This work is licensed under the Creative Commons Attribution 4.0 International License.
Apopo, N., & Phiri, A. (2021). On the (In)efficiency of Cryptocurrencies: Have They Taken Daily or Weekly Random Walks? Heliyon, 7(4). https://doi.org/10.1016/j.heliyon.2021.e06685ApopoN.PhiriA.2021On the (In)efficiency of Cryptocurrencies: Have They Taken Daily or Weekly Random Walks?Heliyon74https://doi.org/10.1016/j.heliyon.2021.e06685Search in Google Scholar
Aslam, F., Memon, B. A., Hunjra, A. I., & Bouri, E. (2023). The Dynamics of Market Efficiency of Major Cryptocurrencies. Global Finance Journal, 58, 100899. https://doi.org/10.1016/j.gfj.2023.100899AslamF.MemonB. A.HunjraA. I.BouriE.2023The Dynamics of Market Efficiency of Major CryptocurrenciesGlobal Finance Journal58100899https://doi.org/10.1016/j.gfj.2023.100899Search in Google Scholar
Aslan, A., & Sensoy, A. (2020). Intraday Efficiency-Frequency Nexus in the Cryptocurrency Markets. Finance Research Letters, 35, 101298. https://doi.org/10.1016/j.frl.2019.09.013AslanA.SensoyA.2020Intraday Efficiency-Frequency Nexus in the Cryptocurrency MarketsFinance Research Letters35101298https://doi.org/10.1016/j.frl.2019.09.013Search in Google Scholar
Bundi, N., & Wildi, M. (2019). Bitcoin and Market-(In)efficiency: A Systematic Time Series Approach. Digital Finance, 1, 47–65. https://doi.org/10.1007/s42521-019-00004-zBundiN.WildiM.2019Bitcoin and Market-(In)efficiency: A Systematic Time Series ApproachDigital Finance14765https://doi.org/10.1007/s42521-019-00004-zSearch in Google Scholar
Campbell, J. Y., Lo, A. W., & MacKinlay, A. C. (1997). The Econometrics of Financial Markets. Princeton: Princeton University Press.CampbellJ. Y.LoA. W.MacKinlayA. C.1997The Econometrics of Financial MarketsPrincetonPrinceton University PressSearch in Google Scholar
Caporale, G. M., Gil-Alana, L., & Plastun, A. (2018). Persistence in the Cryptocurrency Market. Research in International Business and Finance, 46(C), 141–148. https://doi.org/10.1016/j.ribaf.2018.01.002CaporaleG. M.Gil-AlanaL.PlastunA.2018Persistence in the Cryptocurrency MarketResearch in International Business and Finance46C141148https://doi.org/10.1016/j.ribaf.2018.01.002Search in Google Scholar
Charles, A., Darné, O., & Kim, J. H. (2011). Small Sample Properties of Alternative Tests for Martingale Difference Hypothesis. Economics Letters, 110(2), 151–154. https://doi.org/10.1016/j.econlet.2010.11.018CharlesA.DarnéO.KimJ. H.2011Small Sample Properties of Alternative Tests for Martingale Difference HypothesisEconomics Letters1102151154https://doi.org/10.1016/j.econlet.2010.11.018Search in Google Scholar
Charles, A., Darné, O., & Kim, J. H. (2012). Exchange-Rate Return Predictability and the Adaptive Markets Hypothesis: Evidence From Major Foreign Exchange Rates. Journal of International Money and Finance, 31(6), 1607–1626. https://doi.org/10.1016/j.jimonfin.2012.03.003CharlesA.DarnéO.KimJ. H.2012Exchange-Rate Return Predictability and the Adaptive Markets Hypothesis: Evidence From Major Foreign Exchange RatesJournal of International Money and Finance31616071626https://doi.org/10.1016/j.jimonfin.2012.03.003Search in Google Scholar
