Zitieren

[1] JEFFREYS, H.: Note on the offshore bar problems and reflection from a bar. Great Britain Ministry of Supply, Wave Report No. 3, 1944. Search in Google Scholar

[2] JOHNSON, J. W. – FUCNS, R. A. – MOVASOR, J. R.: The damping action of submerged breakwaters. Transaction American Geophysical Union, Vol. 32, 1951, pp. 704-718.10.1029/TR032i005p00704 Search in Google Scholar

[3] MEI, C. – BLACK, J.: Scattering of surface waves by rectangular obstacles in waters of finite depth. J. Fluid Mech. Vol. 38, 1969, pp. 499-511.10.1017/S0022112069000309 Search in Google Scholar

[4] DATTATRI, J. – RAMAN, H. – SHANKAR, N. J.: Performance characteristics of submerged breakwaters. Proceedings of the 6th International Conference on Coastal Engineering. ASCE1978, Hamburg, Germany.10.1061/9780872621909.132 Search in Google Scholar

[5] BDULKHADER, M. H. – RAL S. P.: A study of submerged breakwaters. Journal of Hydraulic Research, Vol. 18, 1980, pp. 113-121.10.1080/00221688009499555 Search in Google Scholar

[6] MASSEL, S.: Harmonic generation by waves propagating over a submerged step. Coast. Eng., Vol. 7, 1983, pp. 357-380.10.1016/0378-3839(83)90004-2 Search in Google Scholar

[7] DRISCOLL, A. – DALRYMPLE, R. – GRILLI, S.: Harmonic generation and transmission past a submerged rectangular obstacle. Coast. Eng., 1992, pp. 1142-1152. Search in Google Scholar

[8] ABUL-AZM, A. G.: Diffraction through wide submerged breakwaters under oblique waves. Ocean Engineering, Vol. 21, 1994, pp. 683-706.10.1016/0029-8018(94)90045-0 Search in Google Scholar

[9] HSU, T. W. – CHANG, H. K. – HSIEH, C. M.: Bragg reflection of waves by different shapes of artificial bars. China Ocean Engineering, Vol. 16 (3), 2002, pp. 21-30. Search in Google Scholar

[10] CHO, Y. S. – LEE, J. I. – KIM, Y. T.: Experimental study of strong reflection of regular water waves over submerged breakwaters in tandem. Ocean Engineering, Vol. 31, 2004, pp. 1325-1335.10.1016/j.oceaneng.2003.07.009 Search in Google Scholar

[11] TWU, S. W. – LIU, C. C.: Interaction of non-breaking regular waves with a periodic array of artificial porous bars. Coastal Engineering, Vol. 51, 2004, pp. 223-236.10.1016/j.coastaleng.2004.01.002 Search in Google Scholar

[12] SZMIDT, K.: Finite difference analysis of surface wave scattering by underwater rectangular obstacles. Arch. Hydro-Eng. Environ. Mech., Vol. 57, 2010, pp. 179-198. Search in Google Scholar

[13] KOLEY, S. – BEHERA, H. – SAHOO, T.: Oblique wave trapping by porous structures near a wall. Journal of Engineering Mechanics, Vol. 141, Iss. 3, 2015.10.1061/(ASCE)EM.1943-7889.0000843 Search in Google Scholar

[14] OUYANG, H. T. – CHEN, K. H. – TSAI, C. M.: Wave characteristics of Bragg reflections from a train of submerged bottom breakwaters. Journal of Hydro-Environment Research, Vol. 11, 2016, pp. 91-100.10.1016/j.jher.2015.06.004 Search in Google Scholar

[15] SENOUCI, F. – CHIOUKH, N. – DRIS, M .E. A.: Performance Evaluation of Bottom-Standing Submerged Breakwaters in Regular Waves Using the Meshless Singular Boundary Method. Journal of Ocean University of China, Vol. 18, 2019, pp. 823-833.10.1007/s11802-019-3854-1 Search in Google Scholar

[16] LOUKILI, M. – DUTYKH, D. – NADJIB, C. – NING, D. – KOTRASOVA, K.: Analytical and Numerical Investigations Applied to Study the Reflections and Transmissions of a Rectangular Breakwater Placed at the Bottom of a Wave Tank. Geosciences, Vol. 11, 2021, 17 p.10.3390/geosciences11100430 Search in Google Scholar

[17] SHIVAKUMAR, P. – KARMAKAR, D.: Performance evaluation of submerged breakwater using Multi-Domain Boundary Element Method. Applied Ocean Research, Vol. 114, 2021, 15 p.10.1016/j.apor.2021.102760 Search in Google Scholar

