Uneingeschränkter Zugang

The Predictability of High-Frequency Returns in the Cryptocurrency Markets and the Adaptive Market Hypothesis

  
02. Feb. 2025

Zitieren
COVER HERUNTERLADEN

Apopo, N., & Phiri, A. (2021). On the (In)efficiency of Cryptocurrencies: Have They Taken Daily or Weekly Random Walks? Heliyon, 7(4). https://doi.org/10.1016/j.heliyon.2021.e06685 ApopoN. PhiriA. 2021 On the (In)efficiency of Cryptocurrencies: Have They Taken Daily or Weekly Random Walks? Heliyon 7 4 https://doi.org/10.1016/j.heliyon.2021.e06685 Search in Google Scholar

Aslam, F., Memon, B. A., Hunjra, A. I., & Bouri, E. (2023). The Dynamics of Market Efficiency of Major Cryptocurrencies. Global Finance Journal, 58, 100899. https://doi.org/10.1016/j.gfj.2023.100899 AslamF. MemonB. A. HunjraA. I. BouriE. 2023 The Dynamics of Market Efficiency of Major Cryptocurrencies Global Finance Journal 58 100899 https://doi.org/10.1016/j.gfj.2023.100899 Search in Google Scholar

Aslan, A., & Sensoy, A. (2020). Intraday Efficiency-Frequency Nexus in the Cryptocurrency Markets. Finance Research Letters, 35, 101298. https://doi.org/10.1016/j.frl.2019.09.013 AslanA. SensoyA. 2020 Intraday Efficiency-Frequency Nexus in the Cryptocurrency Markets Finance Research Letters 35 101298 https://doi.org/10.1016/j.frl.2019.09.013 Search in Google Scholar

Bundi, N., & Wildi, M. (2019). Bitcoin and Market-(In)efficiency: A Systematic Time Series Approach. Digital Finance, 1, 47–65. https://doi.org/10.1007/s42521-019-00004-z BundiN. WildiM. 2019 Bitcoin and Market-(In)efficiency: A Systematic Time Series Approach Digital Finance 1 47 65 https://doi.org/10.1007/s42521-019-00004-z Search in Google Scholar

Campbell, J. Y., Lo, A. W., & MacKinlay, A. C. (1997). The Econometrics of Financial Markets. Princeton: Princeton University Press. CampbellJ. Y. LoA. W. MacKinlayA. C. 1997 The Econometrics of Financial Markets Princeton Princeton University Press Search in Google Scholar

Caporale, G. M., Gil-Alana, L., & Plastun, A. (2018). Persistence in the Cryptocurrency Market. Research in International Business and Finance, 46(C), 141–148. https://doi.org/10.1016/j.ribaf.2018.01.002 CaporaleG. M. Gil-AlanaL. PlastunA. 2018 Persistence in the Cryptocurrency Market Research in International Business and Finance 46 C 141 148 https://doi.org/10.1016/j.ribaf.2018.01.002 Search in Google Scholar

Charles, A., Darné, O., & Kim, J. H. (2011). Small Sample Properties of Alternative Tests for Martingale Difference Hypothesis. Economics Letters, 110(2), 151–154. https://doi.org/10.1016/j.econlet.2010.11.018 CharlesA. DarnéO. KimJ. H. 2011 Small Sample Properties of Alternative Tests for Martingale Difference Hypothesis Economics Letters 110 2 151 154 https://doi.org/10.1016/j.econlet.2010.11.018 Search in Google Scholar

Charles, A., Darné, O., & Kim, J. H. (2012). Exchange-Rate Return Predictability and the Adaptive Markets Hypothesis: Evidence From Major Foreign Exchange Rates. Journal of International Money and Finance, 31(6), 1607–1626. https://doi.org/10.1016/j.jimonfin.2012.03.003 CharlesA. DarnéO. KimJ. H. 2012 Exchange-Rate Return Predictability and the Adaptive Markets Hypothesis: Evidence From Major Foreign Exchange Rates Journal of International Money and Finance 31 6 1607 1626 https://doi.org/10.1016/j.jimonfin.2012.03.003 Search in Google Scholar

