Uneingeschränkter Zugang

Azilsartan ameliorates aluminium chloride induced Alzheimer’s disease like pathology


Zitieren

Parihar MS, Hemnani T. Alzheimer’s disease pathogenesis and therapeutic interventions. J Clin Neurosci. 2004;11:456-67. Search in Google Scholar

Anand A, Patience AA, Sharma N, Khurana N. The present and future of pharmacotherapy of Alzheimer’s disease: A comprehensive review. Eur J Pharmacol. 2017;815:364-75. Search in Google Scholar

Serrano-Pozo A, Frosch MP, Masliah E, Hyman BT. Neuropathological alterations in Alzheimer disease. Cold Spring Harbor Perspect Med. 2011;1:a006189. Search in Google Scholar

Sahu PK, Tiwari P, Prusty SK, Subudhi BB. Past and present drug development for alzheimer’s disease. In: Rahman A (Ed), Frontiers in clinical drug research – Alzheimer disorders, Vol 7. Bentham Science publishers. 2018, p. 214-253. Search in Google Scholar

Kawahara M, Kato-Negishi M. Link between aluminum and the pathogenesis of Alzheimer’s disease: the integration of the aluminum and amyloid cascade hypotheses. Int J Alzheimer’s Dis. 2011;2011. Search in Google Scholar

L Blaylock R. Aluminum induced immunoexcitotoxicity in neurodevelopmental and neurodegenerative disorders. Curr Inorg Chem. 2012;2:46-53. Search in Google Scholar

Walton JR. A longitudinal study of rats chronically exposed to aluminum at human dietary levels. Neurosci Lett. 2007;412:29-33. Search in Google Scholar

Wu YH, Zhou ZM, Xiong YL, Wang YL, Sun JH, Liao HB, Luo XD. Effects of aluminum potassium sulfate on learning, memory, and cholinergic system in mice. Acta Pharmacol Sin. 1998;19:509-12. Search in Google Scholar

Platt B, Fiddler G, Riedel G, Henderson Z. Aluminium toxicity in the rat brain: histochemical and immunocytochemical evidence. Brain Res Bull. 2001;55:257-67. Search in Google Scholar

Shishido H, Kishimoto Y, Kawai N, Toyota Y, Ueno M, Kubota T, Kirino Y, Tamiya T. Traumatic brain injury accelerates amyloid-β deposition and impairs spatial learning in the triple-transgenic mouse model of Alzheimer’s disease. Neurosci Lett. 2016;629:62-67. Search in Google Scholar

Atlas SA. The renin-angiotensin a ldosterone system: pathophysiological role and pharmacologic inhibition. J Manag Care Pharm. 2007;13:9-20. Search in Google Scholar

Ciobica A, Bild W, Hritcu L, Haulica I. Brain renin-angiotensin system in cognitive function: pre-clinical findings and implications for prevention and treatment of dementia. Acta Neurol Bel. 2009;109:171-80. Search in Google Scholar

Horiuchi M, Mogi M. Role of angiotensin II receptor subtype activation in cognitive function and ischaemic brain damage. Br J Pharmacol. 2011;163:1122-30. Search in Google Scholar

Sharma B, Singh N. Experimental hypertension induced vascular dementia: pharmacological, biochemical and behavioral recuperation by angiotensin receptor blocker and acetylcholinesterase inhibitor. Pharmacol Biochem Behav. 2012;102:101-8. Search in Google Scholar

Kurata T, Lukic V, Kozuki M, Wada D, Miyazaki K, Morimoto N, et al. Long-term effect of telmisartan on Alzheimer’s amyloid genesis in SHR-SR after tMCAO. Translat Stroke Res. 2015;6:107-15. Search in Google Scholar

Wincewicz D, Braszko JJ. Telmisartan attenuates cognitive impairment caused by chronic stress in rats. Pharmacol Rep. 2014;66:436-41. Search in Google Scholar

Wincewicz D, Braszko JJ. Angiotensin II AT1 receptor blockade by telmisartan reduces impairment of spatial maze performance induced by both acute and chronic stress. J Renin-Angiotensin-Aldosterone Sys. 2015;16:495-505. Search in Google Scholar

Tsukuda K, Mogi M, Iwanami J, Min LJ, Sakata A, Jing F, Iwai M, Horiuchi M. Cognitive deficit in amyloid-β–injected mice was improved by pretreatment with a low dose of telmisartan partly because of peroxisome proliferator-activated receptor-γ activation. Hypertension. 2009;54:782-7. Search in Google Scholar

Prusty S K, Sahu P K, Subudhi B. Angiotensin mediated oxidative stress and neuroprotective potential of antioxidants and AT1 receptor blockers. Mini Reviews in Medicinal Chemistry. 2017;17(6):518-28. Search in Google Scholar

Mishra SK, Rout K, Prusty SK, Sahu PK. Shodhana decreases nootropic activity of Semecarpus anacardium. Asian J Pharm Clin Res. 2016;2:294-7. Search in Google Scholar