[18] PATARAPANICH, M.: Forces and moment on a horizontal plate due to wave scattering, Coastal Engineering, Vol. 8, 1984, pp. 279-301.10.1016/0378-3839(84)90006-1 Search in Google Scholar

[19] PATARAPANICH, M. – CHEONG, H. F.: Reflection and transmission characteristics of regular and random waves from a submerged horizontal plate. Coastal Engineering, Vol. 13, 1989, pp. 161-182.10.1016/0378-3839(89)90022-7 Search in Google Scholar

[20] BROSSARD, J. – CHAGDALI, M.: Experimental investigation of the harmonic generation by waves over a submerged plate. Coastal Engineering, Vol. 42, 2001, pp. 277-290.10.1016/S0378-3839(00)00064-8 Search in Google Scholar

[21] LIU, C. – HUANG, Z. – KEAT TAN, S.: Nonlinear scattering of non-breaking waves by a submerged horizontal plate: experiments and simulations, Ocean Engineering, Vol. 36, 2009, pp. 1332-1345.10.1016/j.oceaneng.2009.09.001 Search in Google Scholar

[22] LIN, H. – NING, D. – ZOU, Q. – TENG, B. – CHEN, L.: Current effects on nonlinear wave scattering by a submerged plate. J Waterway Port, Coastal, Ocean Engineering, Vol. 140, Iss. 5, 2014, pp. 1-12.10.1061/(ASCE)WW.1943-5460.0000256 Search in Google Scholar

[23] NING, D. Z. – ZHUO, X. L. – CHEN, L. F. – TENG, B.: Nonlinear numerical investigation on higher harmonics at lee side of a submerged bar. Abstract and Applied Analysis, Vol. 2012, 2012, 13 p.10.1155/2012/214897 Search in Google Scholar

[24] ERRIFAIY, M. – NAASSE, S. – CHAHINE, C.: Analytical determination of the reflection coefficient by the evanescent modes model during the wave–Current–horizontal plate interaction. Comptes Rendus Mécanique, Vol. 344, 2016, pp. 479-486.10.1016/j.crme.2016.03.004 Search in Google Scholar

[25] NAASSE, S. – ERRIFAIY, M. – CHAKIB, C.: Analytical study of the effect of the geometrical parameters during the interaction of regular wavehorizontal plate-current. Acta Oceanologica Sinica, Vol. 38, 2019, pp.10-20.10.1007/s13131-019-1346-1 Search in Google Scholar

[26] JARLAN, J. E.: A perforated vertical wall breakwater. Dock and Harbour Authority, Chapman & Hall, London, Vol. 41, 1961, pp. 394-398. Search in Google Scholar

[27] SOLLITT, C. K. – CROSS, R. H.: Wave transmission through permeable breakwaters. Proc., 13th Coastal Engineering Conf., Vol. 3, Iss. July 10-14, 1972, pp. 1827-1846.10.9753/icce.v13.99 Search in Google Scholar

[28] DALRYMPLE, R. A. – LOSADA, M. A. – MARTIN, P. A.: Reflection and transmission from porous structures under oblique wave attack. J. Fluid Mech., Vol. 224, 1991, pp. 625-644.10.1017/S0022112091001908 Search in Google Scholar

[29] HAGIWARA, K.: Analysis of upright structure for wave dissipation using integral equation. Proc., 19th Coastal Engineering Conf., Vol. 3, 1984, pp. 2810-2826.10.9753/icce.v19.188 Search in Google Scholar

[30] YU, X. P.: Diffraction of water waves by porous breakwaters. Journal of Waterway, Port, Coastal and Ocean Engineering, Vol. 121, Iss. 6, 1995, pp. 275-282.10.1061/(ASCE)0733-950X(1995)121:6(275) Search in Google Scholar

[31] ISAACSON, M. – BALDWIN, J. – ALLYN, N. – COWDELL, S.: Design of a perforated breakwater. Proc., Ports ’98 Conf 1998a, Vol. 2, pp. 1189-1198. Search in Google Scholar

[32] SULISZ, W.: Wave reflection and transmission at permeable breakwaters of arbitrary cross section. Coastal Engineering, Vol. 9, 1985, pp. 371-386.10.1016/0378-3839(85)90018-3 Search in Google Scholar