Choi, I. (1999). Testing the Random Walk Hypothesis for Real Exchange Rates. Journal of Applied Econometrics, 14(3), 293–308. https://doi.org/10.1002/(SICI)1099-1255(199905/06)14:3<293::AID-JAE503>3.0.CO;2-5ChoiI.1999Testing the Random Walk Hypothesis for Real Exchange RatesJournal of Applied Econometrics143293308https://doi.org/10.1002/(SICI)1099-1255(199905/06)14:3<293::AID-JAE503>3.0.CO;2-5Search in Google Scholar
Chu, J., Zhang, Y., & Chan, S. (2019). The Adaptive Market Hypothesis in the High Frequency Cryptocurrency Market. International Review of Financial Analysis, 64(C), 221–231. https://doi.org/10.1016/j.irfa.2019.05.008ChuJ.ZhangY.ChanS.2019The Adaptive Market Hypothesis in the High Frequency Cryptocurrency MarketInternational Review of Financial Analysis64C221231https://doi.org/10.1016/j.irfa.2019.05.008Search in Google Scholar
Escanciano, J. C., & Lobato, I. N. (2009). An Automatic Portmanteau Test for Serial Correlation. Journal of Econometrics, 151(2), 140–149. https://doi.org/10.1016/j.jeconom.2009.03.001EscancianoJ. C.LobatoI. N.2009An Automatic Portmanteau Test for Serial CorrelationJournal of Econometrics1512140149https://doi.org/10.1016/j.jeconom.2009.03.001Search in Google Scholar
Fama, E. F. (1965). The Behaviour of Stock Market Prices. Journal of Business, 38(1), 34–105. https://doi.org/10.1086/294743FamaE. F.1965The Behaviour of Stock Market PricesJournal of Business38134105https://doi.org/10.1086/294743Search in Google Scholar
Fieberg, C., Liedtke, G., Poddig, T., Walker, T., & Zaremba, A. (2024). A Trend Factor for the Cross-Section of Cryptocurrency Returns. Journal of Financial and Quantitative Analysis. https://dx.doi.org/10.2139/ssrn.4601972FiebergC.LiedtkeG.PoddigT.WalkerT.ZarembaA.2024A Trend Factor for the Cross-Section of Cryptocurrency ReturnsJournal of Financial and Quantitative Analysishttps://dx.doi.org/10.2139/ssrn.4601972Search in Google Scholar
Hawaldar, I. T., Mathukutti, R., & Dsouza, L. J. (2019). Testing the Weak Form of Efficiency of Cryptocurrencies: A Case Study of Bitcoin and Litecoin. International Journal of Scientific & Technology Research, 8(9), 2301–2305.HawaldarI. T.MathukuttiR.DsouzaL. J.2019Testing the Weak Form of Efficiency of Cryptocurrencies: A Case Study of Bitcoin and LitecoinInternational Journal of Scientific & Technology Research8923012305Search in Google Scholar
Hu, Y., Valera, H. G. A., & Oxley, L. (2019). Market Efficiency of the Top Market-Cap Cryptocurrencies: Further Evidence From a Panel Framework. Finance Research Letters, 31(C), 138–145. https://doi.org/10.1016/j.frl.2019.04.012HuY.ValeraH. G. A.OxleyL.2019Market Efficiency of the Top Market-Cap Cryptocurrencies: Further Evidence From a Panel FrameworkFinance Research Letters31C138145https://doi.org/10.1016/j.frl.2019.04.012Search in Google Scholar
Kang, H.-J., Lee, S.-G., & Park, S.-Y. (2022) Information Efficiency in the Cryptocurrency Market: The Efficient-Market Hypothesis. Journal of Computer Information Systems, 62(3), 622–631. https://doi.org/10.1080/08874417.2021.1872046KangH.-J.LeeS.-G.ParkS.-Y.2022Information Efficiency in the Cryptocurrency Market: The Efficient-Market HypothesisJournal of Computer Information Systems623622631https://doi.org/10.1080/08874417.2021.1872046Search in Google Scholar
Khuntia, S., & Pattanayak, J. K. (2018). Adaptive Market Hypothesis and Evolving Predictability of Bitcoin. Economics Letters, 167, 26–28. https://doi.org/10.1016/j.econlet.2018.03.005KhuntiaS.PattanayakJ. K.2018Adaptive Market Hypothesis and Evolving Predictability of BitcoinEconomics Letters1672628https://doi.org/10.1016/j.econlet.2018.03.005Search in Google Scholar
