Uneingeschränkter Zugang

Hypolipidemic, hepatoprotective, nephroprotective and anti-lipid peroxidation properties of a methanol extract of Paullinia pinnata root-bark, in alloxan-induced hyperglycemic rats


Zitieren

1. Ajiboye BO, Oloyede HOB, Salawu MO. Antihyperglycemic and antidyslipidemic activity of Musa paradisiaca – based diet in alloxan-induced diabetic rats. Food Sci Nutr. 2018;6:137-45. https://doi.org/10.1002/fsn3.53810.1002/fsn3.538Open DOISearch in Google Scholar

2. Chen L, Magliano DJ, Zimmet PZ. The worldwide epidemiology of type 2 diabetes mellitus – present and future perspectives. Nat Rev Endocrinol. 2012;8:228-36. https://doi.org/10.1038/nrendo.2011.18310.1038/nrendo.2011.183Search in Google Scholar

3. Matsuda M, Shimomura I. Increased oxidative stress in obesity: implications for metabolic syndrome, diabetes, hypertension, dyslipidemia, atherosclerosis, and cancer. Obes Res Clin Pract. 2013;7(5):e330-e341. http://dx.doi.org/10.1016/j.orcp.2013.05.00410.1016/j.orcp.2013.05.004Open DOISearch in Google Scholar

4. Tangvarasittichai S. Oxidative stress, insulin resistance, dyslipidemia and type 2 diabetes mellitus. World J Diabetes. 2015;6(3):456-80. https://doi.org/10.4239/wjd.v6.i3.45610.4239/wjd.v6.i3.456Open DOISearch in Google Scholar

5. Nweze CC, Ubhenin AE, Lay TU, Muhammad AU. Hypoglycemic, hepatoprotective and hypolipidemic effects of Pleurotus ostreatus in alloxan-induced hyperglycemic rats. Trop J Nat Prod Res. 2017;1:163-7. https://doi.org//10.26538/tjnpr/v1i4.510.26538/tjnpr/v1i4.5Search in Google Scholar

6. Zimmet PZ, McCarty DJ, DeCourten MP. The global epidemic of non-insulin-dependent diabetes mellitus and the metabolic syndrome. J Diabet Comp. 1997;11:60-8. https://doi.org/10.1016/S1056-8727(96)00090-610.1016/S1056-8727(96)00090-6Search in Google Scholar

7. Murugan P, Pari L. Antioxidant effect of tetrahydrocurcumin in streptozotocin-nicotinamide induced diabetic rats. Life Sci. 2006;79:1720-8. https://doi.org/10.1016/j.lfs.2006.06.00110.1016/j.lfs.2006.06.00116806281Open DOISearch in Google Scholar

8. Kumar R, Arora V, Ram V, Bhandari A, Vyas P. Hypoglycemic and hypolipidemic effect of Allopolyherbal formulations in streptozotocin induced diabetes mellitus in rats. Int J Diabetes Mellit. 2015;3:45-50. https://doi.org/10.1016/j.ijdm.2011.01.00510.1016/j.ijdm.2011.01.005Search in Google Scholar

9. Okwudili OS, Chimaobi NG, Ikechukwu EM, Ndukaku OY. Antidiabetic and in vitro antioxidant effects of hydromethanol extract of Paullinia pinnata root bark in alloxan-induced diabetic rat. J Complement Integr Med. 2017;15(2). https://doi.org/10.1515/jcim-2015-001710.1515/jcim-2015-001729148978Open DOISearch in Google Scholar

10. Adinortey MB, Sarfo JK, Adukpo GE, Dzotsi E, Kusi S, Ahmed MA, Abdul-Gafaru O. Acute and sub-acute oral toxicity assessment of hydro-alcoholic root extract of Paullinia pinnata on haematological and biochemical parameters. Biol Med. 2012;4(3):121-5. BMID: AR96-BM12Search in Google Scholar

11. Lunga PK, de Dieu Tamokou J, Fodouop SP, Kuiate JR, Tchoumboue J, Gatsing D. Antityphoid and radical scavenging properties of the methanol extracts and compounds from the aerial part of Paullinia pinnata. Springerplus. 2014;3:302. https://doi.org/10.1186/2193-1801-3-302.10.1186/2193-1801-3-302416252125279277Open DOISearch in Google Scholar

12. Annan K, Houghton PJ. Two novel lupane triterpenoids from Paullinia pinnata L. with fibroblast stimulatory activity. J Pharm Pharmacol. 2010;62:663-8. https://doi.org/10.1211/jpp.62.05.001610.1211/jpp.62.05.0016Search in Google Scholar