[33] ISAACSON, M. – PREMASIRI, S. – YANG, G.: Wave interactions with a vertical slotted barrier. Journal of Waterway, Port, Coastal and Ocean Engineering, Vol. 124, 1998, pp. 118-126.10.1061/(ASCE)0733-950X(1998)124:3(118) Search in Google Scholar

[34] HUANG, Z. H. – LI, Y. C – LIU, Y.: Hydraulic performance and wave loadings of perforated/slotted coastal structures: A review. Ocean Engineering, Vol. 38, 2011, pp. 1031-1053.10.1016/j.oceaneng.2011.03.002 Search in Google Scholar

[35] DAS, P. – DOLAI, D. P. – MANDAL, B. N.: Oblique wave diffraction by parallel thin vertical barriers with gaps. Journal of Waterway, Port, Coastal and Ocean Engineering, Vol. 123, 1997, pp. 163-171.10.1061/(ASCE)0733-950X(1997)123:4(163) Search in Google Scholar

[36] BERGMANN, H. – OUMERACI, H.: Hydraulic performance of perforated structures. Proceedings of the 5th International Conference on Coastal and Port Engineering in Development Countries, COPEDEC, 1999, pp. 1340-1349. Search in Google Scholar

[37] HUANG, Z. H.: Wave interaction with one or two rows of closely spaced rectangular cylinders. Ocean Engineering, Vol. 34, 2007, pp. 1584-1591.10.1016/j.oceaneng.2006.11.002 Search in Google Scholar

[38] LIU, Y. – XIE, L. Q. – ZHANG, Z. H.: The wave motion over a submerged Jarlan-type perforated breakwater. Acta Oceanologica Sinica, Vol. 33, 2014, pp. 96-102.10.1007/s13131-014-0471-0 Search in Google Scholar

[39] HUANG, Z. H. – LI, Y. C. – LIU, Y.: Hydraulic performance and wave loadings of perforated/slotted coastal structures: A review. Ocean Engineering, Vol. 38, 2011, pp. 1031-1053.10.1016/j.oceaneng.2011.03.002 Search in Google Scholar

[40] NADJI, C. – KARIM, O. – YALÇIN, Y. – BENAMEUR, H. – ESIN, Ç.: Meshless Method for Analysis of Permeable Breakwaters in the Proximity of a Vertical Wall. China Ocean Engineering, Vol. 33, 2019, pp. 148-159.10.1007/s13344-019-0015-7 Search in Google Scholar

[41] LOUKILI, M. – DUTYKH, D. – KOTRASOVA, K. – NING, D.: Numerical Stability Investigations of the Method of Fundamental Solutions Applied to Wave-Current Interactions Using Generating-Absorbing Boundary Conditions. Symmetry, Vol. 13, Iss. 7, 2021, 9 p.10.3390/sym13071153 Search in Google Scholar

[42] LOUKILI, M. – KOTRASOVA, K. – BOUAINE, A.: A Generating - Absorbing Boundary Condition Applied to Wave - Current Interactions Using the Method of Fundamental Solutions. Civil and Environmental Engineering, Vol. 17, Iss. 2, 2021, pp. 343-352.10.2478/cee-2021-0036 Search in Google Scholar

[43] LOUKILI, M. – KOTRASOVA, K. – MOUHID, M.: Computerized Decision Aid Applied to Meshless Method for the Use Case: Wave-Structure Interactions. International Conference on Decision Aid Sciences and Application, DASA, 2020, pp. 33-36.10.1109/DASA51403.2020.9317009 Search in Google Scholar

[44] BROSSARD, J. – PERRET, G. – BLONCE, L. – DIEDHIOU, A.: Higher harmonics induced by a submerged horizontal plate and a submerged rectangular step in a wave flume. Coastal Engineering, Vol. 56, 2009, pp. 11-22.10.1016/j.coastaleng.2008.06.002 Search in Google Scholar

[45] MASOUDI, E, – GAN, L.: Diffraction waves on general two-legged rectangular floating breakwaters. Ocean Engineering, Vol. 235, 2021, 9 p.10.1016/j.oceaneng.2021.109420 Search in Google Scholar

[46] MASOUDI, E.: Hydrodynamic Characteristics of Inverse T-Type Floating Breakwaters. International Journal of Maritime Technology, Vol. 11, 2019, pp. 13-20.10.29252/ijmt.11.13 Search in Google Scholar

eISSN:
2199-6512
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
2 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Wirtschaftswissenschaften, Volkswirtschaft, Wirtschaftstheorie, -systeme und -strukturen, Betriebswirtschaft, Branchen, Umweltmanagement