem199927453378003780810.1074/jbc.274.53.3780010608842Search in Google Scholar

Koller M, Hesse P, Fasl H, Stelzer F, Braunegg G. Study on the effect of levulinic acid on whey-based biosynthesis of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by Hydrogenophaga pseudoflava. Appl Food Biotechnol 2017; 4(2): 65-78.KollerMHessePFaslHStelzerFBrauneggGStudy on the effect of levulinic acid on whey-based biosynthesis of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by Hydrogenophaga pseudoflavaAppl Food Biotechnol201742657810.2478/ebtj-2019-0009Search in Google Scholar

Choi MH, Yoon SC, Lenz RW. Production of poly (3-hydroxybutyric acid-co-4-hydroxybutyric acid) and poly(4-hydroxybutyric acid) without subsequent degradation by Hydrogenophaga pseudoflava. Appl Environ Microbiol 1999; 65(4): 1570-1577.ChoiMHYoonSCLenzRWProduction of poly (3-hydroxybutyric acid-co-4-hydroxybutyric acid) and poly(4-hydroxybutyric acid) without subsequent degradation by Hydrogenophaga pseudoflavaAppl Environ Microbiol19996541570157710.1128/AEM.65.4.1570-1577.19999122210103252Search in Google Scholar

Choi MH, Lee HJ, Rho JK, Yoon SC, Nam JD, Lim D, Lenz RW. Biosynthesis and local sequence specific degradation of poly(3-hydroxyvalerate-co-4-hydroxybutyrate) in Hydrogenophaga pseudoflava. Biomacromolecules 2003; 4(1): 38-45.ChoiMHLeeHJRhoJKYoonSCNamJDLimDLenzRWBiosynthesis and local sequence specific degradation of poly(3-hydroxyvalerate-co-4-hydroxybutyrate) in Hydrogenophaga pseudoflavaBiomacromolecules200341384510.1021/bm025596s12523844Search in Google Scholar

Brigham C, Kehail AA, Palmer JD. Ralstonia eutropha and the production of value added products: metabolic background of the wild-type strain and its role as a diverse, genetically-engineered biocatalyst organism. In: Koller M (Ed.): Recent Advances in Biotechnology Volume 1: Microbial Biopolyester Production, Performance and Processing: Microbiology, Feedstocks, and Metabolism. Potomac, Maryland, USA. Bentham Science Publishers Ltd. 2016. pp. 265-347.BrighamCKehailAAPalmerJD.Ralstonia eutropha and the production of value added products: metabolic background of the wild-type strain and its role as a diverse, genetically-engineered biocatalyst organismKollerMRecent Advances in Biotechnology Volume 1: Microbial Biopolyester Production, Performance and Processing: Microbiology, Feedstocks, and MetabolismPotomac, Maryland, USABentham Science Publishers Ltd201626534710.2174/9781681083254116010008Search in Google Scholar

Kaur G, Roy I. Strategies for large-scale production of polyhydroxyalkanoates. Chem Biochem Eng Q 2015; 29(2): 157-172.KaurGRoyIStrategies for large-scale production of polyhydroxyalkanoatesChem Biochem Eng Q201529215717210.15255/CABEQ.2014.2255Search in Google Scholar

Lillo JG, Rodriguez-Valera F. Effects of culture conditions on poly(β-hydroxybutyric acid) production by Haloferax mediterranei. Appl Environ Microbiol 1990; 56(8): 2517-2521.LilloJGRodriguez-ValeraFEffects of culture conditions on poly(β-hydroxybutyric acid) production by Haloferax mediterraneiAppl Environ Microbiol19905682517252110.1128/aem.56.8.2517-2521.199018475816348261Search in Google Scholar

Page WJ, Cornish A. Growth of Azotobacter vinelandii UWD in fish peptone medium and simplified extraction of poly-β-hydroxybutyrate. Appl Environ Microbiol 1993; 59(12): 4236-4244.PageWJCornishAGrowth of Azotobacter vinelandii UWD in fish peptone medium and simplified extraction of poly-β-hydroxybutyrateAppl Environ Microbiol199359124236424410.1128/aem.59.12.4236-4244.199319589116349121Search in Google Scholar

Koller M, Bona R, Hermann C, Horvat P, Martinz J, Neto J, Pereira L, Varila P, Braunegg, G. Biotechnological production of poly(3-hydroxybutyrate) with Wautersia eutropha by application of green grass juice and silage juice as additional complex substrates. Biocat Biotrans 2005; 23(5): 329-337.KollerMBonaRHermannCHorvatPMartinzJNetoJPereiraLVarilaPBrauneggGBiotechnological production of poly(3-hydroxybutyrate) with Wautersia eutropha by application of green grass juice and silage juice as additional complex substratesBiocat Biotrans200523532933710.1080/10242420500292252Search in Google Scholar

