Uneingeschränkter Zugang

ANOVA bootstrapped principal components analysis for logistic regression


Zitieren

1. Breiman L. (1995). Better Subset Regression Using the Nonnegative Garrote. Technometrics, Vol. 37, No. 4, pp. 373-384.10.1080/00401706.1995.10484371 Search in Google Scholar

2. Gajjar S., Kulahci M., Palazoglu A. (2017). Selection of non-zero loadings in sparse principal component analysis. Chemometrics and Intelligent Laboratory Systems, Vol. 162, pp. 160-171.10.1016/j.chemolab.2017.01.018 Search in Google Scholar

3. James, G., Witten, D., Hastie, T., Tibshirani, R. (2013). An Introduction to Statistical Learning. Springer.10.1007/978-1-4614-7138-7 Search in Google Scholar

4. Kaggle (2021a). Adult Income dataset. Available at https://www.kaggle.com/wenruliu/adult-income-dataset [01 July 2021]. Search in Google Scholar

5. Kaggle (2021b). Monika dataset. Available at https://www.kaggle.com/ukveteran/who-monica-data [01 July 2021]. Search in Google Scholar

6. Kim, S., Rattakorn, P. (2011). Unsupervised feature selection using weighted principal components. Expert Systems with Applications, Vol. 38, No. 5, pp. 5704-5710.10.1016/j.eswa.2010.10.063 Search in Google Scholar

7. Maleki, N., Zeinali, Y., Niaki, S.T.A. (2020). A k-NN method for lung cancer prognosis with the use of a genetic algorithm for feature selection. Expert Systems with Applications, Vol. 164.10.1016/j.eswa.2020.113981 Search in Google Scholar

8. Mitchell, T. M. (1997). Machine Learning. McGraw-Hill, New York. Search in Google Scholar

9. Pacheco, J., Casado, S., Porras, S. (2013). Exact methods for variable selection in principal component analysis: Guide functions and pre-selection. Computational Statistics & Data Analysis, Vol. 57, No. 1, pp. 95-111.10.1016/j.csda.2012.06.014 Search in Google Scholar

10. Prieto-Moreno, A., Llanes-Santiago, O., García-Moreno, E. (2015). Principal components selection for dimensionality reduction using discriminant information applied to fault diagnosis. Journal of Process Control, Vol. 33, pp. 14-24.10.1016/j.jprocont.2015.06.003 Search in Google Scholar

11. Rahoma, A., Imtiaz, S., Ahmed, S. (2021). Sparse principal component analysis using bootstrap method. Chemical Engineering Science, Vol. 246.10.1016/j.ces.2021.116890 Search in Google Scholar

12. Salata, S., Grillenzoni, C. (2021). A spatial evaluation of multifunctional Ecosystem Service networks using Principal Component Analysis: A case of study in Turin, Italy. Ecological Indicators, Vol. 127, pp. 1-13.10.1016/j.ecolind.2021.107758 Search in Google Scholar

13. Sharifzadeh, S., Ghodsi, A.,Clemmensen, L., Ersbll B. (2017). Sparse supervised principal component analysis (SSPCA) for dimension reduction and variable selection. Engineering Applications of Artificial Intelligence, Vol. 65, pp. 168-177.10.1016/j.engappai.2017.07.004 Search in Google Scholar

14. Tibshirani, R. (1996). Regression shrinkage and selection via the lasso: a retrospective. Journal of the Royal Statistical Society Series B (Statistical Methodology), Vol. 73, No. 3, pp. 267-268,10.1111/j.1467-9868.2011.00771.x Search in Google Scholar

15. Vincentarelbundock (2021). EPICA Dome C Ice Core 800KYr Temperature Estimates dataset. Available at https://vincentarelbundock.github.io/Rdatasets/datasets.html [01 July 2021]. Search in Google Scholar

16. Vrigazova, B. (2021). Novel Approach to Choosing Principal Components Number in Logistic Regression. ENTRENOVA-ENTerprise REsearch InNOVAtion, Vol. 7, No. 1, pp. 1-12.10.54820/PUCR5250 Search in Google Scholar

17. Vrigazova, B., Ivanov, I. (2020). Tenfold bootstrap procedure for support vector machines. Computer Science, Vol. 21, No. 2, pp. 241-257.10.7494/csci.2020.21.2.3634 Search in Google Scholar

18. Zou, H. (2006). The Adaptive Lasso and Its Oracle Properties. Journal of the American Statistical Association, Vol. 101, No. 476, pp. 1418-1429.10.1198/016214506000000735 Search in Google Scholar