Choi, I. (1999). Testing the Random Walk Hypothesis for Real Exchange Rates. Journal of Applied Econometrics, 14(3), 293–308. https://doi.org/10.1002/(SICI)1099-1255(199905/06)14:3<293::AID-JAE503>3.0.CO;2-5 ChoiI. 1999 Testing the Random Walk Hypothesis for Real Exchange Rates Journal of Applied Econometrics 14 3 293 308 https://doi.org/10.1002/(SICI)1099-1255(199905/06)14:3<293::AID-JAE503>3.0.CO;2-5 Search in Google Scholar

Chu, J., Zhang, Y., & Chan, S. (2019). The Adaptive Market Hypothesis in the High Frequency Cryptocurrency Market. International Review of Financial Analysis, 64(C), 221–231. https://doi.org/10.1016/j.irfa.2019.05.008 ChuJ. ZhangY. ChanS. 2019 The Adaptive Market Hypothesis in the High Frequency Cryptocurrency Market International Review of Financial Analysis 64 C 221 231 https://doi.org/10.1016/j.irfa.2019.05.008 Search in Google Scholar

Escanciano, J. C., & Lobato, I. N. (2009). An Automatic Portmanteau Test for Serial Correlation. Journal of Econometrics, 151(2), 140–149. https://doi.org/10.1016/j.jeconom.2009.03.001 EscancianoJ. C. LobatoI. N. 2009 An Automatic Portmanteau Test for Serial Correlation Journal of Econometrics 151 2 140 149 https://doi.org/10.1016/j.jeconom.2009.03.001 Search in Google Scholar

Fama, E. F. (1965). The Behaviour of Stock Market Prices. Journal of Business, 38(1), 34–105. https://doi.org/10.1086/294743 FamaE. F. 1965 The Behaviour of Stock Market Prices Journal of Business 38 1 34 105 https://doi.org/10.1086/294743 Search in Google Scholar

Fieberg, C., Liedtke, G., Poddig, T., Walker, T., & Zaremba, A. (2024). A Trend Factor for the Cross-Section of Cryptocurrency Returns. Journal of Financial and Quantitative Analysis. https://dx.doi.org/10.2139/ssrn.4601972 FiebergC. LiedtkeG. PoddigT. WalkerT. ZarembaA. 2024 A Trend Factor for the Cross-Section of Cryptocurrency Returns Journal of Financial and Quantitative Analysis https://dx.doi.org/10.2139/ssrn.4601972 Search in Google Scholar

Hawaldar, I. T., Mathukutti, R., & Dsouza, L. J. (2019). Testing the Weak Form of Efficiency of Cryptocurrencies: A Case Study of Bitcoin and Litecoin. International Journal of Scientific & Technology Research, 8(9), 2301–2305. HawaldarI. T. MathukuttiR. DsouzaL. J. 2019 Testing the Weak Form of Efficiency of Cryptocurrencies: A Case Study of Bitcoin and Litecoin International Journal of Scientific & Technology Research 8 9 2301 2305 Search in Google Scholar

Hu, Y., Valera, H. G. A., & Oxley, L. (2019). Market Efficiency of the Top Market-Cap Cryptocurrencies: Further Evidence From a Panel Framework. Finance Research Letters, 31(C), 138–145. https://doi.org/10.1016/j.frl.2019.04.012 HuY. ValeraH. G. A. OxleyL. 2019 Market Efficiency of the Top Market-Cap Cryptocurrencies: Further Evidence From a Panel Framework Finance Research Letters 31 C 138 145 https://doi.org/10.1016/j.frl.2019.04.012 Search in Google Scholar

Kang, H.-J., Lee, S.-G., & Park, S.-Y. (2022) Information Efficiency in the Cryptocurrency Market: The Efficient-Market Hypothesis. Journal of Computer Information Systems, 62(3), 622–631. https://doi.org/10.1080/08874417.2021.1872046 KangH.-J. LeeS.-G. ParkS.-Y. 2022 Information Efficiency in the Cryptocurrency Market: The Efficient-Market Hypothesis Journal of Computer Information Systems 62 3 622 631 https://doi.org/10.1080/08874417.2021.1872046 Search in Google Scholar

Khuntia, S., & Pattanayak, J. K. (2018). Adaptive Market Hypothesis and Evolving Predictability of Bitcoin. Economics Letters, 167, 26–28. https://doi.org/10.1016/j.econlet.2018.03.005 KhuntiaS. PattanayakJ. K. 2018 Adaptive Market Hypothesis and Evolving Predictability of Bitcoin Economics Letters 167 26 28 https://doi.org/10.1016/j.econlet.2018.03.005 Search in Google Scholar