Davis R, Kataria R, Cerrone F, Woods T, Kenny S, O’Donovan A, et al. Conversion of grass biomass into fermentable sugars and its utilization for medium chain length polyhydroxyalkanoate mcl-PHA) production by Pseudomonas strains. Bioresource Technol 2013; 150: 202-209.DavisRKatariaRCerroneFWoodsTKennySO’DonovanAet alConversion of grass biomass into fermentable sugars and its utilization for medium chain length polyhydroxyalkanoate mcl-PHA) production by Pseudomonas strainsBioresource Technol201315020220910.1016/j.biortech.2013.10.00124177152Search in Google Scholar

Koller M, Sandholzer D, Salerno A, Braunegg G, Narodoslawsky M. Biopolymer from industrial residues: Life cycle assessment of poly(hydroxyalkanoates) from whey. Resour Conserv Recy 2013; 73: 64-71.KollerMSandholzerDSalernoABrauneggGNarodoslawskyMBiopolymer from industrial residues: Life cycle assessment of poly(hydroxyalkanoates) from wheyResour Conserv Recy201373647110.1016/j.resconrec.2013.01.017Search in Google Scholar

Obruca S, Benesova P, Oborna J, Marova I. Application of protease-hydrolyzed whey as a complex nitrogen source to increase poly(3-hydroxybutyrate) production from oils by Cupriavidus necator. Biotechnol Lett 2014; 36(4): 775-781.ObrucaSBenesovaPObornaJMarovaIApplication of protease-hydrolyzed whey as a complex nitrogen source to increase poly(3-hydroxybutyrate) production from oils by Cupriavidus necatorBiotechnol Lett201436477578110.1007/s10529-013-1407-z24243232Search in Google Scholar

Schmid M, Dallmann K, Bugnicourt E, Cordoni D, Wild F, Lazzeri A, Noller K. Properties of whey-protein-coated films and laminates as novel recyclable food packaging materials with excellent barrier properties. Int J Polym Sci 2012; 2012.SchmidMDallmannKBugnicourtECordoniDWildFLazzeriANollerKProperties of whey-protein-coated films and laminates as novel recyclable food packaging materials with excellent barrier propertiesInt J Polym Sci2012201210.1155/2012/562381Search in Google Scholar

Cinelli P, Schmid M, Bugnicourt E, et al. Whey protein layer applied on biodegradable packaging film to improve barrier properties while maintaining biodegradability. Polym Degrad Stabil 2014; 108: 151-7.CinelliPSchmidMBugnicourtEet alWhey protein layer applied on biodegradable packaging film to improve barrier properties while maintaining biodegradabilityPolym Degrad Stabil2014108151710.1016/j.polymdegradstab.2014.07.007Search in Google Scholar

Koller M, Marsalek L, Braunegg G. PHA Biopolyester Production from Surplus Whey: Microbiological and Engineering Aspects. In: Koller M (Ed.): Recent Advances in Biotechnology Volume 1: Microbial Biopolyester Production, Performance and Processing: Microbiology, Feedstocks, and Metabolism. Potomac, Maryland, USA. Bentham Science Publishers Ltd. 2016. pp. 100-172.KollerMMarsalekLBrauneggGPHA Biopolyester Production from Surplus Whey: Microbiological and Engineering AspectsKollerMRecent Advances in Biotechnology Volume 1: Microbial Biopolyester Production, Performance and Processing: Microbiology, Feedstocks, and MetabolismPotomac, Maryland, USABentham Science Publishers Ltd201610017210.2174/9781681083254116010005Search in Google Scholar

Koller M, Braunegg G. Advanced approaches to produce polyhydroxyalkanoate (PHA) biopolyesters in a sustainable and economic fashion. The EuroBiotech Journal 2018; 2(2): 89-103.KollerMBrauneggGAdvanced approaches to produce polyhydroxyalkanoate (PHA) biopolyesters in a sustainable and economic fashionThe EuroBiotech Journal2018228910310.2478/ebtj-2018-0013Search in Google Scholar

Koller M, Puppi D, Chiellini F, Braunegg G. Comparing chemical and enzymatic hydrolysis of whey lactose to generate feedstocks for haloarchaeal poly(3-hydroxybutyrate-co-3-hydroxyvalerate) biosynthesis. Int J Pharm Sci Res 2016; 3(1).KollerMPuppiDChielliniFBrauneggGComparing chemical and enzymatic hydrolysis of whey lactose to generate feedstocks for haloarchaeal poly(3-hydroxybutyrate-co-3-hydroxyvalerate) biosynthesisInt J Pharm Sci Res20163110.15344/2394-1502/2016/112Search in Google Scholar

Braunegg G, Sonnleitner BY, Lafferty RM. A rapid gas chromatographic method for the determination of poly-β-hydroxybutyric acid in microbial biomass. Eur J Appl Microbiol Biotechnol 1978; 6(1): 29-37.BrauneggGSonnleitnerBYLaffertyRMA rapid gas chromatographic method for the determination of poly-β-hydroxybutyric acid in microbial biomassEur J Appl Microbiol Biotechnol197861293710.1007/BF00500854Search in Google Scholar