Khursheed, A., Naeem, M., Ahmed, S., & Mustafa, F. (2020). Adaptive Market Hypothesis: An Empirical Analysis of Time-Varying Market Efficiency of Cryptocurrencies. Cogent Economics and Finance, 8(1). https://doi.org/10.1080/23322039.2020.1719574KhursheedA.NaeemM.AhmedS.MustafaF.2020Adaptive Market Hypothesis: An Empirical Analysis of Time-Varying Market Efficiency of CryptocurrenciesCogent Economics and Finance81https://doi.org/10.1080/23322039.2020.1719574Search in Google Scholar
Kim, J. H. (2009). Automatic Variance Ratio Test Under Conditional Heteroskedasticity. Finance Research Letters, 6(3), 179–185. https://doi.org/10.1016/j.frl.2009.04.003KimJ. H.2009Automatic Variance Ratio Test Under Conditional HeteroskedasticityFinance Research Letters63179185https://doi.org/10.1016/j.frl.2009.04.003Search in Google Scholar
Kristjanpoller, W., Nekhili, R., & Bouri, E. (2024). Ethereum Futures and the Efficiency of Cryptocurrency Spot Markets. Physica A: Statistical Mechanics and its Applications, 654, 130161. https://doi.org/10.1016/j.physa.2024.130161KristjanpollerW.NekhiliR.BouriE.2024Ethereum Futures and the Efficiency of Cryptocurrency Spot MarketsPhysica A: Statistical Mechanics and its Applications654130161https://doi.org/10.1016/j.physa.2024.130161Search in Google Scholar
Linton, O. (2019). Financial Econometrics: Models and Methods. Cambridge: Cambridge University Press. https://doi.org/10.1017/9781316819302LintonO.2019Financial Econometrics: Models and MethodsCambridgeCambridge University Presshttps://doi.org/10.1017/9781316819302Search in Google Scholar
Lo, A. W. (2004). The Adaptive Markets Hypothesis. Journal of Portfolio Management, 30(5), 15–29. https://doi.org/10.3905/jpm.2004.442611LoA. W.2004The Adaptive Markets HypothesisJournal of Portfolio Management3051529https://doi.org/10.3905/jpm.2004.442611Search in Google Scholar
Lo, A. W. (2005). Reconciling Efficient Markets with Behavioral Finance: The Adaptive Markets Hypothesis. Journal of Investment Consulting, 7(2), 21–44.LoA. W.2005Reconciling Efficient Markets with Behavioral Finance: The Adaptive Markets HypothesisJournal of Investment Consulting722144Search in Google Scholar
López-Martín, C., Muela, S. B., & Arguedas, R. (2021). Efficiency in Cryptocurrency Markets: New Evidence. Eurasian Economic Review, 11(3), 403–431. https://doi.org/10.1007/s40822-021-00182-5López-MartínC.MuelaS. B.ArguedasR.2021Efficiency in Cryptocurrency Markets: New EvidenceEurasian Economic Review113403431https://doi.org/10.1007/s40822-021-00182-5Search in Google Scholar
Meng, K., & Khan, K. (2023). Is Cryptocurrency Efficient? A High-Frequency Asymmetric Multifractality Analysis. Computational Economics, 63, 2225–2246. https://doi.org/10.1007/s10614-023-10402-6MengK.KhanK.2023Is Cryptocurrency Efficient? A High-Frequency Asymmetric Multifractality AnalysisComputational Economics6322252246https://doi.org/10.1007/s10614-023-10402-6Search in Google Scholar