Khursheed, A., Naeem, M., Ahmed, S., & Mustafa, F. (2020). Adaptive Market Hypothesis: An Empirical Analysis of Time-Varying Market Efficiency of Cryptocurrencies. Cogent Economics and Finance, 8(1). https://doi.org/10.1080/23322039.2020.1719574 KhursheedA. NaeemM. AhmedS. MustafaF. 2020 Adaptive Market Hypothesis: An Empirical Analysis of Time-Varying Market Efficiency of Cryptocurrencies Cogent Economics and Finance 8 1 https://doi.org/10.1080/23322039.2020.1719574 Search in Google Scholar

Kim, J. H. (2009). Automatic Variance Ratio Test Under Conditional Heteroskedasticity. Finance Research Letters, 6(3), 179–185. https://doi.org/10.1016/j.frl.2009.04.003 KimJ. H. 2009 Automatic Variance Ratio Test Under Conditional Heteroskedasticity Finance Research Letters 6 3 179 185 https://doi.org/10.1016/j.frl.2009.04.003 Search in Google Scholar

Kristjanpoller, W., Nekhili, R., & Bouri, E. (2024). Ethereum Futures and the Efficiency of Cryptocurrency Spot Markets. Physica A: Statistical Mechanics and its Applications, 654, 130161. https://doi.org/10.1016/j.physa.2024.130161 KristjanpollerW. NekhiliR. BouriE. 2024 Ethereum Futures and the Efficiency of Cryptocurrency Spot Markets Physica A: Statistical Mechanics and its Applications 654 130161 https://doi.org/10.1016/j.physa.2024.130161 Search in Google Scholar

Linton, O. (2019). Financial Econometrics: Models and Methods. Cambridge: Cambridge University Press. https://doi.org/10.1017/9781316819302 LintonO. 2019 Financial Econometrics: Models and Methods Cambridge Cambridge University Press https://doi.org/10.1017/9781316819302 Search in Google Scholar

Lo, A. W. (2004). The Adaptive Markets Hypothesis. Journal of Portfolio Management, 30(5), 15–29. https://doi.org/10.3905/jpm.2004.442611 LoA. W. 2004 The Adaptive Markets Hypothesis Journal of Portfolio Management 30 5 15 29 https://doi.org/10.3905/jpm.2004.442611 Search in Google Scholar

Lo, A. W. (2005). Reconciling Efficient Markets with Behavioral Finance: The Adaptive Markets Hypothesis. Journal of Investment Consulting, 7(2), 21–44. LoA. W. 2005 Reconciling Efficient Markets with Behavioral Finance: The Adaptive Markets Hypothesis Journal of Investment Consulting 7 2 21 44 Search in Google Scholar

López-Martín, C., Muela, S. B., & Arguedas, R. (2021). Efficiency in Cryptocurrency Markets: New Evidence. Eurasian Economic Review, 11(3), 403–431. https://doi.org/10.1007/s40822-021-00182-5 López-MartínC. MuelaS. B. ArguedasR. 2021 Efficiency in Cryptocurrency Markets: New Evidence Eurasian Economic Review 11 3 403 431 https://doi.org/10.1007/s40822-021-00182-5 Search in Google Scholar

Meng, K., & Khan, K. (2023). Is Cryptocurrency Efficient? A High-Frequency Asymmetric Multifractality Analysis. Computational Economics, 63, 2225–2246. https://doi.org/10.1007/s10614-023-10402-6 MengK. KhanK. 2023 Is Cryptocurrency Efficient? A High-Frequency Asymmetric Multifractality Analysis Computational Economics 63 2225 2246 https://doi.org/10.1007/s10614-023-10402-6 Search in Google Scholar

Mensi, W., Lee, Y.-J., Al-Yahyaee, K. H., Sensoy, A., & Yoon, S.-M. (2019). Intraday Downward/Upward Multifractality and Long Memory in Bitcoin and Ethereum Markets: An Asymmetric Multifractal Detrended Fluctuation Analysis. Finance Research Letters, 31, 19–25. https://doi.org/10.1016/j.frl.2019.03.029 MensiW. LeeY.-J. Al-YahyaeeK. H. SensoyA. YoonS.-M. 2019 Intraday Downward/Upward Multifractality and Long Memory in Bitcoin and Ethereum Markets: An Asymmetric Multifractal Detrended Fluctuation Analysis Finance Research Letters 31 19 25 https://doi.org/10.1016/j.frl.2019.03.029 Search in Google Scholar