Daiber KH. Enzyme inhibition by polyphenols of sorghum grain and malt. J Sci Food Agric 1975; 26(9): 1399-1411.DaiberKHEnzyme inhibition by polyphenols of sorghum grain and maltJ Sci Food Agric19752691399141110.1002/jsfa.2740260920Search in Google Scholar

Obruca S, Sedlacek P, Koller M, Kucera D, Pernicova I. Involvement of polyhydroxyalkanoates in stress resistance of microbial cells: Biotechnological consequences and applications. Biotechnol Adv 2018; 36(3): 856-870.ObrucaSSedlacekPKollerMKuceraDPernicovaIInvolvement of polyhydroxyalkanoates in stress resistance of microbial cells: Biotechnological consequences and applicationsBiotechnol Adv201836385687010.1016/j.biotechadv.2017.12.00629248684Search in Google Scholar

Novak M, Koller M, Braunegg M, Horvat P. Mathematical modelling as a tool for optimized PHA production. Chem Biochem Eng Q 2015; 29(2): 183-220.NovakMKollerMBrauneggMHorvatPMathematical modelling as a tool for optimized PHA productionChem Biochem Eng Q201529218322010.15255/CABEQ.2014.2101Search in Google Scholar

Koller M, Vadlja D, Braunegg G, Atlić A, Horvat P. Formal-and high-structured kinetic process modelling and footprint area analysis of binary imaged cells: Tools to understand and optimize multistage-continuous PHA biosynthesis. The EuroBiotech Journal 2017; 1(3): 203-211.KollerMVadljaDBrauneggGAtlićAHorvatPFormal-and high-structured kinetic process modelling and footprint area analysis of binary imaged cells: Tools to understand and optimize multistage-continuous PHA biosynthesisThe EuroBiotech Journal20171320321110.24190/ISSN2564-615X/2017/03.01Search in Google Scholar

Sindhu R, Silviya N, Binod P, Pandey A. Pentose-rich hydrolysate from acid pretreated rice straw as a carbon source for the production of poly-3-hydroxybutyrate. Biochem Eng J 2013; 78: 67-72.SindhuRSilviyaNBinodPPandeyAPentose-rich hydrolysate from acid pretreated rice straw as a carbon source for the production of poly-3-hydroxybutyrateBiochem Eng J201378677210.1016/j.bej.2012.12.015Search in Google Scholar

Koller M, Bona R, Chiellini E, Fernandes EG, Horvat P, Kutschera C, Hesse P, Braunegg G. Polyhydroxyalkanoate production from whey by Pseudomonas hydrogenovora. Bioresource Technol 2008; 99(11): 4854-4863.KollerMBonaRChielliniEFernandesEGHorvatPKutscheraCHessePBrauneggGPolyhydroxyalkanoate production from whey by Pseudomonas hydrogenovoraBioresource Technol200899114854486310.1016/j.biortech.2007.09.04918053709Search in Google Scholar

Obruca S, Benesova P, Marsalek L, Marova I. Use of lignocellulosic materials for PHA production. Chem Biochem Eng Q 2015; 29(2): 135-144.ObrucaSBenesovaPMarsalekLMarovaIUse of lignocellulosic materials for PHA productionChem Biochem Eng Q201529213514410.15255/CABEQ.2014.2253Search in Google Scholar

Lopes MSG, Gomez JGC, Taciro MK, Mendonça TT, Silva LF. Polyhydroxyalkanoate biosynthesis and simultaneous remotion of organic inhibitors from sugarcane bagasse hydrolysate by Burkholderia sp. J Ind Microbiol Biotechnol 2014; 41(9): 1353-1363.LopesMSGGomezJGCTaciroMKMendonçaTTSilvaLFPolyhydroxyalkanoate biosynthesis and simultaneous remotion of organic inhibitors from sugarcane bagasse hydrolysate by Burkholderia spJ Ind Microbiol Biotechnol20144191353136310.1007/s10295-014-1485-525059637Search in Google Scholar

Kucera D, Benesova P, Ladicky P, Pekar M, Sedlacek P, Obruca S. Production of polyhydroxyalkanoates using hydrolyzates of spruce sawdust: Comparison of hydrolyzates detoxification by application of overliming, active carbon, and lignite. Bioengineering 2017: 4(2): 53.KuceraDBenesovaPLadickyPPekarMSedlacekPObrucaSProduction of polyhydroxyalkanoates using hydrolyzates of spruce sawdust: Comparison of hydrolyzates detoxification by application of overliming, active carbon, and ligniteBioengineering2017425310.3390/bioengineering4020053559045728952532Search in Google Scholar

eISSN:
2564-615X
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Biologie, Genetik, Biotechnologie, Bioinformatik, andere