Mensi, W., Lee, Y.-J., Al-Yahyaee, K. H., Sensoy, A., & Yoon, S.-M. (2019). Intraday Downward/Upward Multifractality and Long Memory in Bitcoin and Ethereum Markets: An Asymmetric Multifractal Detrended Fluctuation Analysis. Finance Research Letters, 31, 19–25. https://doi.org/10.1016/j.frl.2019.03.029MensiW.LeeY.-J.Al-YahyaeeK. H.SensoyA.YoonS.-M.2019Intraday Downward/Upward Multifractality and Long Memory in Bitcoin and Ethereum Markets: An Asymmetric Multifractal Detrended Fluctuation AnalysisFinance Research Letters311925https://doi.org/10.1016/j.frl.2019.03.029Search in Google Scholar
Mokni, K., Montasser, G. E., Ajmi, A. N., & Bouri, E. (2024). On the Efficiency and its Drivers in the Cryptocurrency Market: The Case of Bitcoin and Ethereum. Financial Innovation, 10, 39. https://doi.org/10.1186/s40854-023-00566-3MokniK.MontasserG. E.AjmiA. N.BouriE.2024On the Efficiency and its Drivers in the Cryptocurrency Market: The Case of Bitcoin and EthereumFinancial Innovation1039https://doi.org/10.1186/s40854-023-00566-3Search in Google Scholar
Nadarajah, S., & Chu, J. (2017). On the Inefficiency of Bitcoin. Economics Letters, 150(C), 6–9. https://doi.org/10.1016/j.econlet.2016.10.033NadarajahS.ChuJ.2017On the Inefficiency of BitcoinEconomics Letters150C69https://doi.org/10.1016/j.econlet.2016.10.033Search in Google Scholar
Noda, A. (2020). On the Evolution of Cryptocurrency Market Efficiency. Applied Economic Letters, 28(6), 433–439. https://doi.org/10.1080/13504851.2020.1758617NodaA.2020On the Evolution of Cryptocurrency Market EfficiencyApplied Economic Letters286433439https://doi.org/10.1080/13504851.2020.1758617Search in Google Scholar
Okorie, D. I., Bouri, E., & Mazur, M. (2024). NFTs versus Conventional Cryptocurrencies: A Comparative Analysis of Market Efficiency Around COVID-19 and the Russia-Ukraine Conflict. The Quarterly Review of Economics and Finance, 95, 126–151. https://doi.org/10.1016/j.qref.2024.03.001OkorieD. I.BouriE.MazurM.2024NFTs versus Conventional Cryptocurrencies: A Comparative Analysis of Market Efficiency Around COVID-19 and the Russia-Ukraine ConflictThe Quarterly Review of Economics and Finance95126151https://doi.org/10.1016/j.qref.2024.03.001Search in Google Scholar
Palamalai, S., Kumar, K. K., & Maity, B. (2021). Testing the Random Walk Hypothesis for Leading Cryptocurrencies. Borsa Istanbul Review, 21(3), 256–268.PalamalaiS.KumarK. K.MaityB.2021Testing the Random Walk Hypothesis for Leading CryptocurrenciesBorsa Istanbul Review213256268Search in Google Scholar
Polyzos, E., Rubbaniy, G., & Mazur, M. (2024). Efficient Market Hypothesis on the Blockchain: A Social-Media-Based Index for Cryptocurrency Efficiency. The Financial Review, 59(3), 807–829. https://doi.org/10.1111/fire.12387PolyzosE.RubbaniyG.MazurM.2024Efficient Market Hypothesis on the Blockchain: A Social-Media-Based Index for Cryptocurrency EfficiencyThe Financial Review593807829https://doi.org/10.1111/fire.12387Search in Google Scholar
Samuelson, P. A. (1965). Proof That Properly Anticipated Prices Fluctuate Randomly. Industrial Management Review, 6, 41–49.SamuelsonP. A.1965Proof That Properly Anticipated Prices Fluctuate RandomlyIndustrial Management Review64149Search in Google Scholar
Sensoy, A. (2019). The Inefficiency of Bitcoin Revisited: A High-Frequency Analysis with Alternative Currencies. Finance Research Letters, 28(C), 68–73. https://doi.org/10.1016/j.frl.2018.04.002SensoyA.2019The Inefficiency of Bitcoin Revisited: A High-Frequency Analysis with Alternative CurrenciesFinance Research Letters28C6873https://doi.org/10.1016/j.frl.2018.04.002Search in Google Scholar