Mokni, K., Montasser, G. E., Ajmi, A. N., & Bouri, E. (2024). On the Efficiency and its Drivers in the Cryptocurrency Market: The Case of Bitcoin and Ethereum. Financial Innovation, 10, 39. https://doi.org/10.1186/s40854-023-00566-3 MokniK. MontasserG. E. AjmiA. N. BouriE. 2024 On the Efficiency and its Drivers in the Cryptocurrency Market: The Case of Bitcoin and Ethereum Financial Innovation 10 39 https://doi.org/10.1186/s40854-023-00566-3 Search in Google Scholar

Nadarajah, S., & Chu, J. (2017). On the Inefficiency of Bitcoin. Economics Letters, 150(C), 6–9. https://doi.org/10.1016/j.econlet.2016.10.033 NadarajahS. ChuJ. 2017 On the Inefficiency of Bitcoin Economics Letters 150 C 6 9 https://doi.org/10.1016/j.econlet.2016.10.033 Search in Google Scholar

Noda, A. (2020). On the Evolution of Cryptocurrency Market Efficiency. Applied Economic Letters, 28(6), 433–439. https://doi.org/10.1080/13504851.2020.1758617 NodaA. 2020 On the Evolution of Cryptocurrency Market Efficiency Applied Economic Letters 28 6 433 439 https://doi.org/10.1080/13504851.2020.1758617 Search in Google Scholar

Okorie, D. I., Bouri, E., & Mazur, M. (2024). NFTs versus Conventional Cryptocurrencies: A Comparative Analysis of Market Efficiency Around COVID-19 and the Russia-Ukraine Conflict. The Quarterly Review of Economics and Finance, 95, 126–151. https://doi.org/10.1016/j.qref.2024.03.001 OkorieD. I. BouriE. MazurM. 2024 NFTs versus Conventional Cryptocurrencies: A Comparative Analysis of Market Efficiency Around COVID-19 and the Russia-Ukraine Conflict The Quarterly Review of Economics and Finance 95 126 151 https://doi.org/10.1016/j.qref.2024.03.001 Search in Google Scholar

Palamalai, S., Kumar, K. K., & Maity, B. (2021). Testing the Random Walk Hypothesis for Leading Cryptocurrencies. Borsa Istanbul Review, 21(3), 256–268. PalamalaiS. KumarK. K. MaityB. 2021 Testing the Random Walk Hypothesis for Leading Cryptocurrencies Borsa Istanbul Review 21 3 256 268 Search in Google Scholar

Polyzos, E., Rubbaniy, G., & Mazur, M. (2024). Efficient Market Hypothesis on the Blockchain: A Social-Media-Based Index for Cryptocurrency Efficiency. The Financial Review, 59(3), 807–829. https://doi.org/10.1111/fire.12387 PolyzosE. RubbaniyG. MazurM. 2024 Efficient Market Hypothesis on the Blockchain: A Social-Media-Based Index for Cryptocurrency Efficiency The Financial Review 59 3 807 829 https://doi.org/10.1111/fire.12387 Search in Google Scholar

Samuelson, P. A. (1965). Proof That Properly Anticipated Prices Fluctuate Randomly. Industrial Management Review, 6, 41–49. SamuelsonP. A. 1965 Proof That Properly Anticipated Prices Fluctuate Randomly Industrial Management Review 6 41 49 Search in Google Scholar

Sensoy, A. (2019). The Inefficiency of Bitcoin Revisited: A High-Frequency Analysis with Alternative Currencies. Finance Research Letters, 28(C), 68–73. https://doi.org/10.1016/j.frl.2018.04.002 SensoyA. 2019 The Inefficiency of Bitcoin Revisited: A High-Frequency Analysis with Alternative Currencies Finance Research Letters 28 C 68 73 https://doi.org/10.1016/j.frl.2018.04.002 Search in Google Scholar