Prusty SK, Pati AK, Subudhi BB, Sahu PK. Chronic forced swimming induced stress alters behavioural, histological and anti-oxidant status. Ind Drug. 2017;54:6. Search in Google Scholar

Das MK, Tiwari P, Prusty SK, Sahu PK. Neuroprotective potential of metformin against forced swimming induced neurodegeneration Wistar albino rats. Asian J Biol Sci. 2018;11:89-97. Search in Google Scholar

Salissou MT, Mahaman YA, Zhu F, Huang F, Wang Y, Xu Z, Ke D, Wang Q, Liu R, Wang JZ, Zhang B. Methanolic extract of Tamarix Gallica attenuates hyperhomocysteinemia induced AD-like pathology and cognitive impairments in rats. Aging. 2018;10:3229. Search in Google Scholar

Huang Y, Mucke L. Alzheimer mechanisms and therapeutic strategies. Cell. 2012;148:1204-22. Search in Google Scholar

Llansola M, Miñana MD, Montoliu C, Saez R, Corbalán R, Manzo L, Felipo V. Prenatal exposure to aluminum reduces expression of neuronal nitric oxide synthase and of soluble guanylate cyclase and impairs glutamatergic neurotransmission in rat cerebellum. J Neurochem. 1999;73:712-8. Search in Google Scholar

Savaskan E. The role of the brain renin-angiotensin system in neurodegenerative disorders. Curr Alzheimer Res. 2005;2:29-35. Search in Google Scholar

Kerr DS, Bevilaqua LR, Bonini JS, Rossato JI, Köhler CA, Medina JH, Izquierdo I, Cammarota M. Angiotensin II blocks memory consolidation through an AT2 receptor-dependent mechanism. Psychopharmacology. 2005;179:529-35. Search in Google Scholar

Indumathy S, Kavimani S, Raman KV. Role of angiotensin antagonists in memory enhancement. Int J Pharm Bio Sci. 2010;1:1-4. Search in Google Scholar

Li NC, Lee A, Whitmer RA, Kivipelto M, Lawler E, Kazis LE, Wolozin B. Use of angiotensin receptor blockers and risk of dementia in a predominantly male population: prospective cohort analysis. BMJ. 2010;340. Search in Google Scholar

Jung KH, Chu K, Lee ST, Kim SJ, Song EC, Kim EH, et al. Blockade of AT1 receptor reduces apoptosis, inflammation, and oxidative stress in normotensive rats with intracerebral hemorrhage. J Pharmacol Exp Ther. 2007;322:1051-8. Search in Google Scholar

Khalifa M, Safar MM, Abdelsalam RM, Zaki HF. Telmisartan protects against aluminum-induced Alzheimer-like pathological changes in rats. Neurotox Res. 2020;37:275-85. Search in Google Scholar

Sodhi RK, Singh N, Jaggi AS. Neuroprotective mechanisms of peroxisome proliferator-activated receptor agonists in Alzheimer’s disease. Naunyn-Schmiedeberg’s Arch Pharmacol. 2011;384:115-24. Search in Google Scholar

Glatz T, Stöck I, Nguyen-Ngoc M, Gohlke P, Herdegen T, Culman J, Zhao Y. Peroxisome-proliferator-activated receptors γ and peroxisome-proliferator-activated receptors β/δ and the regulation of interleukin 1 receptor antagonist expression by pioglitazone in ischaemic brain. J Hypert. 2010;28:1488-97. Search in Google Scholar

Yamada K, Uchida S, Takahashi S, Takayama M, Nagata Y, Suzuki N, Shirakura S, Kanda T. Effect of a centrally active angiotensin-converting enzyme inhibitor, perindopril, on cognitive performance in a mouse model of Alzheimer’s disease. Brain Res. 2010;1352:176-86. Search in Google Scholar

Alzahrani YM, Sattar MA, Kamel FO, Ramadan WS, Alzahrani YA. Possible combined effect of perindopril and Azilsartan in an experimental model of dementia in rats. Saudi Pharm J. 2020;28:574-81. Search in Google Scholar

Gao Q, Ou Z, Jiang T, Tian YY, Zhou JS, Wu L, Shi JQ, Zhang YD. Azilsartan ameliorates apoptosis of dopaminergic neurons and rescues characteristic parkinsonian behaviors in a rat model of Parkinson’s disease. Oncotarget. 2017;8:24099. Search in Google Scholar

Singh NA, Bhardwaj V, Ravi C, Ramesh N, Mandal AK, Khan ZA. EGCG nanoparticles attenuate aluminum chloride induced neurobehavioral deficits, beta amyloid and tau pathology in a rat model of Alzheimer’s disease. Front Aging Neurosci. 2018:244. Search in Google Scholar

eISSN:
2300-6676
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Medizin, Klinische Medizin, andere, Pharmakologie, Toxikologie, Pharmazie