13. Lunga PK, Qin XJ, Yang XW, Kuiate JR, Du ZZ, Gatsing D. A new antimicrobial and radical-scavenging glycoside from Paullinia pinnata var. cameroonensis. Nat Prod Res. 2015;29:1688-94. https://doi.org/10.1080/14786419.2014.99675610.1080/14786419.2014.996756Open DOISearch in Google Scholar

14. Abourashed EA, Toyang NJ, Choinski J, Khan IA: Two new flavone glycosides from Paullinia pinnata. J Nat Prod. 1999;62:1179-81. https://doi.org/10.1021/np990063z10.1021/np990063zOpen DOISearch in Google Scholar

15. National Research Council. Guide for the care and use of laboratory animals. National Academies Press;2010. http://www.nap.edu/catalog/12910.htmlSearch in Google Scholar

16. Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem. 1972;18: 499-502.10.1093/clinchem/18.6.499Search in Google Scholar

17. Draper HH, Hadley M. Malondialdehyde determination as index of lipid Peroxidation. Methods Enzymol. 1990;186:421-31.10.1016/0076-6879(90)86135-ISearch in Google Scholar

18. Aebi HE. Catalase. In: Methods of enzymatic analysis. edited by HU Bergmeyer. Deerfield Beach: Verlag Chemie;1983:273-86.Search in Google Scholar

19. Xin Z, Waterman DF, Hemken RW, Harmon RJ. Effects of copper status on neutrophil function, superoxide dismutase, and copper distribution in steers. J Dairy Sci. 1991;74:3078-85. https://doi.org/10.3168/jds.S0022-0302(91)78493-210.3168/jds.S0022-0302(91)78493-2Open DOISearch in Google Scholar

20. Donkor K, Okine LNK, Abotsi WKM, Woode E. Acute and sub-chronic toxicity studies of aqueous extract of root bark of Cassia sieberiana D.C. in rodents. J Appl Pharm Sci. 2014;4:084-9. https://doi.org/10.7324/JAPS.2014.4041510.7324/JAPS.2014.40415Open DOISearch in Google Scholar

21. Evans WC. Trease and Evans Pharmacognosy (16th edition). Edinburgh: WB Saunders Elsevier; 2009: 53-61.Search in Google Scholar

22. Jimoh FO, Sofidiya MO, Afolayan AJ. Antioxidant properties of the methanol extracts from the leaves of Paullinia pinnata. J Med Food. 2007;10:707-11. https://doi.org/10.1089/jmf.2006.25310.1089/jmf.2006.25318158845Search in Google Scholar

23. Serreli G, Incani A, Atzeri A, Angioni A, Campus M, Cauli E, et al. Antioxidant effect of natural table olives phenolic extract against oxidative stress and membrane damage in enterocyte-like cells. J Food Sci. 2017;82:380-5. https://doi.org/10.1111/1750-3841.1361310.1111/1750-3841.1361328071793Open DOISearch in Google Scholar

24. Asgary S, Sahebkar A, Afshani MR, Keshvari M, Haghjooyjavanmard S, Rafieian-Kopaei M. Clinical evaluation of blood pressure lowering, endothelial function improving, hypolipidemic and anti-inflammatory effects of pomegranate juice in hypertensive subjects. Phytother Res. 2014;28(2):193-9. https://doi.org/10.1002/ptr.497710.1002/ptr.497723519910Open DOISearch in Google Scholar

25. Sharmin ZR, Akter MT, Rahman R, Hoque M, Khan I, Mosaddek AS. Comparative study of hypolipidemic effects of Momordica Charantia (karela) with atorvastatin in fat fed rats. Journal of Human Health Research. 2017;1:11. https://doi.org/10.14302/issn.2576-9383.jhhr-17-181610.14302/issn.2576-9383.jhhr-17-1816Search in Google Scholar

26. Ning N, He K, Wang Y, Zou Z, Wu H, Li X, Ye X. Hypolipidemic effect and mechanism of palmatine from Coptis chinensis in hamsters fed high-fat diet. Phytother Res. 2015;29:668-73. https://doi.org/10.1002/ptr.529510.1002/ptr.529525586479Open DOISearch in Google Scholar

27. Szkudelski T. The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas. Physiol Res. 2001;50:537-46.Search in Google Scholar

eISSN:
2300-6676
ISSN:
2084-980X
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Medizin, Klinische Medizin, andere, Pharmakologie, Toxikologie, Pharmazie