Tiwari, A. K., Jana, R. K., Das, D., & Roubaud, D. (2018). Informational Efficiency of Bitcoin—An Extension. Economics Letters, 163, 106–109. https://doi.org/10.1016/j.econlet.2017.12.006 TiwariA. K. JanaR. K. DasD. RoubaudD. 2018 Informational Efficiency of Bitcoin—An Extension Economics Letters 163 106 109 https://doi.org/10.1016/j.econlet.2017.12.006 Search in Google Scholar

Tran, V. L., & Leirvik, T. (2020). Efficiency in the Markets of Crypto-Currencies. Finance Research Letters, 35(C). https://doi.org/10.1016/j.frl.2019.101382 TranV. L. LeirvikT. 2020 Efficiency in the Markets of Crypto-Currencies Finance Research Letters 35 C https://doi.org/10.1016/j.frl.2019.101382 Search in Google Scholar

Urquhart. (2016). The Inefficiency of Bitcoin. Economics Letters, 148(C), 80–82. https://doi.org/10.1016/j.econlet.2016.09.019 Urquhart 2016 The Inefficiency of Bitcoin Economics Letters 148 C 80 82 https://doi.org/10.1016/j.econlet.2016.09.019 Search in Google Scholar

Verma, R., Sharma, D., & Sam, S. (2022). Testing of Random Walk Hypothesis in the Cryptocurrency Market. FIIB Business Review, 1–9. https://doi.org/10.1177/23197145221101238 VermaR. SharmaD. SamS. 2022 Testing of Random Walk Hypothesis in the Cryptocurrency Market FIIB Business Review 1 9 https://doi.org/10.1177/23197145221101238 Search in Google Scholar

Yi, E., Yang, B., Jeong, M., Sohn, S., & Ahn, K. (2023). Market Efficiency of Cryptocurrency: Evidence From the Bitcoin Market. Scientific Reports, 13, 4789. https://doi.org/10.1038/s41598-023-31618-4 YiE. YangB. JeongM. SohnS. AhnK. 2023 Market Efficiency of Cryptocurrency: Evidence From the Bitcoin Market Scientific Reports 13 4789 https://doi.org/10.1038/s41598-023-31618-4 Search in Google Scholar

Yonghong, J., He, N., & Weihua, R. (2018). Time-Varying Long-Term Memory in Bitcoin Market. Finance Research Letters, 25(C), 280–284. https://doi.org/10.1016/j.frl.2017.12.009 YonghongJ. HeN. WeihuaR. 2018 Time-Varying Long-Term Memory in Bitcoin Market Finance Research Letters 25 C 280 284 https://doi.org/10.1016/j.frl.2017.12.009 Search in Google Scholar

Zargar, F. N., & Kumar, D. (2019). Informational Inefficiency of Bitcoin: A Study Based on High-Frequency Data. Research in International Business and Finance, 47, 344–353. https://doi.org/10.1016/j.ribaf.2018.08.008 ZargarF. N. KumarD. 2019 Informational Inefficiency of Bitcoin: A Study Based on High-Frequency Data Research in International Business and Finance 47 344 353 https://doi.org/10.1016/j.ribaf.2018.08.008 Search in Google Scholar

Zhang, W., Wang, P., Li, X., & Shen, D. (2018). The Inefficiency of Cryptocurrency and its Cross-Correlation With Dow Jones Industrial Average. Physica A: Statistical Mechanics and its Applications, 510, 658–670. https://doi.org/10.1016/j.physa.2018.07.032 ZhangW. WangP. LiX. ShenD. 2018 The Inefficiency of Cryptocurrency and its Cross-Correlation With Dow Jones Industrial Average Physica A: Statistical Mechanics and its Applications 510 658 670 https://doi.org/10.1016/j.physa.2018.07.032 Search in Google Scholar

Zhang, Y., Chan, S., Chu, J., & Shih, S. (2023) The Adaptive Market Hypothesis of Decentralized Finance (DeFi), Applied Economics, 55(42), 4975–4989. https://doi.org/10.1080/00036846.2022.2133895 ZhangY. ChanS. ChuJ. ShihS. 2023 The Adaptive Market Hypothesis of Decentralized Finance (DeFi) Applied Economics 55 42 4975 4989 https://doi.org/10.1080/00036846.2022.2133895 Search in Google Scholar

Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
1 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Wirtschaftswissenschaften, Volkswirtschaft, Wirtschaftstheorie, -systeme und -strukturen, Mikroökonomie, Makroökonomie, Wirtschaftspolitik