Tiwari, A. K., Jana, R. K., Das, D., & Roubaud, D. (2018). Informational Efficiency of Bitcoin—An Extension. Economics Letters, 163, 106–109. https://doi.org/10.1016/j.econlet.2017.12.006TiwariA. K.JanaR. K.DasD.RoubaudD.2018Informational Efficiency of Bitcoin—An ExtensionEconomics Letters163106109https://doi.org/10.1016/j.econlet.2017.12.006Search in Google Scholar
Tran, V. L., & Leirvik, T. (2020). Efficiency in the Markets of Crypto-Currencies. Finance Research Letters, 35(C). https://doi.org/10.1016/j.frl.2019.101382TranV. L.LeirvikT.2020Efficiency in the Markets of Crypto-CurrenciesFinance Research Letters35Chttps://doi.org/10.1016/j.frl.2019.101382Search in Google Scholar
Urquhart. (2016). The Inefficiency of Bitcoin. Economics Letters, 148(C), 80–82. https://doi.org/10.1016/j.econlet.2016.09.019Urquhart2016The Inefficiency of BitcoinEconomics Letters148C8082https://doi.org/10.1016/j.econlet.2016.09.019Search in Google Scholar
Verma, R., Sharma, D., & Sam, S. (2022). Testing of Random Walk Hypothesis in the Cryptocurrency Market. FIIB Business Review, 1–9. https://doi.org/10.1177/23197145221101238VermaR.SharmaD.SamS.2022Testing of Random Walk Hypothesis in the Cryptocurrency MarketFIIB Business Review19https://doi.org/10.1177/23197145221101238Search in Google Scholar
Yi, E., Yang, B., Jeong, M., Sohn, S., & Ahn, K. (2023). Market Efficiency of Cryptocurrency: Evidence From the Bitcoin Market. Scientific Reports, 13, 4789. https://doi.org/10.1038/s41598-023-31618-4YiE.YangB.JeongM.SohnS.AhnK.2023Market Efficiency of Cryptocurrency: Evidence From the Bitcoin MarketScientific Reports134789https://doi.org/10.1038/s41598-023-31618-4Search in Google Scholar
Yonghong, J., He, N., & Weihua, R. (2018). Time-Varying Long-Term Memory in Bitcoin Market. Finance Research Letters, 25(C), 280–284. https://doi.org/10.1016/j.frl.2017.12.009YonghongJ.HeN.WeihuaR.2018Time-Varying Long-Term Memory in Bitcoin MarketFinance Research Letters25C280284https://doi.org/10.1016/j.frl.2017.12.009Search in Google Scholar
Zargar, F. N., & Kumar, D. (2019). Informational Inefficiency of Bitcoin: A Study Based on High-Frequency Data. Research in International Business and Finance, 47, 344–353. https://doi.org/10.1016/j.ribaf.2018.08.008ZargarF. N.KumarD.2019Informational Inefficiency of Bitcoin: A Study Based on High-Frequency DataResearch in International Business and Finance47344353https://doi.org/10.1016/j.ribaf.2018.08.008Search in Google Scholar
Zhang, W., Wang, P., Li, X., & Shen, D. (2018). The Inefficiency of Cryptocurrency and its Cross-Correlation With Dow Jones Industrial Average. Physica A: Statistical Mechanics and its Applications, 510, 658–670. https://doi.org/10.1016/j.physa.2018.07.032ZhangW.WangP.LiX.ShenD.2018The Inefficiency of Cryptocurrency and its Cross-Correlation With Dow Jones Industrial AveragePhysica A: Statistical Mechanics and its Applications510658670https://doi.org/10.1016/j.physa.2018.07.032Search in Google Scholar
Zhang, Y., Chan, S., Chu, J., & Shih, S. (2023) The Adaptive Market Hypothesis of Decentralized Finance (DeFi), Applied Economics, 55(42), 4975–4989. https://doi.org/10.1080/00036846.2022.2133895ZhangY.ChanS.ChuJ.ShihS.2023The Adaptive Market Hypothesis of Decentralized Finance (DeFi)Applied Economics554249754989https://doi.org/10.1080/00036846.2022.2133895Search in Google Scholar